Rewilding: an Australian perspective

2

1

3 Abstract

4 Rewilding is increasingly recognised as a conservation tool worldwide, but rewilding is often context 5 specific which inhibits broad application of initiatives from one area to another. Rewilding in 6 Australia seeks to enhance ecosystem function and promote self-sustaining ecosystems. But an 7 absence of large-bodied native herbivores means that trophic rewilding in mainland Australia has largely focused on the restoration of functions provided by apex predators and small mammal 8 9 populations. Because of the pervasive influence of introduced mesopredators, predator-proof fences 10 and the establishment of populations on offshore islands (free of introduced predators) are often a necessary step to ensure rewilding success in the short term. This sets Australian rewilding apart 11 from most jurisdictions, and provides insights that are relevant on a global scale, but presents 12 challenges to restoring function to broader landscapes. Passive rewilding is of limited utility in the 13 14 arid zone. Although it may be more applicable in mesic coastal areas to increase habitat extent and 15 quality, it will still likely be necessary to undertake active management. Because much of Australia's population lives in urban areas, future rewilding efforts must include urban areas to maximise 16 17 effectiveness, and rewilding is thus not synonymous with remote wilderness and can occur over 18 multiple scales. Rewilding efforts must recognise the influence of humans on other species and 19 benefit both nature and humans. Rewilding in Australia requires the development of a shared vision 20 and proof-of-concept projects to demonstrate the benefits. This vision should avoid the re-badging 21 of existing conservation activities as rewilding, which could potentially confuse and undermine the 22 future success of rewilding programs. Like in other parts of the world, rewilding should be viewed as 23 an important tool to further conservation goals in Australia.

25 Rewilding: popular, but contested

26	The undeniable success of rewilding in capturing the public imagination has been based upon its
27	reframing of conservation from a negative (look what we're losing) to a positive (look at what we
28	can achieve) activity (Monbiot 2013). The appeal of rewilding to the public helps explain why several
29	non-governmental organisations (NGOs) identify as being active in rewilding. Examples include
30	Australian Wildlife Conservancy, Greening Australia, Conservation Volunteers Australia and WWF
31	(vis its support for Rewilding Europe). Governments too are embracing rewilding: Rewilding Europe,
32	for instance, is supported financially by the European Commission, while in Australia the New South
33	Wales, South Australian and Commonwealth Governments all either practice, or are intending to
34	practice, different forms of rewilding.
35	
36	Since gaining prominence as a conservation ethos, there is a growing consensus that rewilding
37	should focus on restoring ecosystem processes and species interactions, in order to promote
38	complexity and self-sustaining ecosystems (Fernández et al. 2017; Pettorelli et al. 2018), although a
39	number of definitions have been described (Jørgensen 2015; Pettorelli et al. 2018). 'Trophic
40	rewilding' (Svenning et al. 2016b) usually refers to environmental change driven by strongly
41	interacting species (sensu Soulé et al. 2003). Rewilding can therefore include restoration of
42	predatory interactions that trigger trophic cascades ultimately affecting vegetation (as per Ripple &
43	Beschta 2007), but could also encompass restoration of the ecological functions of ecosystem
44	engineers like beavers (Castor spp.) (Law et al. 2016) and bilbies (Macrotis lagotis) (James et al.
45	2009), large-bodied herbivores (Ripple et al. 2015), seed-dispersers (Griffiths et al. 2011) and
46	granivores (Fricke et al. 2018; Mills & Letnic 2018). In contrast, 'passive rewilding' is where
47	the second state of the se

- 47 vegetation encroachment, such as via the abandonment of European pastoral land, drives changes in
- 48 fauna and flora species composition and biodiversity (Pereira & Navarro 2015; Regos et al. 2016).
- 49

