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ABSTRACT For accurate control and navigation of an autonomous underwater vehicle (AUV) it is critical
to know the water current velocities around the vehicle body. The AUV-onboard acoustic doppler current
profilers are unable to measure the current near to the vehicle due to their blanking distance, so an AUV
model-based observer can serve the purpose of estimating the current velocities surrounding the vehicle.
In this paper, a high-gain observer based on an AUV dynamics model was used to estimate 3D water
current velocities. The water current velocities were determined by calculating the differences between
the vehicle velocities over the ground measured by a Doppler velocity log-aided inertial navigation system
and the vehicle velocities through the water estimated by the model-based observer. Modeling and field
trials of a Gavia AUV were used to demonstrate the approach. Instead of deriving the roll, pitch, and
yaw motions, these were directly given as simulation inputs which allowed the AUV dynamics model to
be simplified to 3–degrees of freedom. This paper presents a real-time model identification algorithm to
identify the nonlinear parameters of the AUV model by utilizing a recursive least squares method. The real-
time model identification algorithm allows the AUV model to be continuously updated in response to the
operational environment. A high-gain observer was chosen as a nonlinear estimation algorithm to obtain
the vehicle velocities through the water, and the Lyapunov stability of the estimation error dynamics was
investigated. The observer gain was computed by solving the linear matrix inequality which represented the
error dynamics. By utilizing the observer in the AUV dynamic model, the vehicle’s velocity vector through
the water was estimated, then the current velocity vector was calculated. In order to investigate the differences
between the estimated current velocities and themeasured current velocities, the standard deviations between
these two were quantified. The results showed that the current estimation found by using the model-based
observer was improved compared with the previous water current estimation method, which found the water
velocity components in a turbulent water column from the AUV motion response.

INDEX TERMS Autonomous underwater vehicles, system identification, recursive least squares
optimization, model-aided inertial navigation, linear matrix inequality, high-gain observer.

I. INTRODUCTION
AUVs have been used as specialised tools for ocean mis-
sions such as seabed observation, environmental monitoring
and oceanographic measurement. These tasks involve high-
resolution, georeferenced optical/acoustic ocean floor map-
ping as well as water column sampling such as currents,
temperature and salinity [1]. Georeferencing is critical for
AUVs to register navigational information and to revisit a
previous mission site. Since the 1970s, the navigation and
control subsystems of AUVs have been progressively and

continuously improved. One of the major challenges is to
achieve accurate localisation and navigation in regions where
the DVL is out of range of the bottom [2].

Inertial navigation systems (INS) are one of the essential
pieces of equipment used to localise and navigate AUVs.
By utilising an Inertial Measurement Unit (IMU), the INS
estimate the position, orientation and velocity of the vehicle
relative to the inertial frame. However, a navigational system
based solely on an INS has a relatively large position error
drift and this can be reduced through an externally aided
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bottom tracking DVL [3]. Furthermore, DVL aiding is either
intermittently or completely unavailable when the vehicle-to-
seabed distance is larger than the transmission range of DVL’s
acoustic frequency as illustrated in Figure 1. In this case,
the vehicle’s velocity can be approximated using a mathemat-
ical model which characterises the hydrostatics and hydro-
dynamic properties of the AUV; i.e. a model-aided INS [4].
Even though the localisation from the model-aided INS is not
as precise as the DVL-aided INS, its accuracy is higher than
an unaided INS and the water-track mode DVL-aided INS
[5]. Therefore, this paper presents an approach to estimate
the vehicle’s velocity by using an AUVmodel-based observer
for the case when the vehicle operates in the midwater
zone or loses the bottom track due to very rough bathymetry
in deep water.

FIGURE 1. Illustration of an AUV temporarily operating beyond the
DVL range.

The capability of a mathematical model for predicting
AUV velocity depends on the accuracy of the parame-
ters representing hydrodynamic, hydrostatic, environmental
and external forces and the mass properties of the AUV.
Since the hydrodynamic forces acting on AUVs are highly
nonlinear, mathematical models should have high-order
hydrodynamic coefficients to represent these nonlinear char-
acteristics. Numerous methods for identifying linear and non-
linear hydrodynamic coefficients have been introduced for
marine vehicles. For example, captive model experiments [6],
computational fluid dynamics (CFD) simulation [7] and
system identification utilising field experiment data [8].

