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This paper takes an initiative to quantitatively assess the impact of the traffic control 

scheme and the stepwise toll pricing policy of the Suez Canal on the optimal sailing 

schedule of a liner containership. We first develop a mixed-integer nonlinear 

programming (MINLP) model for the optimal sailing schedule of a containership over 

a long-haul voyage via Suez subject to the traffic convoy system of the Suez Canal and 

its piecewise transit due structure. To improve the computational performance and take 

advantage of off-the-shelf optimization solvers, we linearize the nonlinearity in clock-

time calculation, reformulate the power function in bunker fuel calculation with the 

second order cone programming technique, and cast the MINLP model into a mixed-

integer second order cone programming (MISOCP) model. Various impact analyses 

can be carried out using the MISOCP model. A case study on a 13000-TEU 

containership running on the LP4 service operated by APL shows several managerial 

insights: (a) ignoring the traffic control system at Suez in ship speed optimization may 

lead to an infeasible sailing schedule, and underestimate the operating cost (even the 

bunker cost) of a containership on a long-haul voyage via Suez; (b) the optimal ship 

recovery plan in terms of its sailing speeds is mainly determined by the predefined port 

time windows, delay situation and Suez-clock time, but not pretty much affected by the 

levels of bunker price and transit due.     

Keywords: Suez Canal; transit due; containership; speed optimization; second order 

cone programming 

 

1. Introduction 

The Suez Canal plays a pivotal role in the global container liner shipping network. 

Table 1 shows its traffic volumes from 2012 to 2016. Totally 16,833 ships made full 

transits through the Suez Canal in 2016, out of which 5,414 ships (close to a third) are 

containerships. The canal conveyed 819.2 million tons of cargo for the north-south and 

south-north trade in 2016, and containerized cargo, 440.0 million tons, represents about 

54% of this total volume. If the equivalence “1 TEU = 11 tons” is adopted (Notteboom, 

2012), the containerized cargo volume in 2016 is estimated to 40 million TEUs. The 

dominant portion of these container flows can be attributed to Europe-Asia trade routes. 

Notteboom (2012) reports that nearly 93% of the container flows via Suez in 2010 are 

related to Europe-Asia trade routes.  
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Table 1. Traffic volumes of the Suez Canal in 2012 – 2016  

 2012 2013 2014 2015 2016 
# Ships making full transits 17224 16596 17148 17483 16833 
# Containerships 6332 6014 6128 5433 5414 
Net tonnage (million tons) 928.5 915.5 962.7 998.7 974.2 
Cargo volume (million tons) 739.9 754.5 822.3 822.9 819.2 
Containerized cargo volume (million tons) 398.0 406.0 435.0 428.7 440.0 
Containerized cargo share 54% 54% 53% 52% 54% 

     Note: source – Suez Canal Authority Yearly and Monthly Reports (SCA, 2017). 

 

The traffic control rules at the Suez Canal pose strict restrictions on the transit 

behaviours of ships through the canal. There are totally two convoys of ships scheduled 

to transit the canal in one day: one for southbound (labelled as “N Convoy” by the Suez 

Canal Authority) and the other for northbound (labelled as “S Convoy”). The transit 

time of a ship through the canal is about 11-14 hours. N Convoy begins to transit the 

canal at the time 03:30 every day, while S Convoy begins the transit in the opposite 

direction at the time 04:00. If the ships in the northbound convoy meet those in the 

southbound convoy during transit, some predesigned waiting or ship collision-

avoidance rules and facilities at the Great Bitter Lake and Ballah bypass will be 

activated (SCA, 2017). This two-convoy system might cause the long waiting times of 

ships before transit. Let us consider a 13000-TEU liner containership operated over the 

LP4 service by APL (American President Lines) from Singapore to Le Havre, as shown 

in Fig. 1. If it is not well scheduled and arrives at Suez at the time 05:00, it has to wait 

23 hours for next northbound convoy beginning at 04:00 on the second day. In case the 

liner ship experienced severe delays due to bad weather/sea conditions from Singapore 

to Suez, this long waiting time at Suez before transiting the canal will further tighten 

its shipping schedule from Suez to Le Havre in order to catch up the port time window 

(or ETA, expected time of arrival) at Le Havre, which definitely requires high sailing 

speeds and brings a significant increase of bunker fuel consumption. 
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Fig 1.  The westbound of LP4 service operated by APL (Source: www.apl.com) 

Besides the two-convoy traffic control scheme, the toll pricing policy of Suez 

may also influence the operating cost of a containership. To set aside enough time 

for manoeuvring the ships to form a convoy, the Suez Canal Authority (SCA) sets a 

dead-time limit for each convoy (4-5 hours ahead of the transit beginning time of 

the convoy). If a ship arrives at Suez before the convoy dead-time limit, it can freely 

join this convoy by paying the normal transit due. Otherwise, SCA will additionally 

claim 5-12% of the normal transit due as the surcharge if the ship wants to join this 

convoy. For a 13000-TEU containership running over service LP4, its normal transit 

due reaches 422,175 SDR (Special Drawing Rights), roughly 600,000 USD, and its 

transit surcharges are thus not ignorable if it is not well scheduled. 

The purpose of this study is to quantitatively evaluate the impact of the traffic 

convoy system and toll pricing policy of the Suez Canal on the sailing schedule and 

operating cost of a liner containership. To fulfil this research purpose, we have to 

determine the optimal sailing schedule of a liner containership over a long-haul 

voyage via Suez by minimizing its main operating cost: bunker fuel cost and transit 

due.  

1.1 Literature review 

The optimal sailing schedule problem proposed above is close to ship sailing speed 

optimization, which has been well recognized by recent maritime studies because ship 

sailing speed is the main determinant of bunker fuel consumption of a ship and bunker 
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cost represents a large portion of ship operating cost. Even the slumps in bunker fuel 

prices from Nov. 2014 did not change the enthusiasm of container shipping lines for 

reducing bunker fuel consumption.  Generally, higher sailing speed means shorter 

sailing time and fewer ships required to maintain a fixed, usually weekly, service 

frequency. Sailing speed optimization is a core of a wide class of issues in container 

liner shipping network analysis (Christiansen et al., 2012), such as network design 

(Brouer et al., 2014; Angeloudis et al., 2016), ship fleet deployment (Álvarez, 2009; 

Ng, 2015; Wang, 2013; Xia et al., 2015), schedule design and recovery (Brouer et al., 

2013; Qi & Song, 2012; Li et al., 2016), container assignment (Bell et al., 2011, 2013; 

Wang et al., 2015), and cargo booking and routing (Song & Dong, 2012). Some work 

considers schedule design and speed optimization at the tactical level and analyzes the 

relationship between sailing speed/schedule and service frequency and/or fleet 

deployment (Álvarez, 2012; Du et al., 2017; Notteboom & Vernimmen, 2009; Ronen, 

2011). A few studies also address the operational sailing schedule (speed control) given 

the predesigned port time windows (Brouer et al., 2013; Fagerholt et al., 2010; Qi and 

Song, 2012). For the recent review on ship sailing speed optimization, we refer readers 

to the work of Psaraftis & Kontovas (2013). 

