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Abstract

To obtain accurate mass measurements for cold planets discovered by microlensing, it is usually necessary to
combine light curve modeling with at least two lens mass–distance relations. The physical parameters of the
planetary system OGLE-2014-BLG-0124L have been constrained thanks to accurate parallax effect between
ground-based and simultaneous space-based Spitzer observations. Here, we resolved the source+lens star from
sub-arcsecond blends in H-band using adaptive optics (AO) observations with NIRC2 mounted on Keck II
telescope. We identify additional flux, coincident with the source to within 160 mas. We estimate the potential
contributions to this blended light (chance-aligned star, additional companion to the lens or to the source) and find
that 85% of the NIR flux is due to the lens star at HL=16.63±0.06 and KL=16.44±0.06. We combined the
parallax constraint and the AO constraint to derive the physical parameters of the system. The lensing system is
composed of a mid-late type G main sequence star of ML=0.9±0.05Me located at DL=3.5±0.2kpc in the
Galactic disk. Taking the mass ratio and projected separation from the original study leads to a planet of
Mp=0.65±0.044MJupiter at 3.48±0.22au. Excellent parallax measurements from simultaneous ground-space
observations have been obtained on the microlensing event OGLE-2014-BLG-0124, but it is only when they are
combined with ∼30 minutes of Keck II AO observations that the physical parameters of the host star are well
measured.
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1. Mass–Distance Relations for Microlensing

Gravitational microlensing is unique in its sensitivity to
exoplanets down to Earth mass beyond the snow line (Mao &
Paczynski 1991; Gould & Loeb 1992), where the core
accretion theory predicts that the most massive planets will
form. However, the major limitation of most of the 51
exoplanetary microlensing analyses published to date has been
the relatively low precision measurements of physical para-
meters of the system, owing to uncertainty of the host star mass
and its distance. By contrast, the relative physical parameters
(mass ratio, projected separation relative to the angular Einstein
ring radius) are usually known with high precision. In the vast
majority of microlensing events, the Einstein ring radius
crossing time tE is the only measurable parameter constraining
the lens mass, lens distance, and relative lens-source proper
motion μrel, which are therefore degenerate. For binary
microlensing events, it is possible to accurately measure the

mass ratio q and the projected separation d in units of Einstein
ring radius. The source star often transits the caustic, providing
the source radius crossing time t*. Moreover, the angular radius
of the source star θ* can be estimated from the surface
brightness relation (Kervella et al. 2004; Boyajian et al. 2013,
2014), so the measurement of t* yields the angular Einstein
radius, ΘE=θ*tE/t*.
These constraints lead to a mass–distance relation between

lens mass ML at distance DL, with the form

q k p= ( ) ( )M 1L E
2

rel

where π±rel=(au) (DS−DL)/(DSDL) andk = -
M8.144 mas 1.

There is also a relation between the parallax πE and the mass,

q k p= ( ) ( )M . 2L E E

This allows the elimination of θE to give a useful mass–
distance relation for the case when we have well-defined
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parallax πE but unknown θE:

p k p=  ( ) ( )M 3L rel E
2

An independent mass–distance relation can be applied if the
flux from the lens system can be reliably measured and
compared to stellar models. Using high angular resolution
observations with Keck II, SUBARU, or HST, it is possible to
separate the contributions of the source and lens stars from
blended stars at the sub-arcsecond level. We can then measure
the lens apparent magnitude mL(λ) and combine it with
isochrones (e.g., Bertelli et al. 2008) to get another mass–
distance relation:

l l
l

= + +
+

( ) ( ) ( )
( [ ]) ( )

m D A

M M

10 5 log 1 kpc
, , age, Fe H 4

L L L

isochrone L

where Misochrone is the predicted absolute magnitude of the lens
assuming a given mass, age, and metallicity, and AL(λ) is the
wavelength-dependent interstellar extinction along the line of
sight to the lens.

