
1 
 

Article 

Type 2 diabetes mellitus, brain atrophy and cognitive decline in older people: a 

longitudinal study 

Michele L. Callisaya1,2,3, Richard Beare2,4, Chris Moran2,5,6, Thanh Phan3, Wei Wang2, 

Velandai K. Srikanth1,2,5 

1Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, 

Private Bag 23, Hobart, TAS 7000, Australia 

2Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, VIC, 

Australia 

3Stroke and Aging Research Group, Department of Medicine, School of Clinical Sciences, 

Monash University, VIC, Australia 

4Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, VIC, Australia 

5Departments of Geriatric Medicine, Frankston Hospital, Peninsula Health, Melbourne, VIC, 

Australia 

6Department of Aged Care, Alfred Health, Melbourne, VIC, Australia 

Corresponding author: Michele Callisaya, Menzies Institute for Medical Research, University 

of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000, Australia 

email: michele.callisaya@utas.edu.au Michele.callisaya@monash.edu 

Received: 17 May 2018 / Accepted: 22 October 2018  



2 
 

Abstract 

Aims/hypothesis The aims of the study were to examine whether type 2 diabetes mellitus is 

associated with greater brain atrophy and cognitive decline, and whether brain atrophy 

mediates associations between type 2 diabetes and cognitive decline. 

Methods Participants without dementia aged 55-90 years from the Cognition and Diabetes 

in Older Tasmanians (CDOT) study underwent brain MRI (ventricular and total brain 

volume) and neuropsychological measures (global function and seven cognitive domains) at 

three time points over 4.6 years. Mixed models were used to examine longitudinal 

associations of type 2 diabetes with cognitive and MRI measures, adjusting for covariates. A 

test of mediation was used to determine whether brain atrophy explained associations 

between type 2 diabetes and cognitive decline. 

Results A total of 705 participants (diabetes: n=348, mean age 68.2 years [SD 7.0]; no 

diabetes: n=357, mean age 72.5 years [SD 7.1]) were available at baseline. Adjusting for age, 

sex, education and vascular risk factors, there were significant diabetes × time interactions for 

verbal memory (β -0.06; 95% CI -0.09, -0.02) and verbal fluency (β -0.03; 95% CI -0.06, -

0.00). Although people with diabetes had lower brain (β -14.272; 95% CI -2.197, -6.580) and 

greater ventricular (β 2.672; 95% CI 0.152, 5.193) volumes at baseline, there were no 

significant diabetes × time interactions (p>0.05) or evidence of mediation of the diabetes–

cognition relationship by brain atrophy. 

Conclusions/interpretation In older community-dwelling people, type 2 diabetes is 

associated with decline in verbal memory and fluency over ~5 years. The effect of diabetes 

on brain atrophy may begin earlier (midlife). 

Keywords Brain atrophy; Brain imaging; Cognition; Dementia, longitudinal study; Type 2 

diabetes mellitus 

Abbreviations 

DBP Diastolic blood pressure 

SBP Systolic blood pressure 

WMH White matter hyperintensity 
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Research in context 

What is already known about this subject? 

• Very few studies to our knowledge have examined associations between type 2 

diabetes and brain atrophy 

• None have measured the impact of type 2 diabetes on both brain atrophy and 

cognitive decline in the same study 

What is the key question? 

• Is type 2 diabetes associated with brain atrophy, and does atrophy mediate the 

association between type 2 diabetes and cognitive decline? 

What are the new findings? 

• Although brain volume was lower at baseline in people with type 2 diabetes it did not 

decline at a greater rate over time, or mediate the association between type 2 diabetes 

and cognitive decline 

How might this impact on clinical practice in the foreseeable future? 

• The effect of type 2 diabetes on brain atrophy may begin earlier (for example 

midlife). Alternatively, its impact on brain atrophy and cognitive decline in old age 

may be enhanced by the development of substantially greater cerebrovascular 

pathology. Further study of these issues may clarify when and how to intervene to 

reduce the impact of type 2 diabetes on the brain 
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Introduction 

Dementia is a major public health problem [1]. The burden of poor metabolic health is also 

rising worldwide and is a strong risk factor for dementia [1]. The presence of type 2 diabetes 

mellitus, in particular, doubles the risk of dementia in older age [2]. Findings from the 

majority of longitudinal studies suggest that type 2 diabetes is associated with a greater 

decline in executive function [3-5], processing speed [4, 6-8], verbal fluency [6] and memory 

[3, 4, 6], while the results of a few studies suggest no associations in these domains [3, 5, 9]. 