In many cases it is necessary or useful to have a model
of the system with the model coefficients available on-line
in real time while the system is in operation. The model
coefficients should be obtained based on the observations up
to the current time. The on-line computation of the model
coefficients must also be done in such a way that the process-
ing of the measurements from one sample can be completed
during one sampling interval. Otherwise the model computa-
tions cannot keep up with the information flow. Identification
techniques that comply with this requirement will be called
recursive identification methods, since the measured input-
output data are processed recursively (sequentially) as they
become available [9].

The linear and nonlinear parameters of an AUV motion
response prediction mathematical model are presented here
by utilising the Recursive Least Squares (RLS) and the
prediction error method (PEM) optimisation techniques in

Randeni et al. [2]. The difference between velocity prediction
uncertainties of the models identified using the Recursive
Least Squares (RLS) and PEM are negligibly small. That is,
both identification algorithms are equally capable of estimat-
ing the parameters of the model. The determined velocities
were used to aid the INS position estimate using a Kalman
filter data fusion algorithmwhen external aiding was unavail-
able. The model is able to estimate the position of the AUV
within an uncertainty range of around 1.5% of the distance
travelled, significantly improving the localisation accuracy.

In addition to the prediction of the motion response,
an AUV’s mathematical model can also be used to calculate
the water velocity components of a turbulent water column in
three dimensions using the AUV’s motion response [10]. The
water column velocities are determined by calculating the dif-
ferences between the motion responses of the vehicle in calm
and turbulent water environments. In the Randeni, et al. [10]
work, the calculated water column velocity components show
good agreement with the current measurements from an
ADCP mounted on the AUV.

In practice, perfect observation of the system state is
unavailable, as either it is costly, technically unfeasible, or
the measurement quality is low. Therefore, there is a need
for a systematic approach for the evaluation or estimation
of the system state using the information available. For a
linear system, the idea that a stabilising controller can consist
of a state estimator plus state feedback, called the separa-
tion principle, is a valid approach. However, for a nonlin-
ear system, the separation principle does not hold since it
is nearly impossible to estimate the error dynamics. Hence
many nonlinear estimation algorithms have been developed
such as the extended Kalman Filter (EKF) [11], unscented
Kalman filter (UKF) [12], particle filter (PF) [13] and high-
gain observer [14].

The high-gain observer distinguishes itself from other
methods by its simple structure since it only consists of a copy
of the system dynamics with a corrective term involving the
product of the output observation error by the observer gain.
As a result high-gain observers have been used extensively
in the feedback control design for nonlinear systems; see
Khalil and Praly [15] for example. The high-gain observer
not only recovers stability achieved under state feedback, but
also recovers its performance in the sense that the trajectories
of the system under output feedback, approach those under
state feedback as the observer gain increases [16], [17].

As ocean current or water column information might
enhance navigation precision and control performance, cur-
rent velocities were estimated by a nonlinear observer based
on the AUV dynamic model in a current by Fan, et al. [18].
In the AUV dynamic model, the current was assumed to be
composed of unsteady and nonuniform components. While
the current disturbances were taken as the uncertainties of
the vehicle dynamic system, a nonlinear observer was used
to estimate the unmeasured state, which was fed back to
the control system. However, as the most critical parameter,
the observer gain matrix in Fan et al. [18] is preliminarily
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optimized by utilising the pole placement method to place the
eigenvalues of the closed-loop system in some desired regions
of the complex plane, it is inferred that there is enormous
room to improve the robustness and precision of the observer
by adopting advanced algorithms to optimize the observer
gain matrix.

The issue of selecting a high gain arises from the demand
of accounting for the nonlinearities in the error dynam-
ics which are typically represented as a Lipschitz function.
Alessandri and Rossi [19] present a time-varying increasing-
gain observer for a nonlinear system. In the first time instant,
the gain is small, but it increases over time up to its maximum
value and then is kept constant. The selection of design
parameters is produced by solving a set of the LMI.