However, studies on shipping network analysis accounting for the influence of the 

Suez Canal are scant. Brown et al. (1987) optimally determine the schedules of oil 

tankers for an oil company which also consider ship speed optimization and the transit 

due at the Suez Canal. Sherali et al. (1999) deal with a similar problem which involves 

route choice between the routes through the Suez Canal and those around the Cape of 

Good Hope by a trade-off between travel time and canal due. Brouer et al. (2014) count 

the canal due in if a sailing link traverses the Suez/Panama Canal in the liner shipping 

network design problem. However, these studies all address the problems at the 

strategic or tactical level and thus generally ignore the impact of the traffic convoys at 

Suez and possible transit due surcharges on shipping schedule. 

Some studies on maritime economics also consider the Suez Canal when they 

investigate the competitiveness of several main shipping routes around the globe. Verny 

and Grigentin (2009) evaluate the economic feasibility of regular container transport 

along the Northern Sea Route (NSR) from the viewpoint of cost analysis, in which the 

operation of a traditional route through the Suez Canal is employed as the benchmark. 

Schøyen and Bråthen (2011) conduct the similar empirical studies for bulk shipping 
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and adopt 14.4 knots as the speed of ships over the route through the Suez Canal. 

Notteboom (2012) assesses the market potential of the Cape route vis-à-vis the Suez 

route by using a distance analysis, a transit time analysis and a generalized cost analysis 

for a large set of O/D port pairs. This research stream focuses on the cost analysis at the 

strategic level in order to evaluate the feasibility or profitability of a shipping route, and 

thus does not go into the operational details on the impact of traffic convoy system at 

Suez on shipping schedule. 

1.2 Objective and contributions 

According to the background introduced before Section 1.1 and the above 

literature review, we can see a gap between industrial needs and academic research. 

This study aims to make the first move to (but not completely) fill this gap, by 

modelling the optimal sailing schedule problem for a liner containership and 

providing some basic managerial insights into the impact of the Suez Canal convoy 

system and toll pricing policy on ship sailing schedule. 

We start from the pricing policy of transit due and the quantitative relationship 

between sailing speed and bunker fuel consumption, and then develop a mixed-

integer nonlinear programming (MINLP) cost minimization model for the optimal 

sailing schedule problem. To take advantage of off-the-shelf optimization solvers, 

we linearize the nonlinear “mod” operators, treat the nonlinearity in bunker fuel 

calculation with the state-of-the-art second order cone programming (SOCP) 

technique, and finally reformulate the whole model as a mixed-integer SOCP 

(MISOCP) model with high computational performance. 

The contributions of this study are twofold. First, we model the traffic convoy 

system and toll pricing policy of the Suez Canal in sailing schedule optimization of 

a liner containership at the operational level. Second, experimental findings in this 

study provide several intriguing managerial insights on liner containership 

scheduling over a long-haul voyage: (a) ignoring the ship traffic control of the Suez 

Canal in sailing schedule optimization might underestimate the operating cost, even 

the bunker fuel cost, of the ship; (b) the predefined (tactical) schedule, delay 

situation and clock time at Suez jointly determine the optimal sailing schedule 

(recovery plan) and main operating cost of a containership over a long-haul voyage 

via Suez. 
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The remainder of this paper is organized as follows. Section 2 proposes the 

research problem. Section 3 builds a MINLP model and reformulates it into a 

MISOCP one. Section 4 performs the impact analysis of the Suez Canal via a case 

study and reports our experimental findings, based on the data collected from a 

global container shipping line. Section 5 draws some concluding remarks. For ease 

of reading, we tabulate the mathematical notations used in this study in Appendix A. 

The notations not listed in Appendix A denote the auxiliary variables assisting 

mathematical transformations (i.e. linearization and SOCP reformulation). 

2. Problem Description  

 

 

 

Fig 2.  Schematic Representation of ship sailing schedule optimization over a long-haul voyage via 
Suez 

Consider a liner containership deployed on an Asia-Europe shipping service. It is 

assumed that the containership is now running over a long-haul voyage via the Suez 

Canal, e.g. from Singapore to Le Havre illustrated in Fig. 1. The optimal sailing 

schedule problem of the containership over the long-haul voyage can be described as 

follows with the aid of Fig. 2. The ship leaves its current position o  (a port or a 

waypoint) at time dep
oT  (the beginning time of the whole voyage is regarded as time 

zero) when the clock time at Suez is dep clock
oT − , for its long-haul destination d  via the 

Suez Canal. Given the distance from its current position to Suez osL  (n miles), the 

distance from Suez to its destination sdL  (n miles) and the transit time through the Suez 

Canal tra
sT , the shipping line has to determine the optimal sailing schedule over this 

long-haul voyage for this ship: arrival time at Suez sx  and arrival time at its destination 

dx , which are governed by its sailing speeds osv  and sdv  over the two legs connected 

by Suez. In this sailing schedule optimization problem, the shipping line should account 
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for the available speed range ,V V    of this liner containership and ensure the 

predefined schedule at destination ,arr arr
d dT T   . Meanwhile, according to the ship traffic 

control schemes of SCA (SCA, 2017), there is only one northbound convoy every day 

for containerships beginning transit at the time 04:00 (Fig. 3). A containership joining 

the convoy on a given day usually should arrive at Suez before 23:00. In this case, SCA 

charges its normal transit due norD ; if it arrives between 23:00 and 00:00, SCA will 

additionally claim 5% of norD  as the surcharge with a maximum of 12,500 SDR; if it 

arrives between 00:00 and 01:00, the surcharge is 10% of norD  with a maximum of 

25,000 SDR. For arrival time between 01:00 and 04:00, the surcharge is 12% of norD  

but with a cap of 30,000 SDR; it will not be admissible to the convoy for arrival later 

than 04:00. The objective of this sailing schedule optimization problem confronting the 

shipping line is to minimize the bunker fuel cost of the ship over this long-haul voyage 

and its transit due at Suez.   