In practice, the parallax vector is often not well constrained
and there is a degeneracy with orbital motion, while the
Einstein ring radius is usually known to about 10%. Therefore,
it is quite common to combine the mass–distance relations from
adaptive optics (Equation (4)) and θE (Equation (2)) to measure
the masses. This has been done on a number of planetary
microlensing events (Janczak et al. 2010; Kubas et al. 2012;
Batista et al. 2014, 2015; Bennett et al. 2015). In the favorable
cases, it is possible to constrain the physical parameters of the
system to within ≈5%. Recently, Koshimoto et al. (2017a)
presented the discovery of a sub Saturn-mass planet and
estimated the mass by combining parallax measurements
(Equation (3)) and adaptive optics measurement, without a
good measurement of θE. In this particular case, the accuracy of
the parallax is the limiting factor determining the accuracy of
the derived physical parameters. This is often the case for
ground-based measurements, where only the parallax comp-
onent parallel to the Earth acceleration is well measured, while
the other is uncertain.

In order to overcome this limitation, a natural way forward is
to obtain accurate parallaxes, by making simultaneous ground
and space observations, as proposed first by Refsdal (1966) and
further developed by Gould (1992). In contrast with observa-
tions from the ground alone, both components of the parallax
vector could be well constrained. Three observing campaigns
of simultaneous ground-based and Spitzer observations were
completed in 2014–2016 (Yee et al. 2015a, 2015b; Calchi
Novati et al. 2015).

2. The Planetary System OGLE-2014-BLG-0124

A very favorable case was OGLE-2014-BLG-0124, in which
a system with a star plus planetary companion with mass ratio
q∼7×10−4 and projected separation d∼0.94 was detected
by the OGLE survey. It was observed simultaneously by a fleet
of ground-based telescopes (MOA, LCOGT, Wise 1 m,
MINDSTEP, and SAAO 1m), and by the Spitzer space
telescope. It should be emphasized that this event was very
favorable for parallax detection given its long timescale.
During the ongoing microlensing event, models were circulated
to characterize the nature of the event and optimize requests for
complementary observations from follow-up telescopes.

Udalski et al. (2015) presented the analysis of OGLE and
Spitzer data. OGLE captured the overall geometry of the
microlensing light curve, a source transiting close to a resonant
caustic. Although their model was ultimately based on OGLE
and Spitzer data alone, it was completely consistent with the
models created during the event, including data collected by the
fleet of follow-up telescopes. Unfortunately, the original study
failed to acknowledge this contribution from the community.
The OGLE data on its own allowed a πE measurement

to±20%. The inclusion of Spitzer data improved this by a
factor seven, making OGLE-2014-BLG-0124 the most precise
microlensing parallax measurement to date. Unfortunately, the
trajectory of the source star did not make any caustic crossings;
Udalski et al. (2015) showed that t* is uncertain, which
transfers into a poorly known θE, and hence a large uncertainty
on physical mass of the host star. It was also discussed by
Yee (2015).
As a result, the system has two published solutions, which

overlap within the errorbars. The first, for u0>0, has an
M=0.71±0.22Me star located at 4.1±0.6kpc in the
galactic disk, orbited by a planet of M=0.51±0.16MJupiter

at 3.1±0.5au; The second one (u0< 0), has an M=
0.65±0.22Me star located at 4.23±0.59kpc in the galactic
disk, orbited by a planet of M=0.47±0.15MJupiter at
2.97±0.51au. We remark that the microlensing parameters
(mass ratio, projected separation) are very close and that the
small difference in the physical parameters is coming mostly
from the Bayesian modeling.