There is great interest in identifying pathways linking diabetes and cognitive decline. Type 2 

diabetes is associated with lower total brain volume [10], more infarcts [11, 12] and greater 

white matter hyperintensity (WMH) volume [11, 12]. Cross-sectional analyses suggest that 

lower grey matter volume [11, 13] may substantially mediate the association between type 2 

diabetes and cognitive function. However, in the Action to Control Cardiovascular Risk in 

Diabetes (ACCORD)–Memory in Diabetes (MIND) trial, the less intensive blood pressure 

and more intensive glycaemic control arms resulted in greater preservation of brain volume 

but not cognition [14, 15]. In the handful of longitudinal analyses on this topic, type 2 

diabetes has been linked to an increase in ventricular volume [16-18]; a greater decline in 

total brain volume has been reported in some [19] but not all studies [17, 18, 20]. To our 

knowledge, there have been no longitudinal studies exploring whether brain atrophy mediates 

the association between type 2 diabetes and cognitive decline. 

In a sample of community-dwelling older people without a history of dementia, we 

hypothesised that: (1) people with type 2 diabetes would have a greater rate of decline in 

cognition and total brain volume, and a greater increase in ventricular volume, compared with 

non-diabetic individuals; (2) these measures of brain atrophy would mediate associations 

between type 2 diabetes and cognitive decline. 

Methods 

Study population Participants aged ≥55 years were recruited from the National Diabetes 

Service Scheme register in Southern Tasmania (postcodes 7000–7199) into the Cognition and 

Diabetes in Older Tasmanians (CDOT) longitudinal study between January 2008 and January 

2010. The study was designed to examine the effect of type 2 diabetes on cognition and its 

underlying brain pathways. The National Diabetes Service Scheme register is run by Diabetes 
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Australia and provides support to people with type 2 diabetes. Diagnosis is made by a 

physician using standard criteria (fasting plasma glucose ≥7.0 mmol/l, random plasma 

glucose ≥11.1 mmol/l or 2 h plasma glucose ≥11.1 mmol/l after an oral glucose tolerance 

test). Participants without type 2 diabetes were recruited from the longitudinal population-

based Tasmanian Study of Cognition and Gait (TASCOG) and randomly selected using the 

Southern Tasmanian electoral roll from the same postcodes between December 2004 and 

2010. In both studies participants were contacted by letter asking them to participate; they 

then attended an appointment at the University of Tasmania. Exclusion criteria were 

residence in a nursing home, insufficient English for cognitive testing, any contraindication to 

MRI scan, and a history of dementia or Parkinson’s disease (determined by a standardised 

questionnaire). Incident type 2 diabetes at follow-up was defined as diagnosis by a physician, 

HbA1c ≥48 mmol/mol (6.5%) or fasting plasma glucose ≥7.0 mmol/l. 

Ethics approval was obtained from the Southern Tasmanian Health and Medical Human 

Research Ethics Committee and the Monash University Human Research Ethics Committee. 

Informed written consent was obtained from all participants. 

Measurements Both groups were followed up approximately 2 and 4 years after the 

baseline assessment. Measurement of all variables (including fasting blood tests) was 

identical in both cohorts. 

Cognitive tests and derivation of cognitive scores A comprehensive battery of 

neuropsychological tests was used to measure: (1) verbal fluency, using the Controlled Oral 

Word Association Test (with the letters F, A and S; category fluency, animals) [21]; (2) 

executive function interference, using the Victoria Stroop Test (and the colour minus word 

subtests) [22]; (3) working memory, using the digit span subtest of the Wechsler Adult 

Intelligence Scale—Third Edition [23]; (4) attention-processing speed, using the Victoria 

Stroop dot tests, symbol search and digit symbol-coding subtests of the Wechsler Adult 

Intelligence Scale—Third Edition [23]; (5) visuospatial ability, using the Rey Complex 

Figure Test, copy task [21]; (6) verbal memory, using the Hopkins Verbal Learning Test–

Revised generating scores for total immediate recall, delayed recall and recognition memory 

[21]; (7) visual memory, with a delayed reproduction after 20 min of the Rey Complex Figure 

Test [21]. For individual tests, scores were standardised at each visit by creating z scores 

using the mean and SD from the baseline visit. These domain scores were averaged to create 

a global cognitive score and also average scores for each of the seven listed cognitive 
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domains. Domain scores with more than one cognitive test were restandardised to an SD of 1. 

These scores were used in the regression analysis to allow comparison of associations across 

cognitive domains, as has been done previously [3, 6, 9]. 

MRI brain (total brain and lateral ventricular volume) Brain MRI prior to January 2011 

was performed using a 1.5 Tesla scanner (LX Horizon; General Electric, Milwaukee, WI, 

USA) with the following sequences: high-resolution T1-weighted spoiled gradient echo 

(repetition time [TR] 35 ms, echo time [TE] 7 ms, flip angle 35°, field of view 240×240 mm, 

voxel size 1 mm3) comprising 120 contiguous slices; fluid-attenuated inversion recovery 

(FLAIR) (TR 8802 ms, TE 130 ms, inversion time 2200 ms, voxel size 0.50×0.50×3 mm). 