 

 

Fig 3. Northbound transit due structure of a containership at Suez 

          

Several concepts are further clarified: (i) A long-haul voyage via the Suez Canal 

in a service is defined as the voyage from the last port of the service in one continent to 

the first port of the service in another continent, during which the Suez Canal has to be 

transited; (ii) the problem is to determine the operational schedule of the containership, 

while the predefined schedule designed at the tactical level in form of port time 

windows, e.g. ,arr arr
d dT T   , is referred to as a tactical schedule; and (iii) there are two 

time coordinates involved: the shipping line regards the beginning time of the whole 
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voyage as time zero and increments its count as the ship sail from one position to 

another over the round voyage, while SCA calculates the transit surcharge of the ship 

as per the local clock time. 

As illustrated by Fig. 3, without loss of generality, we consider a long-haul voyage 

with northbound transit at Suez. As for a long-haul voyage with southbound transit at 

Suez, the sailing schedule optimization problem can be similarly formulated.  

Our research purpose is to conduct quantitative impact analysis of the traffic 

convoy system and toll pricing policy at Suez on the optimal sailing schedule of a 

containership over a long-haul voyage, in order to answer several interesting questions 

regarding this issue, including 

(Q1) Will additional consideration of the Suez Canal traffic system have a significant 

impact on the optimal sailing schedule and operating cost structure of a 

containership running on a long-haul voyage via Suez? 

(Q2) What is the impact of the Suez Canal on the recovery plan of a liner containership 

over a long-haul voyage if it experienced a schedule delay, e.g. from Singapore to 

a waypoint before Suez? How does the delay situation influence its optimal 

recovery plan and operating cost structure? 

(Q3) Will bunker price fluctuation and/or transit due adjustment by SCA substantially 

influence the optimal sailing schedule and operating cost of a containership over 

a long-haul voyage via Suez?      

To fulfil our research purpose, a mathematical model has to be built for the optimal 

sailing schedule of a containership with consideration of the traffic convoy system and 

toll pricing policy at Suez. Next section will mathematically formulate this optimization 

problem. For modelling purpose, some reasonable assumptions are made in this study: 

(A1) The transit time tra
sT  of the ship through the Suez Canal is a constant although it 

varies between 11 and 14 hours in practice. In numerical experiments, it is 

conservatively set as 14 hours. This assumption will not influence the 

experimental findings, since it does not change the sailing schedule situation of 

the ship from origin to Suez and the sailing time difference caused from Suez to 

destination (at most 3 hours) is negligible. 
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(A2) The bunker fuel consumption during canal transit of the ship is not counted in. In 

reality, transit speed of the ship at Suez does not exceed 8.6 knots and the 

difference in bunker consumption between any two transits of the same ship is 

trivial. 

(A3) For the operating cost of the ship over a long-haul voyage, only bunker cost and 

transit due at Suez are considered, since they are dominant in cost structure. Other 

cost components are ignored.  

(A4) Extreme congestion at Suez is excluded from the consideration of this study. In 

other words, the ship can join a traffic convoy as long as time permits and it is 

willing to, and it will not be delayed to the next convoy due to canal congestion. 

Convoy delay due to canal congestion seldom occurs at Suez in reality nowadays.  

3. Mathematical Programming Model Building 

In this section, we first build a MINLP model for the proposed optimal sailing 

schedule problem. Then we proceed to transform the MINLP model into an equivalent 

MISOCP model that can be efficiently solved by the commercial optimization solvers 

such as CPLEX available for the liner shipping industry. 

3.1 A mixed integer nonlinear programming model 

We first calculate the waiting time of the containership before canal transit, 

departure time of the containership from Suez and the corresponding transit due. Given 

the departure time of the ship from origin dep
oT , the corresponding Suez clock time 

dep clock
oT − and the decision variable sx  (arrival time at Suez), the arrival clock time of the 

ship at Suez can be expressed by 

 ( )mod 24 mod 24arr clock dep clock dep
s o s ot T x T− − = + −    (1) 

where ( )mod 24dep
s ox T−  calculates the clock-time increment due to the sailing of the 

ship from origin to Suez, while the second “mod” deals with the possibility that the 

value of ( )mod 24dep clock dep
o s oT x T− + −   is larger than or equal to 24. 

To calculate the waiting time of the containership at Suez before transit and the 

canal due, we introduce three auxiliary binary variables associated with arr clock
st

− : 
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1y : a binary variable indicating whether arr clock
st

−  is between 00:00 and 01:00 hr; 

2y : a binary variable indicating whether arr clock
st

−  is between 01:00 and 04:00 hr; 

3y : a binary variable indicating whether arr clock
st

−  is between 04:00 and 23:00 hr. 

The relationship between these binary indicators and arr clock
st

−  can be defined by the 

following constraints: 

 ( )11 1arr clock
st M y− ≤ + −   (2) 

 ( ) ( )2 21 1 4 1arr clock
sM y t M y−− − < ≤ + −   (3) 

 ( ) ( )3 34 1 23 1arr clock
sM y t M y−− − < ≤ + −   (4) 

 1 2 3 1y y y+ + ≤   (5) 

 { }1 2 3, , 0,1y y y ∈   (6) 

According to the traffic control scheme of northbound transit at Suez, if the 

containership arrives at Suez before 04:00 hr, it can freely join the current convoy. 

Otherwise, it has to wait at the anchorage area for the convoy on the next day. The 

waiting time wait
st  of the ship at Suez before transit (hours) can thus be calculated by 

 
4 , 0 4
4 24 , 4 24

arr clock arr clock
s swait

s arr clock arr clock
s s

t t
t

t t

− −

− −

 − ≤ ≤= 
+ − < <

  (7) 

Eq. (7) can be expressed by the following two constraints involving the binary variables 

defined above: 

 ( ) ( )1 2 1 24 1 4 1arr clock wait arr clock
s s st M y y t t M y y− −− − − − ≤ ≤ − + − −   (8) 

 ( ) ( )1 2 1 228 28arr clock wait arr clock
s s st M y y t t M y y− −− − + ≤ ≤ − + +   (9) 

Now the departure time of the ship from Suez can be calculated as the sum of its arrival 

time at Suez, waiting time before transit and transit time through the canal, 

mathematically, 

 dep wait tra
s s s st x t T= + +   (10) 
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As per the toll pricing policy of northbound transit at Suez, when the possible 

surcharge is taken into account, the transit due traf  (USD) charged by SCA can be 

expressed as a linear function of the binary variables 1 2,y y  and 3y : 

 
( ) ( )

( ) ( )
1 2

1 2 3

min 0.10 ,25000 min 0.12 ,30000

min 0.05 ,12500 1

nor nor nor

tra sdr

nor

D D y D y
f E

D y y y

 + ⋅ + ⋅
 =
 + ⋅ − − − 

  (11) 

where sdrE  is the exchange rate (constant) from SDR to USD.   