2.1. Source Star Properties

Udalski et al. (2015) fitted the source magnitude
IS=18.59±0.02 with a bright blend contribution of IBlend=
17.79±0.01. They estimated the extinction to be AI=1.02, so
AH=0.236 and AK=0.17, which leads to a dereddened source
color of (V− I)S0=0.70. Using the relations in Bessell & Brett
(1988), we derived (I−H)S0=0.765 and (H−K )S0=0.055.
Knowing the extinction in the different bands, we predict the
source magnitudes to be HS=17.04±0.05 and
KS=16.985±0.05.
A direct measurement of the near-infrared magnitude of the

source+lens therefore allows us to find the flux of the lens, and
then to use Equation (4) to get a new mass–distance relation.
We follow Bennett et al. (2015) and Beaulieu et al. (2016) to
estimate the extinction toward the lens. We adopt as a scale
height of the dust toward the galactic bulge t =dust
( ) (∣ ∣)0.120kpc sin b , where b=−2°.9167 is the galactic
latitude. Then we write the lens extinction AHL

= - -t t- -( ) ( ) ( )A e e A1 1 . 5D D
H HL

L dust S dust
S

2.2. VVV K-band Light Curve of OGLE-2014-BLG-0124

We extracted H and K cubes of images centered of the target
collected by the 4 m VISTA telescope at Paranal during the
VVV survey (Minniti et al. 2010). The data set is composed of
1 H and 312 K-band epoch. Using our standard procedure, we
perform PSF photometry on all of the frames and calibrated
them (Beaulieu et al. 2016; J.-B. Marquette et al. 2017, in
preparation).
We use both VVV, OGLE, and Spitzer data to fit a binary-

lens microlensing model using Markov Chain Monte Carlo, in
order to double-check the initial study by Udalski et al. (2015)
and to derive an estimate of the KS band calibrated source flux

2
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(see Figure 1). We perform these calculations for the two
configurations described by Udalski et al. (2015), u0>0 and
u0<0, corresponding to the two allowed trajectories of the
source (Table 1) relative to the caustics. The microlensing
parameters we find are in excellent agreement with those
presented in Table 1 of Udalski et al. (2015), as they are all
within 1σ. We derive KS(fit)=16.93±0.03, with the blend
magnitude Kb(fit)=15.99±0.01. This is in agreement with
our estimates of KS=16.985±0.05 from the previous
section.

As it is a direct measurement, we adopt in the following the
fitted K-band source flux to be KS=16.93±0.03. The
difference between the direct measurement and the extrapola-
tion reflects the level of systematics errors in our procedure. We
keep the H-band estimate with HS=17.04±0.05.

2.3. Keck II Adaptive Optics Observations of
OGLE-2014-BLG-0124

On 2016 August 4, we observed OGLE-2014-BLG-0124
using NIRC2 mounted on the Keck II telescope on Mauna Kea.
We used the wide camera, with a pixel scale of 0.04 arcsec. We
took two frames with an exposure time of 3×10 s at each of
the five dithered positions in H and K. We followed the data
reduction and calibration procedures described by Beaulieu
et al. (2016).

We correct for dark and flatfield using standard procedures
and stack the images using SWarp from the AstrOmatic suite of
astronomy tools (Bertin 2010). We cross identify the VVV and
the Keck II sources and estimate the calibration constant. We
estimate the uncertainty on the zeropoint to be 0.008mag in H
and 0.01 in K. We apply this zeropoint to the Keck II catalogs.

We identify the source+lens star at the position marked on
Figure 2. It has several blends at the ∼2 arcsec level. The total
magnitude is HVVV=15.75±0.07 and KVVV=15.66±0.10
in the VVV images.

At the predicted position of the source, we measure
HKeck=15.95±0.04 and KKeck=15.79±0.03. The PSF is
slightly elongated due to the observing conditions; the ellipticity
is identical to the PSF of nearby stars. As the source has
HS=17.04±0.05 and KS=16.93±0.03, we estimate the

blended light to be HBlend=16.45±0.06 and KBlend=
16.26±0.05.

3. Lens Star Properties

We detected blended light aligned with the source to an
order better than the 160 milliarcsecond PSF full-width at half-
maximum, so we must estimate if it is likely to be the lens star
alone, or has contributions from:

1. the lens;
2. an ambient star (aligned with source and lens not

associated with either;
3. a companion to the lens; and/or
4. a companion to the source.

We decided to compute the contribution to the blended light
using two different methods and compare them.