MRI after January 2011 was performed using a new 1.5 Tesla scanner (Syngo; Siemens, 

Erlangen, Germany) with the following sequences: high-resolution T1-weighted 

magnetisation-prepared gradient echo (MPRAGE) (TR 1910 ms, TE 3.14 ms, flip angle 15°, 

field of view 235×250 mm, voxel size 1 mm3) comprising 160 contiguous slices; FLAIR (TR 

8500 ms, TE 92 ms, inversion time 2438 ms, voxel size 0.9×0.9×3.5 mm). Eleven 

participants were scanned on the new and old scanner and calibration factors were computed 

using linear regression, such that rates of change of volume between the previous time point 

and each calibration scan were matched. T1-weighted and FLAIR scans for each participant 

were aligned using the co-registration facility of SPM12 (www.fil.ion.ucl.ac.uk/spm). The 

FreeSurfer version 5.3 longitudinal pipeline [24] was used to estimate total brain volume, 

lateral ventricular volume and total intracranial volume with correction of intermediate stages 

of FreeSurfer segmentation for WMH masks created from FLAIR scans. WMH volume at 

baseline was computed using established segmentation procedures; MRI infarcts or cerebral 

microbleeds at baseline were determined by consensus between expert raters [25]. All image 

analyses were blinded to age, sex and cognitive outcome measures. 

Covariates Potential covariates included baseline age (centred to 55 years), sex, education 

(years) and self-reported vascular risk history of previous or current smoking (yes/no), 

myocardial infarct (yes/no), stroke (yes/no), hypertension (self-report, taking 

antihypertensive medication or having a systolic blood pressure [SBP] ≥140 mmHg or a 

diastolic blood pressure [DBP] ≥90 mmHg), hypercholesterolaemia (yes/no), BMI, 

depression (Geriatric Depression Scale) and ApoE4 (also known as APOE) genotype (whole 

blood DNA). 
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Statistics Non-normal variables were transformed as required. Differences between 

diabetes status and baseline characteristics were examined using t tests and χ2 tests. For 

longitudinal analyses, mixed models (maximum likelihood estimation, unstructured 

covariance) were used to examine the associations between baseline diabetes status and 

change in MRI brain measures, global cognitive function and the individual cognitive 

domains. Fixed effects were terms for time, since baseline and main effects were for diabetes 

status and an interaction between diabetes and time. Random effects for the intercept and 

slope were fitted for each individual, allowing participants to have different scores at baseline 

and rates of change in the dependent variable (MRI brain or cognitive measures). Model 1 

was adjusted for baseline age, sex and education (and total intracranial volume for MRI 

measures). Model 2 included the covariates at baseline and their interaction with time in 

order to adjust for their effect on the relationship between type 2 diabetes and MRI 

brain/cognition over time. Covariates in model 2 were included if they changed the 

coefficient of the diabetes × time interaction by more than 10%. Three-way interactions were 

also explored between type 2 diabetes, time and the following covariates: age (greater than or 

less than 65 years of age), sex and ApoE4 status. For MRI outcome variables, additional 

three-way interactions were explored for baseline WMH volume, infarcts and microbleeds. 

To examine whether MRI markers of atrophy mediated any associations between type 2 

diabetes and decline in cognition, we entered the MRI variables and their interaction with 

time into models of type 2 diabetes and cognitive decline. As in our prior study, if the MRI 

measure attenuated the β coefficient for diabetes × time (by >30%), and the coefficient of the 

MRI measure remained unchanged from its unadjusted value without diabetes in the model, it 

was considered a potential mediator [11]. 

We performed three sensitivity analyses. First, we used multiple imputation to replace 

missing data during follow-up and repeated our analyses. Multiple imputation is likely to 

improve precision (reduce bias) when compared with more traditional approaches for dealing 

with missing data [26]. It is based on the assumption that the missing data are missing at 

random. Although missing at random is empirically unverifiable [27], individuals with 

cognitive impairment and other conditions at baseline were more likely to drop out of the 

study than were individuals without health conditions, suggesting that the probability of 

dropout depended on observed baseline measures but not the unobserved outcomes. 

Unrestricted model-based multiple imputation using Bayesian estimation [28] was used to 
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impute the missing values because such a model is general enough so that model 

misspecification cannot occur [29]. The baseline measures (age, sex, education, type 2 

diabetes status, ApoE4 genotype, vascular risk factors, cognitive measures and all MRI brain 

variables) were included, reducing the uncertainty caused by the missing values and therefore 

improving the precision of the estimation [30]. Multiple imputation involved taking five 

copies of the dataset [31] and imputing the missing values in each copy. The model was fitted 

separately to each of the five complete datasets, and the inference was carried out by 

combining the estimates and standard errors of each variable of interest across the five 

completed datasets using Rubin’s rules [32]. The resulting multiple imputation estimates are 

the average of the variable estimates across the five imputed datasets. We also performed 

‘worst and best case’ scenarios by giving any missing outcome a value of 2 SDs below or 

above the sample mean. Analysis was performed using STATA version 15 (StataCorp, 

College Station, TX, USA). 

Results 

There were 705 participants in the study at phase 1 (diabetes, n=348; no diabetes, n=357). 