Next, we calculate the bunker cost of the ship over the long-haul voyage. Sailing 

speed is the main determinant of fuel consumption rate (MT/h, or MT/day) of a ship. 

The fuel consumption rate ( Fr ) of a ship is approximately proportional to sailing speed 

( v ) raised to the power β , i.e., 

 Fr vβα= ⋅   (12) 

where α  and β  are two coefficients to be calibrated using real data. The cubic law, 

3β = , is widely adopted in maritime studies (MAN Diesel & Turbo, 2004; Psaraftis & 

Kontovas, 2013). To improve calculation accuracy, this study calibrates the coefficients 

based on the data collected from a global container shipping line. Here, we denote the 

two coefficients for the leg from origin to Suez by ,os osα β , and those for the leg from 

Suez to destination by ,sd sdα β . 

The sailing times over the two legs of the long-haul voyage can be calculated as  

( )dep
s ox T−  and ( )dep

d sx t− , respectively. The sailing speeds over these two legs are 

( )dep
os s oL x T−  and ( )dep

sd d sL x t− . Consequently, the total bunker cost bunf  of the 

ship over the long-haul voyage can be calculated as 

 
( ) ( )

( ) ( ) ( ) ( )1 1

os sd

os sdos sd

bun bun dep depos sd
os s o sd d sdep dep

s o d s

bun dep bun dep
os os s o sd sd d s

L Lf P x T x t
x T x t

P L x T P L x t

β β

β ββ β

α α

α α
− −

    
 = ⋅ − + ⋅ −   − −     

= ⋅ − + ⋅ −

  (13) 

where bunP  is the bunker price.  

Based on the above derivation, the optimal sailing schedule problem of a 

containership over a long-haul voyage via Suez can be formulated as a mixed-integer 
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nonlinear programming (MINLP) model minimizing the sum of bunker fuel cost and 

transit due: 

[SUEZ-MINLP]

( ) ( )
( ) ( )

( )
( )
( ) ( )

1

1

1

2

1 2 3

min

min 0.10 ,25000

min 0.12 ,30000

min 0.05 ,12500 1

osos

sdsd

bun tra bun dep
os os s o

bun dep
sd sd d s

nor nor

sdr nor

nor

f f f P L x T

P L x t

D D y

E D y

D y y y

ββ

ββ

α

α

−

−

= + = ⋅ −

+ ⋅ −

 + ⋅
 
 + + ⋅
 
 + ⋅ − − − 

  (14) 

 subject to constraints: (1)-(6), (8)-(10) and  

 os
dep

s o

LV V
x T

≤ ≤
−

  (15) 

 sd
dep

d s

LV V
x t

≤ ≤
−

  (16) 

 arr arr
d d dT x T≤ ≤   (17) 

In this formulation, constraints (15) and (16) impose that the sailing speeds should fall 

in a technically available interval. Constraint (17) ensures the predefined tactical 

schedule at its destination. 

One may argue the calculation of waiting time in Eq. (7) and of transit due in Eq. 

(11) by proposing an extreme case: the ship arrives at Suez at a time between 23:00 and 

04:00, e.g. 02:00 hr, but waits at the anchorage ground for next day’s convoy instead 

of transiting the canal, in order to save the surcharge. The following proposition 

eliminates the possibility of the occurrence of this case. 

Proposition 1. In an optimal sailing schedule, the containership arriving at Suez 

between 23:00 and 04:00 will not wait at the anchorage area for the next northbound 

convoy on the second day, but rather directly transit the canal by joining the upcoming 

convoy. 

Proof: see Appendix B. 

[SUEZ-MINLP] is a mixed-integer nonlinear programming problem in which 

constraint (1) contains two “mod” operators for clock time calculation and objective 

(14) includes the power function for bunker fuel consumption calculation. We next 

reformulate this MINLP model to a mixed-integer second order cone (MISOCP) model 
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by introducing auxiliary variables. Note that a MISOCP model could be solved 

efficiently by CPLEX. This reformulation for one thing makes the model solvable via 

off-the-shelf optimization solvers, and for another provides the convenience for the 

model to be integrated into a more comprehensive schedule design model, such as the 

ship schedule recovery model proposed by Brouer et al. (2013).   

3.2 A mixed-integer second order cone programming model  

(i) Linearization of constraint (1)  

It is straightforward to have the following proposition:  

Proposition 2. If the remainder of a number A  divided by another number N  is R , 

namely, 

 AA N Q R N R
N

 = × + = × +  
  

where Q  is the quotient, then this remainder can be equivalently expressed by 

 R A N Q= − ×  

 1AQ Q
N

≤ < +   

 Q Z +∈ .  □ 

According to Proposition 2, constraint (1) can be rewritten as follows by 

additionally introducing variables r , 1z  and 2z : 

 124arr clock dep clock
s ot T r z− −= + − ×   (18) 

 1 1 1
24

dep clock
oT rz z

− +
≤ < +   (19) 

 ( ) 224dep
s or x T z= − − ×   (20) 

 2 2 1
24

dep
s ox Tz z−

≤ < +   (21) 

 1 2,z z Z +∈   (22) 

(ii) SOCP reformulation of the objective function shown in Eq. (14) 

SOCP is a state-of-the-art technique in the field of mathematical programming and 

it is widely used to treat a variety of nonlinearity in mathematical programming models 
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(Alizadeh & Goldfarb, 2003; Benson & Saglam, 2013). The high performance of SOCP 

commercial solvers such as CPLEX and MOSEK further strongly promotes its 

applications in recent years. For example, Du et al. (2011) employ SOCP to deal with 

the nonlinearity involved in bunker fuel calculation when solving a berth allocation 

problem considering bunker fuel consumption and ship emissions. Here we also adopt 

the same reformulation scheme. 