3.1. Estimating Contaminants, Batista et al.’s Approach

We follow the Bayesian analysis described in V. Batista
et al. 2018 in preparation. First, we calculate the probability for

Table 1
Microlensing Model of OGLE-2014-BLG-124 Based on OGLE,

VVV, and Spitzer Light Curves

Parameter u0>0 u0<0

t0 [HJD′] 6836.28±0.04 6836.16±0.03
u0 0.176±0.004 −0.174±0.005
tE [days] 150.8±2.8 154.6±4.2
ρ[10−3] 0.88±0.53 0.88±0.52
πEN −0.005±0.005 −0.015±0.002
πEE 0.145±0.004 0.155±0.006
α [rad] 4.510±0.002 1.775±0.002
ds/dt −0.111±0.015 −0.109±0.017
dα/dt −0.7±0.6 0.1±0.6
s 0.944±0.003 0.943±0.004
q [10−3] 0.69±0.06 0.71±0.05
Is 18.60±0.03 18.61±0.04
Ks 16.93±0.03 16.94±0.04
χ2 7017.1 7020.6

Figure 1. OGLE I band, Spitzer, and VVV K-band light curves and model of
OGLE-2014-BLG-0124. We show the data, model, and residuals of the fit in
the lower panel.

Figure 2. Keck II H-band observation of OGLE-2014-BLG-0124. At the
position of the source, we detect significant additional flux within 150 mas,
which is most likely the lens. The elongation seen on the image is consistent
with the PSF shape of other nearby field stars.
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an unrelated star in the magnitude range H=15–21 to be
aligned by chance with the lens and the source. We assume that
stars with a separation larger than 0.8×FWHMKeck=130
mas would be resolved. The probability of a field star
contribution to the extra NIR flux is then equal to the surface
number density of stars multiplied by the area ratio between a
circle of 130 mas and the entire field.

While the upper limit to the separation is observationally
given by 0.8×FWHMKeck, the appropriate lower limits differ
between a lens companion and a source companion. For a lens
companion, we consider lower limits given the absence of
signature from a source and a lens companion in the light
curve, following the approach of Batista et al. (2014). We take
a conservative lower limit to the separation by considering the
upper limit on the microlensing shear that would be induced by
an additional caustic,

g = < -q

s
10 .

2
3

For a source companion, the lower limit is given by the
minimum separation for which the companion would not
produce an additional perturbation in the light curve,

 q ~s 1 4 0.23 mas.E

The source and lens companions prior distributions of flux
are calculated following the properties of binary star popula-
tions described by Duchêne & Kraus (2013, see V. Batista et al.
2017 in preparation for details). The distributions of the four
potential contributors (lens, ambient star, source, or lens
companion) are shown in Figure 3.

We combine the expected flux contributions from the four
potentially luminous objects into 500,000 chains, weighted by
their distributions and the Keck measurement. We extract a
sample of the 1000 best fits and conclude that the most likely
value of the lens contribution to the extra NIR flux is 85%.
Figure 4 gives the posterior probability distribution of the
sources of extra flux, with the inset showing the most probable
contribution of each source to the detected object within a 160
mas separation.

3.2. Estimating Contaminants, Koshimoto et al.’s Approach

The same calculation has also been done following the
approach of Koshimoto et al. (2017b); these authors also use
the multiplicity estimates from Duchêne & Kraus (2013), but

the treatment of the surface density distribution of field stars is
slightly different. The two approaches also slightly differ in
their a priori distributions: Koshimoto et al. (2017b) use a
continuous law that is a function of the primary mass, whereas
V. Batista et al. 2017 in preparation use a set of distinct laws
associated to different mass bins.
Moreover, Koshimoto et al. (2017b) use a Galactic model in

their calculation, while V. Batista et al. 2017 in preparation use
the best-fit parameters from Udalski et al. (2015) for
M,DL,ΠE, and θE, and the OGLE calculator for DS. Finally,
the treatment of the Keck measurement in their Bayesian
analysis slightly differs, as Koshimoto et al. (2017b) use it as a
selection criteria of their flux combinations, while V. Batista
et al. 2017 in preparation use it as an a priori distribution.
Nevertheless, prior and posterior distributions are very