50	Rewilding can therefore mean different things in different places (Seddon et al. 2014) and the lack of
51	a fixed definition (Jørgensen 2015) makes setting goals and evaluating success difficult (Nogués-
52	Bravo et al. 2016). Questions exist as to what ecological state, if any, rewilding efforts should seek to
53	replicate (Corlett 2016) and there is a lack of empirical evidence to support rewilding (Nogués-Bravo
54	et al. 2016; Svenning et al. 2016b). Trophic rewilding has been criticised as distracting from more
55	urgent conservation issues (Rubenstein & Rubenstein 2016) while others argue that rewilding can
56	help reverse the decline of biodiversity and ecosystem function in a human-dominated world
57	(Svenning et al. 2016a). There are doubts as to whether rewilding is relevant to the deliberate
58	introduction of non-native species outside their range as part of conservation efforts for that species
59	(Bradshaw et al. 2006), while some suggestions to introduce ecological surrogates have attracted
60	controversy (Donlan 2005).
61	
62	In Australia, rewilding initiatives are gaining prominence and support from NGO's and governments.
63	This support stems from the fact that threats to biodiversity are increasing (Watson et al. 2016;
64	Cresswell & Murphy 2017) and the need for action is urgent. Novel approaches are needed to
65	reverse the decline and extinction of species, and rewilding may complement other conservation
66	initiatives. However, there remain several hurdles for rewilding to be used more broadly, and
67	successfully, in Australia. Here we discuss how rewilding experiences and approaches in other
68	jurisdictions around the world are relevant to Australia. In doing so, we compare and contrast
69	junisaletions around the world are relevant to Australia. In doing so, we compare and contrast
05	Australia with other parts of the world, make suggestions as to future rewilding directions in
70	
	Australia with other parts of the world, make suggestions as to future rewilding directions in

73 Trophic rewilding in Australia—opportunites and limitations

- 74 Restoring long established predator populations that have experienced range contractions may play
- 75 a particularly important role in Australian rewilding. Top-down control by dingoes (Canis dingo,

76	mainland Australia's largest terrestrial carnivore), for instance, is a potentially cost-effective
77	mechanism to suppress or alter the behaviour of recently introduced invasive mesopredators such
78	as the red fox (Vulpes vulpes) and/or feral cat (Felis catus) (Brook et al. 2012; Letnic et al. 2012). This
79	may in turn enable improved coexistence of native and non-native species (Wallach et al. 2015).
80	Control of overabundant small or medium-bodied native and invasive herbivores may also be
81	achieved through top-down control (Letnic et al. 2012; Morris & Letnic 2017), which may lead to
82	positive economic outcomes for primary producers in some circumstances (Prowse et al. 2014).
83	Similarly, the reintroduction of Tasmanian devils (Sarcophilus harrisii) to mainland Australia may
84	lower red fox and feral cat abundance, influence trophic cascades and benefit small mammals
85	(Hollings et al. 2014, 2016) though such effects may not apply universally (Hunter et al. 2015).
86	
87	Increases in large carnivore populations in Europe, including outside of protected areas (Chapron et
88	al. 2014), has raised concern that there is insufficient space for large predators and humans to
89	coexist (Rubenstein & Rubenstein 2016). However, mainland Australia is sparsely populated and
90	Tasmanian devils and humans successfully coexist in Tasmania (where the species is extant). Other
91	objections to restoring predators relate to issues of human safety and whether large carnivores can
92	coexist with livestock (Fleming et al. 2012). Human injuries from Tasmanian devils or dingoes are
93	extremely rare, but legitimate concerns do exist in farming communities about potential impacts of
94	dingoes and devils on livestock (particularly sheep) (Fleming et al. 2012; Jones et al. 2003). Thus, as
95	in parts of Europe where lethal culling of wolves (Canis lupus) is currently being considered, societal
96	values will be the primary determinant to the success of trophic rewilding of predators in Australia.
97	
98	Australian 'critical weight range' (CWR) mammals—ground-dwelling species between 35 grams and
00	E E kilograme most vulnerable to decline and extinction (Burbidge & McKenzie 1000) are