LMI theory has recently gained great attention since
a wide variety of control problems can be reduced to a
few standard convex optimization problems including LMIs.
Consequently, optimisation problems with convex objective
functions and LMI constraints are solvable relatively effi-
ciently with off-the-shelf software. The form of an LMI is
very general. Linear inequalities, convex quadratic inequal-
ities, matrix norm inequalities, and various constraints from
control theory, such as Lyapunov and Riccati inequalities, can
be all be written as LMI. Thus, LMIs are a useful tool for solv-
ing a wide variety of optimisation and control problems [20],
so LMI was adapted in this paper to obtain a gain for the
observer design.

This paper presents a real-time system identification algo-
rithm to determine the nonlinear parameters of an AUV
dynamic model utilising the RLS. The identified real-time
dynamic model coefficients allowed the AUV model to keep
up with the information flow and to be continuously updated
in response to the operational environment. Moreover, the
high-gain observer based on the AUV dynamic model was
developed to estimate the vehicle velocities through the
water flow which were only intermittently unavailable from
the DVL when the vehicle was operating in the midwater
zone. The current velocities were consequently determined
by using the estimated vehicle velocities through the water
flow which let the AUV control and navigation system know
the current velocities around the vehicle body.

This paper is organised as follows: Section II is devoted
to clarify the methodology including the details of the instru-
mentation, AUV dynamics modelling and high-gain observer
development. Results are presented in Section III and conclu-
sions in Section IV.

II. METHDOLOGY
The water current velocity can be obtained from the differ-
ence between the vehicle velocity over the ground and the
vehicle velocity through the water as illustrated simply in
1-D in Figure 2.

In this study, the current components close to the AUV
were obtained in 3-principal directions by calculating the
differences between the vehicle velocities over the ground
measured by the DVL-aided INS during the field test and
the vehicle velocities through the water estimated by using
the AUVmodel-based high-gain observer. Equation (1) gives
this calculation in the vector form.

EvCurrent = EvOG − EvTW (1)

where EvCurrent is the current velocity vector; EvOG is the vector
of the vehicle’s absolute velocity over the ground measured
from field test using DVL-aided INS; and EvTW is the vector of
vehicle’s relative velocity through the water column obtained
from AUV dynamic model.

During the field tests, the AUV underwent a straight-
line, constant altitude mission while the water current veloc-
ities were measured through the AUV-onboard ADCP. The
ADCPs were programmed to profile approximately 10 m of
water column in 0.5 m range bins. The closest bin was 0.44 m
away from the vehicle which referred as a blanking distance.
Then water velocity components relative to the AUV in
the body-fixed coordinate system in 3D were measured in
each bin.

In order to analyse the motion of the AUV in 6 DOF, two
coordinate frames, an inertial reference frame {xi, yi, zi} and
a body-fixed frame {xb, yb, zb}, were defined as indicated
in Figure 3. While the Earth-fixed frame was used as the
inertial reference, the body-fixed reference frame was fixed
to the AUV. The origin O of the body-fixed reference frame
was chosen at the centre of buoyancy of the vehicle.

FIGURE 2. Illustration of current velocity, vehicle velocity through water and over ground.
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FIGURE 3. Body-fixed reference frame (LEFT) and Inertial Earth-centred
inertial frame (RIGHT).

Without current compensation, the AUV control system
only provides commands to keep the AUV on a straight-line
motion in the absence of current. However, the truth is that
the vehicle is also moving under the current disturbances.
In this case, the vehicle cannot keep the desired straight-line
trajectory within the given control inputs. Thus, the motion
difference can be used for current estimation. In order to
compensate for the disturbances caused by any turbulent
or unsteady flow and keep the prescribed straight-line path,
the AUV’s control system is required to control the propeller
RPM and control surface angles. These control commands
were recorded in the vehicle log and used as inputs for the
AUV model-based observer to estimate the AUV velocities
through the water. As a result of the estimation, the current
velocities could be determined by calculating the differences
between the vehicle velocities over the ground recorded
through DVL-aided INS and the estimated vehicle velocities
through the water. This process of current estimation is
illustrated as a flow chart in Figure 4.