Phase 2 mean follow-up time was 2.6 years (SD 0.44, median 2.6, interquartile range 2.3-2.8) 

and phase 3 mean follow-up time was 4.6 years (SD 0.53, median 4.4, interquartile range 4.2-

5.0). Five participants had missing cognitive data but did have MRI scans. There were 506 

participants at phase 2 (two with missing cognitive data but with MRI scans) and 431 at 

phase 3 (one with missing cognitive data but with an MRI scan). MRI scans were performed 

in participants with no contraindications (claustrophobia or metal implants). The total number 

of MRI scans was as follows: phase 1, n=616; phase 2, n=388; phase 3, n=298. Overall, those 

lost to follow-up were older (p<0.001), had higher HbA1c (p=0.01), were more likely to have 

had a myocardial infarct (p=0.001) or stroke (p=0.001), and had lower baseline total global 

cognition z score (p=0.002), higher ventricular volume (p=0.008) and lower brain volume 

(p=0.001). There was no difference in dropout by type 2 diabetes status (p=0.47), sex 

(p=0.16), education (p=0.31), hypertension (p=0.94), high cholesterol (p=0.33) or BMI 

(p=0.85). Seven people developed incident type 2 diabetes during follow-up. 

Participant characteristics by diabetes status are provided in Table 1. Those with type 2 

diabetes were more likely to be younger (p<0.001), on blood pressure- and lipid-lowering 

medication (p<0.001), and have a history of high blood pressure and high cholesterol 
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(p<0.001). Those with type 2 diabetes also had a higher BMI (p<0.001) and higher 

depression scores (p=0.002). SBP (p=0.001) and DBP (p<0.001) were slightly higher in those 

without type 2 diabetes. The mean duration of diabetes was 9.5 years (SD 9.4); 71 

participants were on insulin therapy. 

Type 2 diabetes and cognitive decline At baseline, type 2 diabetes was associated with 

lower attention-processing speed (β -0.19; 95% CI -0.36, -0.02; p=0.03), visuospatial ability 

(β -0.68; 95% CI -0.84, -0.53; p<0.001) and visual memory (β -0.54; 95% CI -0.69, -0.38; 

p<0.001), but not other cognitive variables (p>0.05). Table 2 (model 1) shows the age-, sex- 

and education-adjusted associations between type 2 diabetes at baseline and cognitive decline 

over time. Type 2 diabetes was associated with a greater decline in the domains of verbal 

fluency (β -0.04; 95% CI -0.07, -0.02; p=0.001) and verbal memory (β -0.05; 95% CI -0.08, -

0.02; p=0.002), and with a trend for working memory (β -0.02; 95% CI -0.05, -0.00; p=0.05). 

Although visuospatial function and visual memory were lower in people with type 2 diabetes 

at baseline and subsequent assessments, they declined at a slower rate in people with type 2 

diabetes (visuospatial function: β 0.14; 95% CI 0.11, 0.18; p<0.001; visual memory: β 0.10; 

95% CI 0.07, 0.13; p<0.001). Type 2 diabetes was not associated with a greater rate of 

decline in global cognitive score (β -0.03; 95% CI -0.07, 0.01; p=0.17), attention-processing 

speed (β -0.01; 95% CI -0.23, 0.01; p=0.37) or executive function interference score (β -0.03; 

95% CI -0.08, 0.02; p=0.20). 

In fully adjusted models (Table 2, model 2) the association between type 2 diabetes and 

greater decline in verbal fluency (β -0.03; 95% CI -0.06, -0.00) (Figure 1) and verbal memory 

(β -0.06; 95% CI -0.09, -0.02) (Figure 1), and between type 2 diabetes and slower decline in 

visuospatial ability (β 0.14; 95% CI 0.11, 0.18) and visual memory (β 0.11; 95% CI 0.08, 

0.14) remained significant. The association with working memory was no longer significant 

(β -0.02; 95% CI -0.05, 0.01). Three-way interaction terms of diabetes and time did not 

suggest increased rates of decline in people of older age, ApoE4 carriers or either sex 

(p>0.05). Results in all models did not change meaningfully when the seven participants with 

incident diabetes during follow-up were removed. Table 3 shows the associations after 

imputing missing data. There was little change in the strength of the majority of associations, 

except for verbal fluency, which weakened (β -0.02; 95% CI -0.06, 0.01). Table 4 shows the 

results of the worst case scenario, where the association between type 2 diabetes and verbal 

fluency weakened slightly (β -0.01; 95% CI -0.05, 0.03). Electronic Supplementary Material 
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(ESM) Table 1 shows the more unlikely best case scenario, where the association between 

type 2 diabetes and verbal fluency was of similar strength but non-significant (β -0.03; 95% 

CI -0.08, 0.02). 