- 99 5.5 kilograms most vulnerable to decline and extinction (Burbidge & McKenzie 1989)—are
- 100 particularly susceptible to predation by red foxes and feral cats because they lack appropriate anti-
- 101 predator responses (Moseby et al. 2016). Since European colonisation, a variety of functions and

102	processes have been reduced or eliminated in Australian ecosystems due to extinctions and range
103	contractions of mammals (Bilney et al. 2010; Fleming et al. 2014) (Fig. 1). This makes mammals,
104	including the CWR guild, a priority for Australian conservation efforts, but a lack of effective control
105	of red foxes and feral cats, in combination with habitat loss and altered fire regimes, remains the key
106	challenge to trophic rewilding of small mammals (Bilney et al. 2010; Woinarski et al. 2015).
107	
108	In Europe, Asia and North America reintroducing large bodied (>100kg) herbivores (or surrogates) is
109	a key part of trophic rewilding, but Australia lacks comparable native herbivores. Australia possesses
110	horses (Equus caballus), donkeys (E. asinus), water buffalo (Bubalus bubalis) and camels (Camelus
111	dromedarius), but they are all introduced and have impacts on ecosystems that are generally
112	perceived to be negative. Ecological control of these species cannot currently be achieved in
113	Australia because of the lack of native predator species of sufficient size to exert top-down control
114	on large herbivore populations (Forsyth et al. In press). Introducing extant surrogates of long-extinct
115	predators is, in the short term at least, unrealistic in Australia due to intolerance and persecution of
116	existing predators. The broader effects of such reintroductions on other species are also unknown.
117	
118	Passive rewilding in Australia – opportunites and limitations
119	Passive rewilding (defined broadly as 'letting nature take its course') in Europe has yielded
120	biodiversity benefits (Pereira & Navarro 2015), and benefits would likely accrue from passive
121	rewilding in parts of Australia. Australia has lost approximately 40% of its forest cover, with much of
122	the rest highly fragmented (Bradshaw 2012) and/or previously logged (Hobday & McDonald 2014).
123	Passive rewilding would increase the area of forest cover and, within forests, the density of large, old
124	trees and the biodiversity values they support (Lindenmayer et al. 2014). The loss of hollow-bearing

125 trees is a threat to many forest-dependent mammals (Woinarski et al. 2014) and birds (BirdLife

126 Australia & Australian Government Department of Environment 2015), because Australia possesses

127 a disproportionate number of species that use hollows (Gibbons & Lindenmayer 2002).

128

129	However, complex interactions between forest disturbance (e.g. logging, fragmentation), the
130	invasive plants-Lantana camara and despotic native bell-miners (Manorina melanophrys and M.
131	melanocephala) has resulted in a phenomenon called 'bell-miner associated dieback' affecting
132	localised but extensive areas of eucalypt forest (Silver & Carnegie 2017) and woodlands (REF).
133	Recovery of affected areas will require management intervention, limiting the application of passive
134	rewilding. Additionally, many forest ecosystems in Australia are fire prone, and historic Aboriginal
135	fire management is likely to have influenced the development of forests. Contemporary fire
136	management following restoration of forest cover may be necessary to protect fire-sensitive
137	ecosystems such as rainforests, or for hazard reduction purposes. This is also likely to be a
138	management concern in passively regenerating fire-prone Mediterranean vegetation types in
139	southern Europe. As climate change alters the profitability of arid-zone pastoral enterprises, some of
140	these lands may become available for inclusion in the conservation estate. However, passive
141	rewilding in Australia's arid interior, which retains extensive areas of intact native vegetation, may
142	fail to stop declines in biodiversity if introduced mesopredators remain present or if introduced
143	weeds such as Buffel Grass (Cenchrus ciliaris) continue to proliferate and alter fire regimes. Efforts to
144	restore populations of native fauna will therefore likely need (at least initially) to be accompanied by
145	some form of pest and weed control to help shift the ecosystem back into a preferred state.
146	
147	Rewilding in oceans requires a different approach to terrestrial systems, as the ecology and