A. VEHICLE SPECIFICATIONS
In order to validate the performance of the AUV model
based observer for current estimation, field tests from a
Gavia-class modular AUV were used. Its configuration is
shown in Figure 5. The AUV consisted of a nose cone, bat-
tery module, interferometry sonar module (GeoSwath Plus
Kongsberg Maritime AS), 1200 kHz Teledyne RD Instru-
ments, ADCP/DVL module, Kearfott T24 INS module, con-
trol module and a propulsion module. The overall length of
the vehicle was 2.7 m, the diameter was 0.2 m, and the dry
weight in air was approximately 70 kg. The DVL-aided INS
was used to derive the position of the AUV [10].

In the ADCP module, there were two 1200 kHz Teledyne
RD Instruments ADCPs/DVLs which were installed in
upward-looking and downward-looking configurations
respectively. Both the upward-looking and downward looking
transducers could collect water column velocity data relative
to the AUV (i.e., in ADCP mode), but the downward-looking
transducers could also measure the vehicle velocity over the
ground (i.e., in DVL mode).

The aim of this studywas to validate the applicability of the
AUVmodel based high-gain observer for current estimate by
comparing the measured vehicle velocities over ground and
the estimated vehicle velocities relative to the water column

FIGURE 4. Flowchart to predict current velocities.

from an AUVmodel based high-gain observer. Consequently,
the estimated current velocities are compared and validated
by the current velocity measurements from the on-board
ADCP. The field test was conducted in the Tamar estuary
where there was a dominant tidal current flow and a straight-
line run was conducted against the flow direction. Test details
are published by Randeni et al. [10].

B. AUV DYNAMICS MODEL
The rigid body dynamics and hydrodynamics of the Gavia
AUV were modelled according to the method formulated by
Fossen [21] using MATLAB Simulink software. Referring to
Fossen [21], the 6-DOF motion of an underwater vehicle can
be expressed by Equation (2) and the mathematical equations
in this paper are based on the notation as given in Table 1.

Mv̇+ C(v)v+ D(v)v+ g(η) = tcontrol
M = MRB +MA C(v) = CRB(v)+ CA(v) (2)

where M is the system inertia matrix; C (v) is the Coriolis-
centripetal matrix; D (v) is the damping matrix; g(η) is the
vector of the gravitational/buoyancy forces and moments;
tcontrol is the vector of body forces and moments; v is the
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FIGURE 5. Configuration of the tested Gavia AUV

velocity vector ( i.e., [u v w p q r] where p, q and r are the
angular velocities around the x, y and z axes); η is the vector
of position/Euler angles (i.e., [xyzϕθψ]) where ϕ, θ and ψ
are the roll, pitch and yaw angles respectively; MRB is the
rigid-body inertia matrix, CRB(v) is the rigid-body Coriolis
and centripetal matrix, and finally MA and CA(v) are their
added mass components.

TABLE 1. The 6-DOF notation for marine vessels.

In response to the time series of control commands,
the vehicle velocities through the water were reproduced
by developing a motion model including inputs of propeller
rotational rate (N ), pitch angle (θ ), pitch rate(q), pitch accel-
eration (q̇), yaw rate (r) and yaw acceleration (ṙ). Instead of
deriving the rolling, pitching and yawing motions, these were
directly given as model inputs which allowed the mathemati-
cal model to be simplified to 3-DOF (i.e. into linear motions
along the x, y and z directions) without modelling the angular
motions.

In this study, Equation (2) which represents the 6-DOF
dynamic equation of motion was reduced to 3-DOF and
simplified by assuming:
Assumption: Products of inertia (i.e., Ixy, Ixz and Iyz) are

assumed to be zero since they are negligibly small com-
pared to the moments of inertia (i.e., Ixx , Iyy and Izz) of the
vehicle [22].