First, two auxiliary positive variables 1w  and 2w  are introduced to substitute for 

the two nonlinear terms in objective (14), ( )1 osdep
s ox T

β−
−  and ( )1 sddep

d sx t
β−

− , 

respectively. It is straightforward to show that model [SUEZ-MINLP] is equivalent to 

the following model: 

 

( ) ( )
( )
( )
( ) ( )

1 2

1

2

1 2 3

min

min 0.10 ,25000

min 0.12 ,30000

min 0.05 ,12500 1

os sdbun bun
os os sd sd

nor nor

sdr nor

nor

f P L w P L w

D D y

E D y

D y y y

β βα α= ⋅ + ⋅

 + ⋅
 
 + + ⋅
 
 + ⋅ − − − 

  (23) 

                            subject to: (2)-(6), (8)-(10), (15)-(22) and   

 ( )1 1
osdep

s ox T w
−

− ≤
β

  (24) 

 ( )1 2
sddep

d sx t w
−

− ≤
β

  (25) 

Based on the theory on SOCP (Lobo et al., 1998), Eqs. (24) and (25) can be cast as 

a number of SOCP constraints provided that osβ  and sdβ  are greater than 1 and can be 

expressed as the ratio of two positive integers. In other words, constraints (24) and (25) 

can be equivalently formulated by the SOCP constraints below: 

 ( )1 11 12 1, , , , , 0, 1, 2, ,
osi s M osSOCP x w u u u i N≤ =    (26) 

 ( )2 21 22 2, , , , , , 0, 1, 2, ,
sd

dep
j d s M sdSOCP x t w u u u j N≤ =    (27) 

 11 12 1 21 22 2 1 2, , , 0, , , , 0, , 0
os sdM Mu u u u u u w w≥ ≥ >    (28) 

where { }11 12 1, , ,
osMu u u  and { }21 22 2, , ,

sdMu u u  are two sets of auxiliary decision 

variables related to Eqs. (24) and (25) respectively. The numbers of auxiliary decision 
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variables ( osM  and sdM ) and the numbers of SOCP constraints ( osN  and sdN ) depend 

on the parameters osβ  and sdβ .  

Given parameters osβ  and sdβ , we can easily specify the above SOCP constraints 

by means of the method illustrated by Lobo et al. (1998). Here, we present the 

equivalent SOCP constraints to Eqs. (24) and (25) when 2.7osβ =  and 2.5sdβ = , since 

these will be used in our case study on a 13000-TEU containership. Now we use 

constraint (24) with 2.7osβ =  as an example to demonstrate the transformation process. 

Example. Consider constraint (24) with 2.7osβ = . 

 ( ) ( ) ( )
171 1 2.7
10

1
osdep dep dep

s o s o s ox T x T x T w
− − −

− = − = − ≤
β

  

which is equivalent to 

 ( ) ( )17 10
11 dep

s ox T w≤ −   (29) 

Since 0dep
s ox T− >  and 1 0w > , Eq. (29) can be equivalently represented by a group of 

hyperbolic inequalities: 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2
11 12 11 1 13 12

2 2
14 13 1 14 11 12 13 14 1

1, , 1

, 1 , , , , 0, 0

dep
s o

dep
s o

u x T u u w u u

u u w x T u u u u u w

≤ − ⋅ ≤ ⋅ ≤ ⋅

≤ ⋅ ≤ − ⋅ ≥ >
  (30) 

Based on the fact that any hyperbolic inequality of the form 

( )2
1 2 3 1 2 3, , , 0u u u u u u≤ ⋅ ≥  has an equivalent SOCP form: 

 ( )1 2 3 2 3 1 2 32
2 , , , , 0u u u u u u u u− ≤ + ≥   

 where 2
⋅  is the standard Euclidean norm, Eqs. (30) can be equivalently cast into a 

group of SOCP constraints: 

 

( ) ( )

( ) ( )

( )

11 12 11 1 11 122

13 12 12 14 13 1 13 12 2

14 14 11 12 13 14 12

2 , 1 1, 2 ,

2 , 1 1, 2 ,

2, , , , , 0, 0

dep dep
s o s o

dep dep
s o s o

u x T x T u u w u w

u u u u u w u w

x T u x T u u u u u w

− − ≤ − + − ≤ +

− ≤ + − ≤ +

− − ≤ − + ≥ >

  (31) 
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Similarly, constraint (25) with 2.5sdβ =  can be equivalently represented by a 

group of SOCP constraints: 

 
( ) ( )

( )
21 22 21 2 21 222

21 22 21 22 21 22 22

2 , 1 1, 2 ,

2, , , 0, 0

dep dep
d s d su x t x t u u w u w

u u u u u u w

− − ≤ − + − ≤ +

− ≤ + ≥ >
  (32) 

Now we finally reformulate model [SUEZ-MINLP] into the MISOCP model: 

[SUEZ-MISOCP]                             Objective: (23) 

                           subject to: (2)-(6), (8)-(10), (15)-(22), (26)-(28)     

4. Case study 

We now conduct a case study for the impact analysis of ship traffic convoy system 

and tolling strategy of the Suez Canal on the optimal sailing schedule of a liner 

containership over a long-haul voyage, in order to answer the three questions (Q1)-(Q3) 

raised in Section 2.  

This case study assumes that a 13000-TEU containership running on the long-haul 

voyage from Singapore port to  Le Havre port of the LP4 service shown in Fig. 1. The 

nautical distance from Singapore to Suez is 5020 n miles, and the distance from Suez 

to Le Havre is 3130 n miles. According to the published schedule by APL (departure 

time from Ningbo is zero), the containership leaves Singapore on the 10th day, sails for 

21 days over the Asia-Europe long-haul voyage via Suez and arrives at Le Havre on 

the 31st day. The sailing speed of this large containership is between 10 and 23 knots. 

For the coefficients in fuel calculation (MT/day), regression results based on real 

shipping log data suggest: 0.04106osα = , 2.7osβ =  (Singapore to Suez, 2 0.96R = ); 

0.07731sdα = , 2.5sdβ =  (Suez to Le Havre, 2 0.94R = ). The normal transit due of this 

ship is 422175 SDR. The exchange rate from SDR to USD is chosen as 1.41sdrE = . 

Bunker price is set as 300bunP =  USD/MT without special indication. 