- 148 management tools differ in marine ecosystems. Restoring ecosystem function is no less urgent in
- 149 marine ecosystems as trophic cascades commonly occur (Estes et al. 2011) and predatory fish
- 150 biomass has been extensively depleted in the world's oceans (Christensen et al. 2014). The recovery

Commented [MJ1]: Add Thomson JR, Maron M, Grey MJ et al (2015) Avifaunal disarray: quantifying models of the occurrence and ecological effects of a despotic bird species. Diversity and Distributions 21(4):451-464

151	of large predatory fish can occur with minimal human intervention, through the creation of marine
152	protected areas (MPAs), but to maximise effectiveness MPAs must be large, no-take, long-
153	established, well enforced and isolated by deep water or sand (Edgar et al. 2014; Edgar et al. 2018).
154	In marine systems, widespread loss of habitat forming species such as macrophytes, oysters and
155	corals and the facilitation cascades they support simplifies ecosystems and threatens biodiversity
156	conservation, and their restoration may thus be construed as rewilding (Thomsen et al. 2010;
157	Marzinelli et al. 2016). The restoration of such structural elements need not be confined to MPAs,
158	but is likely to be promoted within them via restrictions on fishing and physical damage from human
159	infrastructure.
160	
161	Fenced enclosures: rewilding or not?
162	Like many other of the Earth's islands Australia's fauna has been devastated by the introduction of
162 163	Like many other of the Earth's islands Australia's fauna has been devastated by the introduction of novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences
163	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences
163 164	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of
163 164 165	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of red foxes and feral cats on predator-naïve CWR mammals, as distinct from fencing in Africa that is
163 164 165 166	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of red foxes and feral cats on predator-naïve CWR mammals, as distinct from fencing in Africa that is used to separate humans and large predators, or to maintain predator density in rewilding efforts
163 164 165 166 167	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of red foxes and feral cats on predator-naïve CWR mammals, as distinct from fencing in Africa that is used to separate humans and large predators, or to maintain predator density in rewilding efforts (Bull et al. 2018). Predator-proof exclosures have also been used successfully in New Zealand to
163 164 165 166 167 168	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of red foxes and feral cats on predator-naïve CWR mammals, as distinct from fencing in Africa that is used to separate humans and large predators, or to maintain predator density in rewilding efforts (Bull et al. 2018). Predator-proof exclosures have also been used successfully in New Zealand to provide havens for birds, reptiles and invertebrates that are threatened by introduced predators
163 164 165 166 167 168 169	novel predators due its long history of evolutionary isolation (Medina et al. 2011). The use of fences to exclude introduced mesopredators in Australia has been a response to catastrophic impacts of red foxes and feral cats on predator-naïve CWR mammals, as distinct from fencing in Africa that is used to separate humans and large predators, or to maintain predator density in rewilding efforts (Bull et al. 2018). Predator-proof exclosures have also been used successfully in New Zealand to provide havens for birds, reptiles and invertebrates that are threatened by introduced predators

- 173 large (123km² Arid Recovery) and a 2,000km² exclosure is proposed for Yorke Peninsula in South
- 174 Australia. Recovery of small mammal populations influences fungi (Clarke et al. 2015) and termite
- assemblages (Coggan et al. 2016), soil properties (James et al. 2009), seed dispersal and shrub

Commented [MJ2]: Remove the yellow highlighting?

176	recruitment (Mills et al. 2017). In this regard, fenced exclosures do achieve rewilding objectives, at
177	least for a subset of functions driven by smaller species. Only the largest exclosures are sufficient to
178	achieve rewilding of devils and dingoes (Moseby et al. 2018), but and these exclosures would need
179	to be much larger to host self-sustaining populations or allow multiple groups or packs of these
180	predators