Then Equation (2) can be expanded and rearranged as:

(m− Xu̇) u̇+ mzgq̇+ mygṙ

= (W − B) sin (θ)+ Xu|u|u|u| +
(
Xwq − m

)
wq

+
(
Xqq + mxg

)
q2 + (Xvr + m) vr +

(
Xrr − mxg

)
r2

+Xn × N 2 (3)

(m− Yv̇) v̇+
(
mxg − Yṙ

)
ṙ

= Yv|v|v|v| + Yr|r|r|r| + (Yur − m) ur + Yuvuv+ mzgqr

(4)

(m− Yẇ) ẇ−
(
mxg + Zq̇

)
q̇

= (W − B) cos (θ)+ Zw|w|w|w| + Zq|q|q|q|

+
(
Zuq + m

)
uq+ Zuwuw (5)

where, N is the propeller revolutions per minute (RPM) and
Xn is the thrust coefficient, which is 95× 10−6 for the Gavia
AUV according to the estimation by Porgilsson [23]. The
acceleration terms in the equations of motion were separated
on the left-hand side while the right-hand sides included the
hydrostatic, hydrodynamic damping and control forces.

u̇− Xn × N 2

= α1q̇+ α2ṙ + α3u|u| + α4wq+ α5q2

+α6vr + α7r2 + α8 sin(θ ) (6)

v̇ = β1ṙ + β2v|v| + β3r|r| + β4r2 + β5ur + β6uv+ β7qr

(7)

ẇ = γ1q̇+ γ2w|w| + γ3q|q| + γ4uq+ γ5uw+ γ6q2

+ γ7rq+ γ8 cos(θ ) (8)

The coefficients (e.g., m,Xu̇ and zg) in Equations (3) - (5)
were superimposed in unknown parameters (α1−8, β1−7 and
γ1−8) in Equation (6) - (8), which eliminated the need
to measure them. While the vehicle’s linear accelerations
(i.e., u̇, v̇ and ẇ) were rearranged on the left hand sides of
Equation (6) - (8), unknown parameters on the right hand
sides were to be identified by using the Recursive Least
Squares (RLS) algorithm approach.

In Equation (9), the system output vector y(t) was com-
prised of a regressor vector 0(t) and a parameter vector 8(t),
and accordingly Equation (6) - (8) were represented in
TABLE 2.

y(t) = 0(t)8(t) (9)

In highly dynamic environments, the parameters of the
mathematical model fluctuate with time due to environmen-
tal forces [2]. Therefore, in this study, a real-time model
identification algorithm was utilised to identify the dynamics
parameters with continuous updates, which allowed the AUV
model to produce the vehicle’s motion response in the present
environment.

Unknown parameter vectors were identified in real-time
by utilising the Recursive Least Squares (RLS) estimation
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TABLE 2. y(t), 0(t) and 8(t) Vectors for Representation of Equation (6) - (8).

FIGURE 6. Dynamics model parameters identified by the real-time RLS method during the simulation

TABLE 3. Identified parameter values at the end of simulation.

block set up in theMATLABSimulink Identification toolbox.
The identified parameters were varied while the simula-
tion was running as shown in Figure 6, and parameters
at the end of simulation, for example, are tabulated in
TABLE 3.

In order to obtain the AUV’s linear velocities, the lin-
ear acceleration terms from Equation (6)- (8) were solved

in the AUV dynamics model by using the recorded input
values as shown in the flow chart in Figure 7. Six inputs
were recorded, such as: propeller rotation rate (N ), pitch
angle (θ ), pitch rate (q), pitch acceleration (q̇), yaw rate (r)
and yaw acceleration (ṙ). Integrating the linear accelerations
with respect to time produced the linear velocities in the body-
fixed reference frame.
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FIGURE 7. Model-based velocity calculation flowchart. The acceleration at tntn was obtained with recorded RPM (N), measured
variables (θ , q, r, q̇ and ṙ ) as well as velocity vector at tn−1tn−1. Then AUV velocity vector is solved by integrating the acceleration
vector with respect to time.