Model [SUEZ-MISOCP] is coded by YALMIP (Löfberg, 2004) in MATLAB and 

solved by IBM ILOG CPLEX 12.7.1. All the experiments are run on a personal 

computer with Intel Core 2.60 GHz CPU and 16GB of RAM. 

4.1 Impact of the Suez Canal traffic system on the optimal sailing schedule and 
operating cost 
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To quantitatively assess the impact of additionally considering the Suez Canal 

traffic system in schedule/speed optimization, we consider the entire long-haul voyage 

from Singapore to Le Havre, conduct numerical tests with different departure times 

(and different departure Suez-clock times) from Singapore (see the first two columns 

in Table 2), and collect the experimental results in Table 2. The “Benchmark” model is 

a traditional sailing schedule optimization model assuming that a ship could begin its 

transit at Suez at any clock time without consideration of the convoy system and that 

no surcharge would be claimed in any transit situation.  

Table 2. Optimal cost structure with/without concern about the traffic system of Suez Canal (Bunker 
price: 300 USD/MT) 

dep
oT a dep clock

oT − b 
Benchmark c  Model [SUEZ-MISOCP] e 

Waiting 
time d 

Bunker 
cost 

Transit 
due d 

Total 
cost 

 Waiting 
time 

Bunker 
cost 

Transit 
due 

Total 
cost 

224 2 0 485806 637567 1123372  5 493738 595267 1089004 
228 6 23 492084 595267 1087351  5 500337 595267 1095604 
232 10 21 498494 595267 1093761  5 507174 595267 1102441 
236 14 19 505044 595267 1100311  5 514261 595267 1109528 
240 18 18 511731 595267 1106998  5 521610 595267 1116877 
244 22 16 518564 595267 1113831  5 529236 595267 1124503 
248 2 15 525546 595267 1120812  5 537152 595267 1132418 
252 6 13 532682 595267 1127949  5 544489 595267 1139756 
256 10 11 539977 595267 1135243  5 551326 595267 1146593 
260 14 10 547433 595267 1142700  5 558413 595267 1153680 

Note: Unit for time: hour. Unit for cost: USD. a The departure time from Ningbo Port is regarded as zero, as per the shipping 
schedule of service LP4 published by APL; b clock time at Suez; c CPU time for each instance is less than 1 s; d calculated by the 
optimal arrival times worked out by the benchmark model, although the benchmark model assumes no waiting and no surcharge 
at Suez; e CPU time for each instance is less than 1 s. 

 

Experimental results in Table 2 reveal several insights: operational schedule design 

without consideration of the traffic convoy system at Suez may lead to infeasible 

schedules. This can be seen from the fact reflected by the third column of Table 2 that 

the assumption of zero waiting time before transit at Suez made by the “Benchmark” 

model often cannot be satisfied in practice. Second, an optimal sailing schedule 

ignoring the Suez Canal traffic system may underestimate the operating cost, even the 

bunker fuel cost, of the ship over the long-haul voyage. This can be mathematically 

explained by the fact that additionally considering the Suez Canal traffic system will 

bring more constraints and shrink the feasible domain of the model. Third, operational 

schedule optimization considering the Suez Canal convoy system ([SUEZ-MINLP] or 

[SUEZ-MISOCP]) might help to reduce the total operating cost of the ship over the 

long-haul voyage, since the transit due at Suez represents a large portion of the total 
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cost (more than 50% at the bunker price of 300 USD/MT, and 36-40% at the bunker 

price of 600 USD/MT). 

Note that all the instances of model [SUEZ-MISOCP] shown in Table 2 can be 

solved to optimality within 1 second, which shows the high computational performance 

of our MISOCP model and its potential to be integrated into a more comprehensive 

schedule/speed optimization model. 

4.2 Optimal recovery plans and cost structure in different delay situations 

Consider a situation in which this 13000-TEU containership is at a waypoint 500 

n miles away from (before) Suez but experienced sailing delay due to bad weather/sea 

conditions, requiring a recovery plan to catch up the predefined schedule at Le Havre. 

We conduct experiments at different delay levels shown in the first column of Table 3 

and report the results in Table 3 and Fig 4. 

 
Fig 4. Cost variation against different delay levels at the waypoint 500 n miles away from Suez 

 

Table 3. Influence of schedule delay on optimal speeds and operating cost (bunker price: 300 USD/MT) 

Delay hours a Speed on leg1 Speed on leg 2 Bunker cost Transit due Total cost 
12 16.7 18.6 273895 595267 869162 
13 17.2 18.6 275713 595267 870980 
14 17.9 18.6 277709 595267 872976 
15 18.5 18.6 279907 595267 875174 
16 19.2 18.6 282337 595267 877603 
17 20.0 18.6 285032 595267 880299 
18 20.8 18.6 288035 595267 883302 
19 21.7 18.6 291396 595267 886663 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Delay hours at the waypoint 500 n miles away from Suez

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

C
os

t (
U

SD
)

10 5

Bunker cost

Transit due

Total cost



20 
 

20 22.7 18.6 295176 595267 890442 
21 22.7 18.6 295177 612892 908068 
22 11.4 21.7 322507 595267 917773 
23 11.6 21.7 323144 595267 918410 
24 11.9 21.7 323822 595267 919089 
25 12.2 21.7 324545 595267 919812 
26 12.5 21.7 325318 595267 920585 
27 12.8 21.7 326145 595267 921411 
28 13.2 21.7 327030 595267 922297 
29 13.5 21.7 327982 595267 923248 
30 13.9 21.7 329005 595267 924271 
31 14.3 21.7 330108 595267 925374 
32 14.7 21.7 331299 595267 926566 
33 15.2 21.7 332589 595267 927856 
34 15.6 21.7 333989 595267 929255 
35 16.1 21.7 335512 595267 930779 
36 16.7 21.7 337174 595267 932440 
37 17.2 21.7 338992 595267 934259 
38 17.9 21.7 340988 595267 936255 
39 18.5 21.7 343186 595267 938453 
40 19.2 21.7 345615 595267 940882 
41 20.0 21.7 348311 595267 943577 
42 20.8 21.7 351314 595267 946580 
43 21.7 21.7 354674 595267 949941 
44 22.7 21.7 358454 595267 953721 
45 22.7 21.7 358455 612892 971347 
46 20.0 21.7 348311 637567 985877 
47 20.8 21.7 351314 637567 988880 
48 21.7 21.7 354674 637567 992241 

Note: Unit for speed: knots. Unit for cost: USD. a Delay hours relative to predefined schedule at the waypoint 500 n miles away 
from Suez; the departure Suez-clock time from this waypoint can be calculated based on the data in the first two columns of Table 
2. 