similar, and the fraction of the blended flux attributed to the
lens is in agreement with the approach we adopted. The
different contributions are estimated to be 79.3% for the lens,
2.4% for a chance-aligned star, 10% for a companion to the
source, and 8% for a companion to the lens. This would lead to
a lens less massive by ∼0.005Me than using the approach
adopted in the previous paragraph. We repeat the same
calculation for the K-band data and obtain very similar results.
We conclude that the lens contributes to the great majority of

the excess NIR flux detected in the Keck adaptive optics
images, regardless of minor variations to the calculation of
contamination probabilities.

4. Discussion and Conclusions

We estimated that 85% of the blended flux is due to the lens
in H; therefore, HL=16.63±0.06. A similar result is
obtained for K, so KL=16.44±0.06. We present in
Figure 5 the constraints on mass and distance obtained for

Figure 3. Prior distribution of contributors in H-band flux, lens, ambient star,
companion to source, and companion to lens.

Figure 4. Posterior magnitude distribution of contributors to H-band flux: lens,
ambient star, source companion, and lens companion. The insert shows the
fraction of different flux sources accounting for the measured blended light.
The dominant source is the lens, but companions to the source and the lens
each have a significant expected contribution. Here, they account for 15% of
the measured blended flux.
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OGLE-2014-BLG-0124, via the three different routes summar-
ized in Equations (2)–(4), namely: parallax, constraint on θE,
and measuring the light from the lens. First, we use the mass–
distance relation from θE and OGLE parallax; this gives a poor
constraint on mass and distance of the system. However, the
parallax constraint coming from OGLE combined with Spitzer
is much stronger (drawn in pink). The gray squares indicate the
two solutions for u0>0 and u0<0 presented by (Udalski
et al. 2015), combining the accurate ground-space parallax with
the mass–distance relation from θE (blue band). The latter
constraint is quite weak due to the absence of caustic crossings
in the source trajectory, with the consequent uncertain fitted
value of t*.

Our solution, plotted as a black square, relies on well
determined parameters from adaptive optics measurements and
Spitzer parallax and is in good agreement with the loose
θEconstraint. The lens star is an ML=0.90±0.05Me at a
distance of DL=3.5±0.2kpc. The microlensing fit gives
two solutions, for u0>0 and u0<0. The parallax is
nevertheless very close, as we get ΠE=0.148±0.0064 and
ΠE=0.146±0.006, which give two mass–distance relations
that are overlapping. The crossing of these constraints with the
mass–distance relation coming from the detection of the lens
gives the same solution for the lens mass. At this mass, the lens
star would be a typical mid-late type main sequence star in the
disk. Age constraints are weak, but most compatible with a
typical age for disk stars, in the range ∼4–7Gyr, assuming
solar metallicity. Using the lens mass ML, distance DL, and the
parallax ΠE we can recalculate that ΘE(calc)=1.03±0.06
mas, corresponding to 3.69±0.21 au. We then use mass ratios
and projected separation presented by Udalski et al. (2015) for
the u0>0 and u0<0 cases. The two solutions for the physical
parameters are very close (mutually consistent within error-
bars), so we conclude that Mp=0.65±0.044MJupiter at
3.48±0.22au.

This study shows the power of high angular resolution
observations for constraining the host star properties in

planetary microlensing events. It is also a cautionary tale
showing that it is important to carefully estimate the potential
contribution of source and lens companions that may
potentially bias the inferred host properties if they are not
accounted for. We note that for fainter lenses, these contribu-
tions will be more dramatic, like the case of MOA-2016-BLG-
227 (Koshimoto et al. 2017b); a dedicated study will have to be
performed in the framework of Euclid and WFIRST. Not
accounting for these potential companions might lead to a bias
toward higher inferred lens masses. In this case, because the
lens star is bright, doing so would have resulted in a host mass
∼0.02Me larger. This will become even more important in the
case of fainter source and lens stars.
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