182	However, fences are ultimately inconsistent with the goal of reinstating self-sustaining ecosystems
183	due to the maintenance requirements of fences, the need for managed migration between
184	metapopulations, and the disruptions to ecosystem processes and habitat degradation that may
185	arise with growing animal populations contained within fences (Hayward & Kerley 2009). Without
186	the reintroduction of native predators, fenced exclosures also exacerbate the problem of prey
187	naïveté (Moseby et al. 2016). Fences may therefore be best viewed as a starting point on a rewilding
188	continuum and a stepping stone towards landscape-scale rewilding—achieved in theory through a
189	combination of restoration of native predator populations, the use of livestock guardian animals,
190	shifts in pastoral practices, financial incentives to farmers (Van Eeden et al. 2017), and novel means
191	such as promoting conditions for native prey species to co-evolve with introduced predators and
192	learn to avoid them (Moseby et al. 2016; West et al. 2017). Concurrent efforts to improve outcomes
193	on a landscape-scale are necessary in order to restore self-sustaining ecosystems, and to avoid a
194	future where native species are confined to small fenced exclosures and their functions lost to the
195	broader landscape.

196

197 Assisted colonisation

- 198 Enthusiasm in the Australian NGO and academic sectors for Tasmanian devil reintroductions to the
- 199 Australian mainland (Ritchie et al. 2012) (Supporting Information) highlights support for

200	translocations of native species to improve ecosystem function. In the case of the devil,
201	translocation to mainland Australia would reintroduce a species that became extinct ~3,000 years
202	ago (White et al. 2018). But in the absence of a demonstrated broader functional role, assisted
203	colonisation of non-native animals as a global conservation tool (Bradshaw et al. 2006) does not fit
204	rewilding goals. For example, proposals by the Australian Rhino Project
205	(http://theaustralianrhinoproject.org/) to bring black (Diceros bicornis) and white rhinos to Australia
206	have not focused on the restoration of ecosystem processes, but rather to assist conservation efforts
207	for those species. De-extinction also typically focuses on resurrecting lost species rather than aiming
208	to restore ecosystem function and is therefore not consistent with the aims of rewilding.
209	
210	People and rewilding—lessons from around the world
211	One criticism of rewilding has been a perceived aim of excluding human involvement with, and
212	influence upon, nature and ecosystems (Jørgensen 2015), and some rewilding efforts in Europe do
213	seek to reduce human influence on modified agricultural landscapes (Ceauşu et al. 2015; Pereira &
214	Navarro 2015). But benefits can accrue to humans from rewilding. These may accrue directly, such
215	as income derived from wildlife tourism and dingoes increasing profitability of farming in some
216	circumstances (Prowse et al. 2014; Johnson & Wallach 2016), or indirectly via influencing ecosystem
217	services. For example, restoring forest ecosystems in catchments could reduce flood risk and provide
218	clean water, while reintroducing digging animals to urban areas could assist in pest control and
219	water infiltration in gardens. In this context, rewilding shares similarities with the concept of 'nature-
220	based solutions' that aim to address a societal problem in ways that deliver both biodiversity and
220 221	based solutions' that aim to address a societal problem in ways that deliver both biodiversity and human benefits (Nesshöver et al. 2017) (Fig. 3).

The importance of community involvement, particularly in trophic rewilding, cannot be overstated.
Predator conservation efforts are likely to be initially opposed by some sections of the community,

225	and social impacts of rewilding should be assessed and made clear (Pettorelli et al. 2018). Predator-
226	friendly farming, designed to integrate socio-economic and environmental outcomes (Johnson $\&$
227	Wallach 2016) (Fig. 3) is used in North America and Africa and has potential to overcome social
228	barriers to predators in Australia too.