Type 2 diabetes and brain atrophy At baseline, type 2 diabetes was associated with lower 

total brain volume (β -14.273; 95% CI -2.197, -6.580; p<0.001) and higher ventricular 

volume (β 2.672; 95% CI 0.152, 5.193; p=0.04). Table 2 shows the associations between type 

2 diabetes at baseline and MRI measures over time: model 1 is adjusted for age, sex, 

education and total intracranial volume; model 2 is adjusted for the same covariates as in 

model 2 for the analysis of cognition. Total brain volume decreased (β -8.481; 95% CI -

9.863, -7.099) and lateral ventricular volume increased (β 1.142; 95% CI 0.954, 1.331) over 

time in the overall sample. There were no statistically significant interactions between 

diabetes and time in explaining changes in total brain volume (β -0.451; 95% CI -1.807, 

0.905; p=0.51) and ventricular volume (β 0.175; 95% CI -0.009, 0.359; p=0.06). Three-way 

interaction terms of diabetes and time were not statistically significant with age, sex, ApoE4, 

baseline WMH volume, infarcts or microbleeds (p>0.05). There were also no statistically 

significant associations when data were imputed (Table 3), in a worst case (Table 4) or best 

case (ESM Table 1) scenario. 

Type 2 diabetes, brain atrophy and cognition The addition of total brain or lateral 

ventricular volume did not alter the associations between type 2 diabetes and decline in 

verbal memory or fluency (results not shown). 

Discussion 

In older community-dwelling people without a history of dementia, type 2 diabetes was 

associated with reduced cognitive function at baseline and a greater decline in verbal memory 

and verbal fluency independently of confounding factors. Although type 2 diabetes was 

associated with lower total brain volume and higher ventricular volume at baseline, it was not 

associated with the rate of brain atrophy and atrophy did not mediate associations between 

type 2 diabetes and cognitive decline. 

Type 2 diabetes and cognitive decline We confirmed that type 2 diabetes was associated 

with poorer baseline cognitive function, suggesting an impact on cognitive reserve that may 

begin before older age. In addition, even over a relatively short period of ~5 years, we found 
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that type 2 diabetes was associated with faster decline in verbal fluency (a measure of 

executive ability) and memory. For example, in people without type 2 diabetes, verbal 

fluency slightly increased on average each year (0.004 SD/units per year), whereas it declined 

at more than triple the rate in those with type 2 diabetes (-0.023 SD/units per year). Such 

accelerated cognitive decline may contribute to executive difficulties in everyday activities 

and health behaviours (such as medication compliance), which in turn may poorly influence 

future vascular health and cognitive decline, and possibly an earlier onset of dementia in 

those with type 2 diabetes [33]. Previous findings have been mixed, particularly in middle vs 

older age. Studies commencing in midlife and followed up over 10 years or more tend to 

show that type 2 diabetes is associated with faster decline in global cognitive function [3, 6], 

processing speed [4, 6], executive function [3, 4], verbal fluency [6] and memory [3, 4, 6]. 

However, in older cohorts, these associations are more variable, with some showing greater 

decline in global cognition [5, 34-36], but not others [8, 9, 37]. The non-significant results in 

our study for the global cognitive score may be explained by its derivation from a wider 

range of tests than used in other studies: some of the tests used showed less decline in type 2 

diabetes (described further below) and hence a cancelling of effects. Studies in older age have 

also reported mixed results for specific cognitive domains: some have reported greater 

decline in verbal fluency [38] and memory [37, 39] in people with type 2 diabetes, whereas 

several others have reported no differences [5, 9, 34, 35, 38, 40]. These mixed findings most 

likely reflect differences in populations, follow-up times and cognitive measures. 

Surprisingly, we found that visuospatial function and visual memory were slower to decline 

in people with type 2 diabetes, although those with diabetes performed worse at baseline [11]. 

A previous study of people with (n=68) and without type 2 diabetes (n=38) also found a 

similar phenomenon, with healthy people showing a decline in visuospatial function (using a 

modified version of the Taylor Complex Figure), whereas people with diabetes tended to 

improve [41]. 

Type 2 diabetes and brain atrophy Although we found that both ventricular and brain 

volume were worse at baseline in people with type 2 diabetes, there were no differences in 

rates of decline. Prior studies are very few and describe mixed results, some reporting type 2 

diabetes to be associated with greater rates of increase in ventricular volume [16, 17], but not 

in decline of total brain volume over time [17, 18, 20]. The difference in baseline volumes in 

our study suggests that changes in brain atrophy may begin earlier in life, such as in midlife, 

and carry the potential for reduced brain reserve. Indeed, in a previous study, midlife type 2 
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diabetes (mean age 54, SD 9.0) was associated with a greater increase in temporal horn 

volume of the lateral ventricle, thought to be a marker of hippocampal and medial temporal 

atrophy [18]. The absence of a greater rate of brain atrophy related to diabetes in our sample 

may be explained partly by the relatively short duration of follow-up, as well as the low 

burden of cerebrovascular disease [34-36]. In a recent autopsy study of people with a larger 

burden of cerebrovascular disease than in our sample, the authors reported the combination of 

diabetes and cerebrovascular disease was associated with lower cognitive scores at the end of 

life compared with the presence of either one risk factor alone [36]. It is possible that our 

sample had a lower burden of cerebrovascular disease as a result of relatively good blood 

glucose and blood pressure control and the high prevalence of blood pressure- and lipid-

lowering drug use. In the absence of good control of these factors, the greater accrual of 

cerebrovascular disease may impact on the rates of brain atrophy in diabetes. This theory 

remains to be tested. 