C. HIGH-GAIN OBSERVER DESIGN
In this section, a high-gain observer based on the AUV
dynamics model was designed. In order to set up the
nonlinear high-gain observer, the AUV’s dynamic systems
are described by:

ẋ = Ax + f (x, t)

y = Cx (10)

where x ∈ Rn is the state vector; y(t) ∈ Rm is the mea-
surement output vector; and, A ∈ Rn×nC ∈ Rm×n, and the
function f are defined as follows:

x(t) = [ φ θ ψ ur vr wr ]T

C =

 0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1



f (x, t) :=


f1(x1, t)

f2(x1, x2, t)
...

fn−1(x1, x2, . . . , xn−1, t)
fn(x1, x2, . . . , xn, t)


To estimate x(t), the observer was considered as follows:

˙̂x = Ax̂ + f̂ (x̂, u)+ G(γ )(y− Cx̂) (11)

where x̂(t) is the estimate of x(t) at time t; the observer
gain, G(γ,K ) := [γ k1γ 2k2 . . . γ nkn]T with K :=

[k1k2 . . . kn]T and ki ∈ R, i = 1, 2, . . . , n. [19]. The
estimation error

(
ê := x − x̂

)
dynamics were derived from

Equation (10) and (11) as follows:

˙̂e(t) = (A− GC) ê(t)+ f (x(t), t)− f̂ (x(t)− ê(t), t) (12)

Instead of studying the stability of the estimation error,
variables were transformed ê := T (γ )e, e ∈ Rn with T (γ ) =
diag

(
γ, γ 2, ..., γ n

)
resulting Equation (13) as follows:

ė(t) = T (γ )−1(A− GC)T (γ )e(t)

+T (γ )−1 {f (x(t), t)− f (x(t)− T (γ )e(t), t)} (13)

Because of the particular observer structure, the previous
equation was rewritten as follows:

ė(t) = γ (A− KC)e(t)

+T (γ )−1(f (x(t), t)− f (x(t)− T (γ )e(t), t)) (14)

The stability of the error dynamics was investigated via a
Lyapunov function. Furthermore, based on the fact that (A,C)
is observable, there exist λ > 0,K ∈ Rn and a symmetric
positive matrix P ∈ Rn×n such that

(A− KC)T P+ P (A− KC)+ λI < 0 (15)

with K := [ k1 k2 · · · kn]T . The above equation could be
treated by solving the equivalent LMI:

ATP+ PA− CTY T
− YC + λI < 0 (16)

where the unknowns are λ > 0,Y = PK ∈ Rn and P > 0.
In order to compute the solution to a given system of LMIs,

a number of MATLAB functions were used as tabulated
in Table 4. Before starting the description of a new LMI
system, a functionsetlmiswas used to initialise its internal
representation. The function limvar defined new matrix
variables P,Y and λ in the LMI system currently described.
The variablematrixPwas defined as a 6×6 symmetric matrix
while Y was defined as a 6 × 3 rectangular matrix. One of
the gain parameters, λ was defined as a constant. By using
a function limterm, the term contents of an LMI one term
at a time. The LMI term referred to the elementary additive
terms involved in the block-matrix expression of the LMI. For
example, in order to express the Equation (16), three terms
were required as shown in TABLE 4. For more details for the
lmiterm function description, see [24]. After completing
the description of a given LMI system with lmivar and
lmiterm, its internal representation lmisys was obtained
with the command getlmis. The function feasp com-
puted a solution xfeas of the system of LMIs descripted
by lmisys. The vector xfeas was a particular value of
the decision variables for which all LMIs were satisfied.
Finally, a function dec2mat computed the corresponding
value valx of the matrix variable with identifier X given
the value decvars of the vector of decision variables. As a
result, matrix variables – P, Y and λ in the LMI system were
obtained, then P and Y were used to calculate the one of gain
parameter K .
The high-gain observer design was accomplished by solv-

ing the LMI problem so the gain K = P1Y and γ were
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TABLE 4. Matlab functions used to find the gain matrix and its description [24].

obtained as follows:

γ = 2.2707, K =



1.3383 0 0.8730
0 0.7599 0

0.2967 0 0.8041
0 0.1586 0

0.5121 0 0.7589
0 −0.1884 0

−8.0381 0 34503
0 2.1625 0

3.2320 0 3.6946


III. RESULTS AND DISCUSSION
The proposed high-gain observer design was validated by
comparing the estimated current velocities with recorded
current velocities from an on-board ADCP. In the field test,

FIGURE 8. Trajectory that the vehicle underwent during the field test

the AUV underwent a straight and constant depth mission as
illustrated in Figure 8 and Figure 9 respectively.
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FIGURE 9. Water Depth and AUV’s altitude during the field test

In order to estimate the current velocities, firstly the
vehicle’s velocities through the water were estimated by the
model-based observer. Then the current velocities could be
calculated by subtracting the estimated velocities through the
water from the vehicle’s velocities over the ground measured
by the DVL.