 

It can be seen from Table 3 that in some delay scenarios, the ship may transit the 

Suez Canal at the price of high surcharge on transit due in order to avoid high speed 

and tremendous increase of bunker fuel consumption from Suez to Le Havre. Moreover, 

the occurrence of this behaviour depends both on the severity of delays and on the Suez-

clock time when the ship arrives at (departs from) the waypoint. Fig. 4 reveals that the 

bunker cost dominates the increasing trend of the total cost caused by shipping delays, 

while the transit due also causes the sharp increases of the total cost at some critical 

points (with delay hours: 21, 45).  For instance, when the delay reaches 45 hours and 

higher, the total cost increases significantly. In shipping practice, the shipping line 

should control the delay to a level lower than that represented by these critical points 

(21 and 45 hours) as possible as it can. 

4.3 Sensitivity analysis on bunker price fluctuation and transit due adjustment 

We re-conduct the experiments in Section 4.2 at different bunker prices from 300 

to 600 USD/MT and show the cost structure in optimal solutions in Fig. 5. Meanwhile, 
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to imitate the behaviour of SCA on transit due adjustment, we also re-conduct the 

experiments in Section 4.2 by keeping the bunker price at 300 USD/MT but letting the 

normal transit due of this ship at Suez perturb at most ± 20% from its current value 

422175 SDR, and plot the results in Fig. 6. 

  Fig. 5 shows that bunker price does influence the banker cost and thus the total 

cost. When the bunker price is low and the transit due represents a larger portion of the 

total cost, the ship tends to be averse to the risk of higher transit surcharge. When the 

bunker price is high, incurring high transit surcharge might help to reduce the bunker 

cost from Suez to Le Havre and thus the total cost. Generally, the optimal recovery plan 

is mainly determined by the predefined tactical schedule, delay situation and clock time 

at Suez, but not pretty much affected by bunker price. 

Experimental results in Fig. 6 are analyzed as follows. Although the adjustment of 

transit due obviously influences the total cost incurred of the ship, the optimal sailing 

schedule obtained from our model demonstrates its robustness against the variation of 

transit due: ± 20% adjustment of the transit due by SCA will not change the optimal 

speeds adopted for schedule recovery, which explains the upper subplot of Fig. 6. This 

again shows the fact that the optimal schedule recovery plan is mainly determined by 

the predefined tactical schedule, delay situation and Suez-clock time. 
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Fig 5. Influence of bunker price on operating cost at different delay levels 

 

 

Fig 6. Influence of transit due adjustment on operating cost at different delay levels 
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5. Conclusions 

This paper carries out a quantitative impact analysis of traffic regulations of the 

Suez Canal and its toll pricing policy on the optimal sailing schedule of a containership 

over a long-haul voyage. Based on the ship convoy system at Suez and the stepwise 

structure of transit due function, we set up a MINLP model for operational schedule 

optimization of a containership over a long-haul voyage via Suez. To take advantage of 

off-the-shelf optimization solvers, we linearize the modulo operators in clock-time 

calculation, treat the nonlinearity in forms of power functions with the state-of-the-art 

SOCP technique, and finally obtain a MISOCP formulation, whose high computational 

performance supports its industrial application and possible extension to a more 

comprehensive operational schedule optimization model. At last, we perform a case 

study on a 13000-TEU containership running on the LP4 service operated by APL. 

Experimental results based on the real data collected from a global container shipping 

line well answer some interesting questions regarding this novel problem. 

This paper makes the first move to address the impact of traffic convoy system and 

toll pricing policy at Suez on ship schedule (speed) optimization. We highlight some 

basic managerial insights obtained through numerical experiments which constitute the 

main contribution of this paper: (i) ignoring the influence of the traffic system at Suez 

in ship schedule optimization may lead to infeasible sailing schedules, and 

underestimate the operating cost (even the bunker cost) of a containership on a long-

haul voyage via Suez; (ii) our model helps to work out an optimal sailing schedule by 

jointly considering bunker cost and transit due at Suez; (iii) the optimal recovery plan 

to treat sailing delay is mainly determined by the predefined tactical schedule, delay 

situation and Suez-clock time, but not pretty much affected by the levels of bunker price 

and transit due. The proposed model can be used by a shipping line to determine the 

operational-level schedule of a containership over a long-haul voyage via Suez, and to 

make the operational-level decision on route choice (Suez versus the Cape of Good 

Hope). 

The model in this study is based on the traffic convoy system and toll pricing policy 

of the New Suez Canal opening in August 2015 after a one-year dredging work between 

August 2014 and July 2015. We also conducted a similar study based on the traffic 

convoy system and toll pricing policy of the old Suez Canal, and found that the old 
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Suez Canal (northbound transit) needs a minor change towards the mathematical model 

due to the necessity of additionally introducing a binary variable 4y  (i.e. { }1 2 3 4, , ,y y y y  

associated with the variable arr clock
st

− ). However, the basic managerial insights obtained 

through numerical experiments remain the same.  

Future studies can investigate several relevant issues. First, a cost minimization 

model can be set up for the optimal sailing schedule of a containership over a long-haul 

voyage with southbound transit through the Suez Canal. Second, the proposed model 

in this paper could be plugged into a larger model which considers more sailing legs, 

port calls and more complicated cost structures. Third, integrating the influence of 

weather/sea conditions into schedule/speed optimization of a containership over a long-

haul voyage via Suez is another challenging issue. 
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Appendix A. Notations 

Input parameters 

norD  The normal transit due of the ship at Suez charged by SCA (unit: SDR) 
sdrE  The exchange rate from SDR to USD  

osL  The distance from the ship’s current position o  to the Suez Canal (n miles) 

sdL  The distance from Suez to the ship’s the destination d  (n miles)  

M  A sufficiently large constant 
bunP  The bunker price (USD)  

,arr arr
d dT T    The predefined arrival time window of the ship at the destination d    

dep
oT  The time (point) when the ship departs from its current position o  (the 

beginning time of the whole voyage is regarded as time zero) 
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dep clock
oT −  The Suez clock time corresponding to dep

oT   

tra
sT  The time (duration) needed for the ship to transit the Suez Canal 

,V V    The sailing speed range of the ship (knots) 