Type 2 diabetes, brain atrophy and cognitive decline Contrary to our hypotheses and 

results from cross-sectional studies [11, 13], total brain or lateral ventricular volume did not 

mediate associations between type 2 diabetes and cognitive decline. In our previous cross-

sectional analyses, brain volume appeared to substantially mediate the association between 

type 2 diabetes and cognition [11]. No other studies have compared decline in both cognition 

and brain atrophy between people with and without type 2 diabetes together in the same 

study. In the Women’s Health Initiative, associations between type 2 diabetes and future 

cognitive function (measured only once) were slightly attenuated by adding grey and white 

matter and ischaemic volumes to the models [20]. In the Prospective Study of Pravastatin in 

the Elderly at Risk (PROSPER) randomised trial (age 70-82 years; 89 participants with type 2 

diabetes and 438 control individuals), baseline lower brain volume was associated with 

greater decline in an immediate picture-learning task but not in the Stroop Test in people with 

type 2 diabetes [19]. Studies which allow for greater accrual of cerebrovascular disease may 

be more likely to reveal the mediating impact of brain structure on the diabetes–cognitive 

decline relationship in older age. 

Strengths and limitations There are some limitations in our study. It was carried out over 

a relatively short time frame, and differences between groups in cognition and brain volume 

may occur over longer periods or earlier in midlife [3, 6]. We had a homogenous sample in 

reference to race and were therefore unable to explore its effects, whereas prior studies have 
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found stronger associations in African-Americans [5, 38]. As in other longitudinal studies 

some participants were lost to follow-up, which might have impeded the ability to detect a 

signal (internal validity). But we used mixed models to enable inclusion of individuals with 

incomplete follow-up, as well as carrying out three sensitivity analyses to explore its effect. 

The change in MRI scanners during the middle of the study might have introduced bias in 

structural brain measures, although we attempted to correct for this using data obtained from 

the same participant in both scanners. The mean HbA1c for people with type 2 diabetes was 

relatively low (mean 5.6%), which reduces the ability of the study to be generalisable to other 

populations (external validity). The self-reported method for dementia diagnosis might have 

influenced findings if there were differences in under-reporting between groups. 

Strengths of our study include longitudinal measurement of a wide range of cognitive tests 

covering different cognitive domains in conjunction with serial brain MRI scans. We 

explored the independence of associations between type 2 diabetes and cognitive decline for 

several confounding factors and also examined for effect modification by key covariates such 

as ApoE4, age and sex. 

Conclusion and area for future research In this study, type 2 diabetes was associated 

with decline in verbal memory and fluency in older community-dwelling people without 

dementia over a period of ~5 years but not with MRI markers of brain atrophy. The effects of 

type 2 diabetes and poor metabolic health at midlife, and the impact of accrual of 

cerebrovascular lesions at older age, both deserve further study to inform preventative efforts 

against dementia. 
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Table 1 Participant characteristics (n=705) 

Characteristic No type 2 diabetes (n=357) Type 2 diabetes (n=348) 

Age, years 72.5±7.1 68.2±7.0 
Female 167 (46.8) 139 (39.9) 
Race  
  European descent 354 (99.1) 343 (98.6) 
  Asian 2 (0.6) 5 (1.4) 
  Mixed (African/Asian) 1 (0.3) 0 (0.0) 
Education 10.8±3.7 11.2±3.5 
Hypertensiona 269 (75.4) 312 (89.7) 
Angina 41 (11.5) 60 (17.2) 
Myocardial infarct 44 (12.3) 53 (15.2) 
Stroke 24 (6.7) 36 (10.3) 
High cholesterol 137 (38.4) 255 (73.3) 
Insulin therapy  71 (20.4) 
  Short acting  8 (2.3) 
  Intermediate acting  43 (12.4) 
  Long acting  20 (5.7) 
HbA1c, mmol/mol 38 55 
HbA1c, % 5.6±0.3 7.2±1.2 
Fasting glucose, mmol/l 5.3±0.5 7.7±2.3 
Type 2 diabetes duration, years  9.5±9.4 
Past or present smoker 179 (50.1) 190 (54.6) 
ApoE4 82 (22.9) 80 (22.9) 
BMI, kg/m2 27.4±4.3 30.7±5.4 
Geriatric Depression Scale score 1.9±2.2 2.5±2.65 
Blood pressure-lowering medication 177 (49.6) 258 (74.1) 
Lipid-lowering medication 98 (27.5) 235 (67.5) 
Glucose-lowering medication  234 (67.2) 
Cognitive and brain variables  
  Hopkins immediate recall 22.1±6.2  23.6±5.5  
  Hopkins delayed recall 7.6±3.0  8.0±2.8  
  Hopkins recognition memory 9.9±2.0  10.1±1.7  
  Rey Complex Figure Test, copy task 32.0±5.1  28.2±6.2  
  Rey Complex Figure Test, delayed 
recall 