Figure 10 shows the vehicle’s velocities over the ground
recorded by the DVL-aided INS navigation system during the
field test and vehicle’s velocities through the water estimated
by the model-based observer in the xb, yb and zb direction
respectively. In the xb axis, the vehicle velocities over the
ground and through the water showed the greatest difference
compared to those in theyb and zb axes. This difference
leads to an estimate of around -1 m/s current velocity in the
longitudinal direction. It can be inferred that the straight line
that the vehicle followed during the field test was against the
tidal flow direction.

Figure 11 shows the current velocities estimated by the
AUV model-based observer and measured current veloci-
ties from the ADCP in the xi, yi and zi axes directions,
respectively. Although the current velocities were measured
0.44 m away from the vehicle due to the ADCP’s blanking
distance, the estimated current velocities from the observer
were closely matched with the measured current velocities.
A peaking phenomenon was found in the estimated current
velocity especially in the xi axis as shown in Figure 12. Using
the high-gain observer results in a peaking phenomenon
which shows up as a large estimation gap during the short
period right after the initial time. However, the transient
period shown in the estimated current velocity was very
short relative to the time scale, and the estimated velocities
approached the measured current velocities very promptly
and closely.

In order to investigate the differences between the current
velocity estimates from the AUV model-based observer and
the current velocities measured by the ADCP, the standard
deviations between these two were quantified in Table 5.
Here, the standard deviation of the current estimate results
were 0.0942 m/s, 0.0656 m/s and 0.0323 m/s. The current
measurement from the ADCP were taken 0.44 m away from
the vehicle while the current estimates from the observer were
calculated at the vehicle.

In the research of Randeni et al. [10], a method is proposed
to calculate the water velocity components of a turbulent
water column using the AUV motion response (referred to

FIGURE 10. The vehicle velocities over ground measured by DVL-aided INS (dotted curves) and velocities through water estimated by AUV
model-based high-gain observer (solid curve) along x, y and z axis.
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FIGURE 11. The comparison between the current velocities measured by ADCP (dotted curve) and its counterpart which was estimated by the
high-gain observer (solid curve) in x, y and z axis.

FIGURE 12. Peaking phenomena in current estimation at the beginning of the estimation process (∼ 10 second) compared to the current velocities
recorded by the ADCP.

TABLE 5. Standard deviation of current estimates.

as the ‘WVAM method’), for which the current velocities
are solved by determining the difference between the motion
responses of the vehicle in calm and turbulent water environ-
ments. The field test data used in this study was acquired
from part of the Randeni et al. [10] study, which allowed a

comparison to be made between the respective methods for
current velocities estimation. Figure 13 shows the comparison
between the current measurements from the ADCP, the cur-
rent velocity estimated from the AUV model-based observer
and the current velocity calculated byWVAMmethod in three
dimensions.

The difference between velocities obtained from the
WVAM method and ADCP were calculated by quantifying
the standard deviation and these are 0.09 m/s, 0.07 m/s and
0.06 m/s [10]. Compared with the standard deviation of the
current estimate results using the high-gain observer, those
for the xi and yi axes were similar, but the standard deviation
of the current estimation from the high-gain observer in the
zi axis was less: 0.0323 m/s.
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FIGURE 13. Comparison between the current velocities in the z direction between ADCP measurement, estimate from the observer and calculation
from WVAM method respectively.

Furthermore, an estimate of error was calculated by using
equation (17) to assess the improvement of the proposed
AUV model-based observer to estimate the current velocity
compared with the WVAM method.

estimationerror(%) = (V ADCP−V Est )/V ADCP × 100 (17)

where VADCP is the measured current velocity by ADCP
and VEst is the estimated current velocity by the observer and
the WVAM method.