,os osα β  The two coefficients in bunker fuel calculation for the leg from origin o   

to Suez  

,sd sdα β  The two coefficients in bunker fuel calculation for the leg from Suez to 

the destination d    

         

Decision variables 

dx  The arrival time (point) of the ship at its destination d     

sx  The arrival time (point) of the ship at Suez 

 

Auxiliary variables 

f  The total cost of the ship over the long-haul voyage (USD) 
bunf  The bunker fuel cost of the ship over the long-haul voyage (USD) 
traf  The transit due of the ship charged by SCA, including the normal transit 

due and the surcharge (if any), in terms of USD  
arr clock
st

−  The Suez clock time corresponding to sx  

dep
st  The departure time (point) of the ship from Suez 

wait
st  The waiting time (duration) of the ship at Suez before transit (hours) 

osv  The sailing speed of the ship from current position o  to the Suez Canal 

(knots) 

sdv  The sailing speed of the ship from Suez to the destination d    

1 2 3, ,y y y  Binary variables indicating associated with the variable arr clock
st

−  

 

Appendix B. Proof of Proposition 1 

Proof. We apply the proof by contradiction. Assume that the containership arrives at 

Suez between 23:00 and 04:00 and chooses to wait for next day’s convoy by following 

an optimal schedule ( ) ( ) ( ) ( )( ), , ,arr clock dep
s s s dx t t xπ π π π π−= , where the four elements 



26 
 

representing the schedule respectively denote the values of  sx , arr clock
st

− , dep
st and dx  

associated with schedule π .  

If the optimal sailing speed to Suez ( ) ( )( )dep
os os s ov L x T Vπ π= − > , then the ship 

can further reduce its sailing speed and arrive at Suez at a time ( )sx σ  later than ( )sx π  

but before the next 23:00, which forms a new schedule 

 ( ) ( ) ( ) ( )( ), , ,arr clock dep
s s s dx t t xσ σ σ σ σ−=   

where 

 ( ) ( )s sx xσ π>   (A1) 

 ( ) ( ) ( )( ) 47arr clock
s s st x xπ σ π− + − ≤   (A2) 

 ( ) ( ) ( ) ( )( ) mod 24 23arr clock arr clock
s s s st t x xσ π σ π− − = + − ≤    (A3) 

 ( ) ( )dep dep
s st tσ π=   (A4) 

 ( ) ( )d dx xσ π=   (A5) 

Based on the domain knowledge [ ), 0, , 2.5,3.5os sd os sdα α β β> ∈ , we can compare the 

cost of these two schedules: 

 ( ) ( )tra tra sdr norf f E Dσ π= = ⋅   (A6) 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )
( )

1 1

1 1

1 1

os sdos sd

os sdos sd

os sdos sd

bun bun dep dep
os os s o sd sd d s

bun dep dep
os os s o sd sd d s

bun dep dep
os os s o sd sd d s

bun

f P L x T L x t

P L x T L x t

P L x T L x t

f

β ββ β

β ββ β

β ββ β

σ α σ α σ σ

α σ α π π

α π α π π

π

− −

− −

− −

 = ⋅ − + ⋅ −  
 = ⋅ − + ⋅ −  
 < ⋅ − + ⋅ −  

=

  

  (A7) 

Eqs. (A6) and (A7) indicate the fact that the slow-steaming strategy suggested by 

schedule σ  will decrease the bunker fuel consumption over the first leg (from origin 

to Suez), without changing the transit due and bunker fuel consumption over the second 

leg from Suez to destination. This contradicts the assumption that schedule π  is 

optimal.  
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If the optimal sailing speed to Suez ( )osv Vπ = , then the ship can adopt a new 

sailing schedule λ  by speeding up a little bit to arrive at Suez at 23:00 and catching the 

upcoming convoy without paying any surcharge ( ( ) ( )tra tra sdr norf f E Dλ π= = ⋅  ), 

which will increase the sailing time over the second leg from Suez to destination by 24 

hours: 

 ( ) ( ) ( ) ( )( ), , ,arr clock dep
s s s dx t t xλ λ λ λ λ−=   

where 

 ( ) ( )0 5s sx xπ λ< − <   (A8) 

 ( ) ( ) ( ) ( )( ) mod 24 23arr clock arr clock
s s s st t x xλ π π λ− − = − − =    (A9) 

 ( ) ( ) 24dep dep
s st tλ π= −   (A10) 

 ( ) ( )d dx xλ π=   (A11) 

Without loss of generality, the following reasonable assumptions are made based on 

the reality of long haul sailing via Suez:  

 ( ) ( ) ( )5
os os

sd dep dep
s o s o

L Lv V
x T x T

π
π π

> ≈ =
− − −

  (A12) 

 ( ) 24dep
s ox Tπ − ≥   (A13) 

 ( ) ( ) 6 24 144dep
d sx tπ π− ≥ × =   (A14) 

Compared to schedule π , the ship decreases its sailing time over the first leg from 

origin to Suez by at most 5 hours if it adopts schedule λ . We thus have: 

 ( ) ( ) ( )( )15 ososbun bun dep
os os os s of P L x T

ββλ α π
−

≤ ⋅ − −   (A15) 

The Taylor expansion of the right-hand side of Eq. (A15) is: 
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where the third term containing θ  is the remainder term of Taylor expansion and θ  is 

between 0 and 5. Thus, the increase of bunker fuel cost of schedule λ  over the first leg, 

compared to schedule π , can be bounded with the following derivation: 
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  (A16) 

This equation has a clear economic meaning that the bunker fuel increase over the first 

leg caused by schedule λ  can be upper bounded by the fuel consumption of the same 

ship in a 12.5-hour sailing at speed V  plus that in a 5.8-hour sailing at an extremely 

low speed close to V . Similarly, we can obtain a lower bound of the bunker cost 

decrease over the second leg from Suez to destination with schedule λ : 
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 ( ) ( ) ( )( ) 18.5sdbun bun bun bun
sd sd sd sd sdf f f P v

β
π λ α π∆ = − ≥ ⋅   (A17)  

This bound can be interpreted as the bunker fuel cost of the ship in an 18.5-hour sailing 

over the second leg at the speed ( )sdv π . The two bounds in Eqs. (A16) and (A17) and 

the assumption reflected by Eq. (A12) clearly support the result below:  

 bun bun
os sdf f∆ < ∆   (A18) 

which can be translated to the fact ( ) ( )bun bunf fλ π<  that contradicts our assumption 

on the optimality of schedule π .  □ 
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