14.9±6.9 12.9±6.5  

  Digit symbol coding 50.4±15.2  52.3±14.1  
  Symbol search 22.7±7.7  24.4±7.5  
  Digit span 15.8±3.9  16.3±3.6  
  COWAT category 17.2±4.8  18.4±4.8  
  COWAT word 36.5±12.9  35.8±12.7  
  Stroop dot time 15.5±4.4  16.0±5.0  
  Stroop dot word 21.3±8.0 20.1±5.9  
  Stroop dot colour 38.1±21.9 36.3±14.8  
  Total brain volume, ml 897.55±91.05 908.91±97.32 
  Lateral ventricular volume, ml 30.45±17.36 29.92±15.65 
  WMH, ml 4.70±7.10 3.91±5.96 
  Infarcts 56 (17.0) 74 (22.4) 
  Microbleeds 23 (7.0) 14 (4.2) 

Data are n (%) or mean ± SD 
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aHypertension was defined as a history of high blood pressure, taking blood pressure-lowering medications, 
SBP >140 mmHg or DBP >90 mmHg 
COWAT, Controlled Oral Word Association Test
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Table 2 Difference in change over time between no diabetes and type 2 diabetes 

Variable Model 1  Model 2 
 β coefficient 95% CI p value  β 

coefficient 
95% CI p value 

Cognitive z scores        
  Total global cognition        
    Time −0.01 −0.04, 0.01   −0.02 −0.07, 0.03  
    Type 2 diabetes −0.14 −0.28, −0.00   −0.05 −0.21, 0.10  
    Type 2 diabetes × time −0.03 −0.07, 0.01 0.17  −0.03 −0.07, 0.01 0.18 
  Attention-processing speed         
    Time −0.02 −0.03, −0.01   −0.00 −0.03, 0.02  
    Type 2 diabetes −0.17 −0.30, −0.04   −0.13 −0.27, 0.01  
    Type 2 diabetes × time −0.01 −0.23, 0.01 0.37  −0.00 −0.02, 0.02 0.93 
  Verbal fluency         
    Time 0.01 −0.00, 0.03   0.04 0.01, 0.08  
    Type 2 diabetes −0.05 −0.19, 0.09   −0.06 −0.21, 0.10  
    Type 2 diabetes × time −0.04 −0.07, −0.02 0.001  −0.03 −0.06, −0.00 0.05 
  Executive function         
    Time 0.01 −0.03, 0.04   −0.01 −0.07, 0.05  
    Type 2 diabetes 0.02 −0.13, 0.16   0.11 −0.05, 0.27  
    Type 2 diabetes × time −0.03 −0.08, 0.02 0.20  −0.04 −0.10, 0.01 0.15 
  Verbal memory         
    Time 0.05 0.03, 0.07   0.03 −0.01, 0.07  
    Type 2 diabetes 0.01 −0.12, 0.15   0.03 −0.12, 0.18  
    Type 2 diabetes × time −0.05 −0.08, −0.02 0.002  −0.06 −0.09, −0.02 0.001 
  Working memory        
    Time 0.02 −0.00 , 0.04   0.04 0.01, 0.07  
    Type 2 diabetes 0.01 −0.14, 0.15   0.02 −0.15, 0.18  
    Type 2 diabetes × time −0.02 −0.05, −0.00 0.05  −0.02 −0.05, 0.01 0.15 
  Visual memory         
    Time −0.16 −0.18, −0.14   −0.15 −0.19, −0.11  
    Type 2 diabetes −0.51 −0.65, −0.38   −0.54 −0.69, −0.39  
    Type 2 diabetes × time 0.10 0.07, 0.13 <0.001  0.11 0.08, 0.14 <0.001 
  Visuospatial function         
    Time −0.29 −0.31, −0.26   −0.31 −0.35, −0.26  
    Type 2 diabetes −0.78 −0.91, −0.64   −0.72 −0.87, −0.57  
    Type 2 diabetes × time 0.14 0.11, 0.18 <0.001  0.14 0.11, 0.18 <0.001 
MRI brain measures        
  Brain volume        
    Time −7.679 − 8.519, −6.8391   −8.481 −9.863, −7.099  
    Type 2 diabetes −16.969 −23.796, 

−10.143 
  −14.925 −22.515, −7.334  

    Type 2 diabetes × time 0.493 −0.724, 1.709 0.43  −0.451 −1.807, 0.905 0.51 
  Ventricular volume        
    Time 1.187 1.074, 1.300   1.142 0.954, 1.331  
    Type 2 diabetes 2.291 0.057, 4.525   2.484 −0.017, 4.987  
    Type 2 diabetes × time 0.108 −0.055, 0.272 0.20  0.175 −0.009, 0.359 0.06 