In TABLE 6, estimation error means of the current estima-
tion results for the model-based observer andWVAMmethod
are tabulated. The estimation error means of the model-based
observer was smaller than their counterpart from the WVAM
method in both xi and zi axes which results in an estimation
improvement of 4.992 % and 6.757 % respectively. In the yi
axis, the estimation error mean of the model-based observer
was slightly larger than its counterpart from the WVAM

TABLE 6. Estimation error mean for model-based observer and wvam
method.

method. This could have resulted from a lower number of
unknown parameters (β1−7) in the yi axis dynamic equa-
tion than the number of parameters in the other two axes
(α1−8 and γ1−8), while the number of the unknown param-
eters of each axis had been decided by rearranging and
superimposing of the underactuated AUV dynamic motion
equation. This could have resulted in the current estimation
in yi axis converged into the measured current velocity more
slowly than the other two axes, as is shown in the time
period between 0 to 50 second in Figure 13, which caused
the slightly larger estimation error mean in the yi axis than
the counterpart of WVAM method.

In contrast to the WVAMmethod, estimated current veloc-
ities using the AUV model-based observer did not require
an additional field test in a calm water environment in
order to reproduce the AUV responses in the simulation
model.

IV. CONCLUSION
In order to verify the capability of the AUV dynamic model-
based observer for predicting the water current velocities in
this study, the water current velocity components in the xi,
yi and zi axes of inertial frame were estimated. The water
current velocities were estimated by calculating the differ-
ence between the vehicle velocities over ground recorded
using the DVL and the vehicle velocities through the water
estimated from anAUVmodel-based observer. AGavia AUV
was utilised to conduct a straight-line, constant depth mission
to record the current velocities and vehicle velocities by
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utilising on-board ADCP and DVL respectively. The AUV
dynamics model that represents the Gavia AUV behaviour
was developed usingMATLAB Simulink. Instead of deriving
the roll, pitch and yaw motions, these were directly given as
simulation inputs which allowed the AUV dynamics model to
be simplified to 3-DOF. For the AUV dynamic model, hydro-
dynamics parameters were identified by applying real-time
system identification utilising the RLS identification method.
The RLS identification technique was used as it has the
advantages of simple calculation and good convergence prop-
erties. The real-time model identification algorithm allowed
the AUVmodel to be continuously updated in response to the
operational environment. The high-gain observer was used
as a nonlinear estimation algorithm to obtain the vehicle
velocities through the water. Stability of the estimation error
dynamics was investigated via the Lyapunov function. The
observer gain was computed by solving the LMIs (Linear
Matrix Inequalities) which represented the error dynamics
equation.

During the AUV simulation, the vehicle velocities through
the water were obtained by applying the equivalent con-
trol commands which were executed during the field test.
Once the vehicle velocities through the water were avail-
able, the current velocities were calculated by subtracting
the vehicle velocities through the water from the vehicle
velocities over the ground recorded by the DVL-aided INS.
The estimated current velocities in the xi, yi and zi direc-
tion were found to be well matched with the measured
current from the AUV-onboard ADCP. In order to quantify
the differences between the estimated and measured current
velocities, standard deviations were calculated as 0.0942 m/s,
0.0656 m/s and 0.0323 m/s for the xi, yi and zi axes compo-
nents respectively. Furthermore, the current estimation results
from the AUV model-based observer were also compared
with the estimation results from the WVAM method [10]
which utilises motion differences. The estimation error per-
centages illustrated that the current estimation found by using
the model-based observer was improved by as much as 6.8 %
in the zi axis, less in the other directions.
For precise navigation and control of an AUV, it is critical

to obtain the current velocities around the boundary layer of
the AUV where the ADCP is unable to measure due to its
blanking distance. Hence the AUV model-based observer is
advantageous to estimate the current velocities either close
to or at the vehicle by utilising an AUV dynamics model.
Precise hydrodynamics properties can be identified from the
real-time measurement.
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