230 Globally, rewilding is synonymous with large, near-continental scale projects. Yet in Australia, 231 approximately 70% of the human population live in cities and 85% in urban areas. Urban rewilding is 232 therefore a high priority in Australia to demonstrate tangible outcomes and increase engagement 233 with nature (Jepson 2016). Programs suitable for urban areas, such as reintroductions of pollinators 234 or small mammals readily accepted by humans, should occur alongside initiatives in rural landscapes 235 with the dual aim of increasing ecosystem function and engaging the public in conservation (Watson 236 & Watson 2015). Rewilding must therefore occur at multiple spatial scales (Fig. 4) and rewilding 237 should seek to increase non-human autonomy, rather than spatially separate humans and non-238 humans (Prior & Ward 2016). But, because of human dominance of urban areas, rewilding efforts 239 will necessarily become a compromise between restoring ecosystem function and raising public awareness through species tolerated by humans. There will also be a need to target the key threats 240 241 that led to the loss of species in the first place, and this may not be surmountable in some cases. 242

243	Location is an important consideration in rewilding because some areas and landscapes will be more
244	suitable than others—both ecologically and socially (Supporting Information). Identifying priority
245	rewilding areas has been proposed for Europe in the form of a network of experimental rewilding
246	sites (Jepson 2016), which could offer a model for Australia. Locating rewilding initiatives where they
247	have a good chance of success, (e.g. through an accepting community or an appropriately designed
248	project), and where economic benefits can accrue (e.g. through tourism and enhanced agricultural
249	productivity) may help provide proof of concept and raise the profile of rewilding. In addition,

250	success may be more readily achieved in areas where there are ongoing conservation programs run
251	by local communities. Indigenous owned and managed land in Australia potentially offer great
252	potential in this regard, especially where there are established conservation programs or voluntary
253	conservation agreements such as Indigenous Protected Areas. As an added benefit, Indigenous land
254	is extensive and covers 52% of the country, and around three quarters of Australia's terrestrial or
255	freshwater vertebrate species listed as threatened under national legislation occur on these lands
256	(Renwick et al. 2017).

258 Embracing change: restoring processes rather than historic states

259 Rewilding's focus on ecological processes means that success should be measured not by a comparison to an ideal state, but rather by the degree to which management actions result in the 260 261 restoration of desired processes. The positive relationship between biodiversity and ecosystem 262 function (Cardinale et al. 2012) suggest that this may be a viable approach to maintaining 263 biodiversity, while recognising that ecosystems are dynamic and therefore are unlikely to possess a 264 single historic state (Rohwer & Marris 2016). Recent evidence (Law et al. 2016; Law et al. 2017) from 265 beaver (Castor fiber) reintroductions to Scotland supports predictions (Stringer & Gaywood 2016) 266 that ecosystem processes manipulated by beavers would increase biodiversity. In Australia, the restoration of pre-European landscapes and species assemblages is most cases unachievable due to 267 268 extinctions and the difficulties associated with removing invasive species. Rewilding should therefore 269 consider contemporary patterns and processes, including widespread human settlement, and the 270 'new nature' whereby human activities influence abundances and distributions of species.

271

272 Policy implications

273	Broadly, current conservation policy settings in Australia tend to focus on species-specific or
274	ecological-community specific threat reduction, targeting species and ecosystems listed as
275	threatened via a nomination process. Two projects, Gondwana Link and the Great Eastern Ranges
276	initiative, seek to enhance connectivity on the landscape-scale, and connectivity is often an aim of
277	conservation strategies. Strategies also regularly recognise the need to build human appreciation of
278	nature. The National Reserve System seeks to achieve comprehensive, adequate and representative
279	protection of ecosystems at a bioregional level.

281	Rewilding should not replace these approaches, but could be complementary and assist in meeting
282	goals. For example, explicitly considering maintenance of identified ecosystem processes could

283 inform reserve selection and better identify priorities for private land conservation. Some

agricultural policy settings—such as lethal control of dingoes and land clearing—are contradictory to

285 both conservation and rewilding goals and will require policy shifts to overcome.

286

287 Where to for rewilding in Australia?

288	Rewilding in Australia presents some differences from rewilding in many countries on continental
289	landmasses because it's biota has been profoundly impacted by introduced predators due to their
290	long history of evolutionary isolation. However, there are lessons from Australia that can be useful
291	elsewhere. For example, the focus on reconstructing all components of food webs, starting with
292	small consumers such as small mammals and birds is under-developed globally. Predator exclosures
293	are used to good effect in Australia and also in New Zealand and may have wider potential to
294	facilitate rewilding by promoting persistence of smaller species impacted by introduced predators.