All domain z scores renormalised to SD of 1 
Model 1 adjusted for baseline age, sex, education and total intracranial volume 
Model 2 additionally adjusted for baseline stroke, hypertension, high cholesterol and obesity, 
and their interactions with time 
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Table 3 Difference in change over time between no type 2 diabetes and type 2 diabetes 

with imputed data 

Variable Model 2 with imputed data 
 β coefficient 95% CI p value 
Cognitive z scores    
  Total global cognition    
    Time −0.04 −0.60, 0.51  
    Type 2 diabetes 0.07 −1.58, 1.71  
    Type 2 diabetes × time −0.03 −0.51, 0.46 0.91 
  Attention-processing speed     
    Time −0.02 −0.04, 0.00  
    Type 2 diabetes −0.14 −0.28, 0.01  
    Type 2 diabetes × time 0.00 −0.02, 0.02 0.67 
  Verbal fluency    
    Time 0.03 −0.01, 0.08  
    Type 2 diabetes −0.06 −0.21, 0.09  
    Type 2 diabetes × time −0.02 −0.06, 0.01 0.23 
  Executive function    
    Time −0.01 −0.78, 0.74  
    Type 2 diabetes 0.28 −1.97, 2.54  
    Type 2 diabetes × time −0.05 −0.71, 0.61 0.89 
  Verbal memory    
    Time 0.02 −0.02, 0.06  
    Type 2 diabetes 0.01 −0.14, 0.16  
    Type 2 diabetes × time −0.05 −0.08, −0.02 0.002 
  Working memory    
    Time 0.02 −0.01, 0.05  
    Type 2 diabetes 0.03 −0.14.0.19  
    Type 2 diabetes × time −0.03 −0.05, 0.00 0.06 
  Visual memory    
    Time −0.16 −0.19, −0.12  
    Type 2 diabetes −0.53 −0.68, −0.39  
    Type 2 diabetes × time 0.11 0.08, 0.14 <0.001 
  Visuospatial function    
    Time −0.30 −0.34, −0.25  
    Type 2 diabetes −0.74 −0.90, −0.57  
    Type 2 diabetes × time 0.15 0.10, 0.20 <0.001 
MRI brain measures    
  Brain volume    
    Time −8.962 −10.751, −7.173  
    Type 2 diabetes −11.565 −19.267, −3.864  
    Type 2 diabetes × time 0.281 −2.116, 2.679 0.82 
  Ventricular volume    
    Time 1.190 1.070, 1.310  
    Type 2 diabetes 2.250 −0.224, 4.724  
    Type 2 diabetes × time 0.102 −0.068, 0.273 0.24 
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Table 4 Difference in change over time between no type 2 diabetes and type 2 diabetes 

worst case scenario 

Variable Model 2 with imputed data 
 β coefficient 95% CI p value 
Cognitive z scores    
  Total global cognition    
    Time −0.15 −0.20, −0.10  
    Type 2 diabetes −0.05 −0.20, 0.10  
    Type 2 diabetes × time −0.02 −0.07, 0.02 0.28 
  Attention-processing speed    
    Time −0.02 −0.14, −0.06  
    Type 2 diabetes −0.01 −0.25, 0.04  
    Type 2 diabetes × time −0.01 −0.04, 0.03 0.62 
  Verbal fluency    
    Time −0.08 −0.12, −0.038  
    Type 2 diabetes −0.06 −0.22, 0.092  
    Type 2 diabetes × time −0.01 −0.05, 0.03 0.52 
  Executive function    
    Time −0.15 −0.21, −0.09  
    Type 2 diabetes 0.08 −0.08, 0.24  
    Type 2 diabetes × time −0.03 −0.09, 0.02 0.22 
  Verbal memory    
    Time −0.08 −0.12, −0.03  
    Type 2 diabetes 0.03 −0.11, 0.18  
    Type 2 diabetes × time −0.05 −0.09, −0.01 0.02 
  Visual memory    
    Time −0.25 −0.30, −0.21  
    Type 2 diabetes −0.51 −0.66, −0.36  
    Type 2 diabetes × time 0.10 0.06, 0.13 <0.001 
  Visuospatial function    
    Time −0.42 −0.48, −0.37  
    Type 2 diabetes −0.69 −0.84, −0.53  
    Type 2 diabetes × time 0.14 0.09, 0.19 <0.001 
  Working memory    
    Time −0.09 −0.14, −0.04  
    Type 2 diabetes 0.00 −0.16, 0.17  
    Type 2 diabetes × time −0.02 −0.06, 0.02 0.29 
MRI brain measures    
  Brain volume    
    Time −28.487 −33.830, −23.163  
    Type 2 diabetes −16.743 −25.742, −7.745  
    Type 2 diabetes × time −0.113 −4.965, 4.739 0.96 
  Ventricular volume    
    Time −1.850 −2.880, −0.820  
    Type 2 diabetes 2.047 −0.537, 4.633  
    Type 2 diabetes × time 0.091 −1.029, 0.846 0.84 
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Fig. 1 (a) Longitudinal association between type 2 diabetes and verbal fluency (predictive 

margins). (b) Longitudinal association between type 2 diabetes and verbal memory (predictive 

margins). Unbroken line, no type 2 diabetes; broken line, type 2 diabetes 