296	The development of a shared vision and goals for rewilding in Australia would provide more clarity
297	of purpose, a guiding policy strategy, and would better allow future evaluation of success. This
298	would also give clear signals to policy makers and funding bodies as to what constitutes rewilding
299	and help avoid rewilding becoming merely a rehash of existing conservation activities which risks
300	eroding public interest. For example, the term rewilding is used in the context of fairy bell-flower
301	(Homoranthus spp.) conservation to mean reintroductions following seed collections, with no
302	reference to broader ecosystem benefits (Department of the Environment and Energy 2017). A
303	distinction exists between translocations of species for the conservation of that species (not
304	rewilding) and translocations of species to perform an identified ecological role (rewilding) (Seddon
305	et al. 2014) (Supporting Information).

307	Developing projects that seek to demonstrate proof of concept and which integrate communities
308	and research into rewilding actions (Supporting Information) would help answer international calls
309	for more evidence (Nogués-Bravo et al. 2016; Svenning et al. 2016a). Initiating projects in urban
310	areas designed to deliver outcomes for humans and nature, as well as high-profile, achievable
311	landscape-scale rewilding zones incorporating focal rewilding targets are clear priorities. Due to the
312	differences between arid, Mediterranean and mesic Australia, rewilding approaches will need to be
313	tailored to location. Passive rewilding may play a greater role in coastal areas, but a complete
314	absence of management is unlikely to be possible. However, the important ecological role of CWR
315	mammals in Australian ecosystems, and their widespread declines (Fig. 1), means restoration of
316	their populations remains a high priority in both mesic and arid Australia. Similarly, restoring the
317	ecological functions of bird pollinators that have declined due to predation by mammalian predators
318	has been identified as a priority in New Zealand (Anderson et al. 2011). To our knowledge, few
319	rewilding efforts in other jurisdictions around the world have focussed on the restoring the
320	ecological functions of small consumers.

322	Engaging communities should be a fundamental component of rewilding efforts. This could be aided
323	by focussing initially on species and functions most likely to be accepted by humans to help develop
324	societal support before tackling more controversial activities such as large predators. However,
325	trophic rewilding is a clear goal in Australia, and a concerted effort is needed to shift current
326	attitudes—and government policy—from one of predator persecution to one of tolerance. Bold
327	actions, such as trial reintroductions of Tasmanian devils to mainland Australia (Supporting
328	Information), is broadly supported by the scientific community but has yet to gain political support.
329	In areas of high ecological value, such as national parks, caution is warranted. But in highly modified
330	areas, such as cities, a case can be made that more ambitious policy settings should be pursued to
331	accelerate rewilding efforts. For example, there are large parks in many Australian cities where small
332	mammals could be readily reintroduced and passive rewilding promoted.
333	

The popular appeal of rewilding means it should not be lightly dismissed as to its role in conservation. In order for rewilding to be an effective addition to the conservation toolkit, it is important that rewilding is not used to rebrand existing activities due to it being *à la mode*. In contrast, provided the term rewilding is restricted to those conservation actions that fit the definition, it could play an important role in increasing the profile of conservation and wild nature

339 more generally.

340 Figure legends

341

341	
342	Figure 1: Rewilding may help reverse the loss of ecosystem function in Australia that has stemmed
343	from population declines and species extinctions of digging animals and predators. Since European
344	settlement of Australia, 23 species of ground-dwelling critical weight range mammals have gone
345	extinct and many others have experienced severe range contractions. Predation by red foxes and
346	feral cats, altered fire regimes and habitat loss are key drivers of declines (Bilney et al. 2010;
347	Woinarski et al. 2015). Box A: impacts of reduced digging on ecosystem function; Box B:
348	consequences of the loss of ecosystem function (Martin 2003; James et al. 2009; Bilney et al. 2010;
349	Fleming et al. 2014; Clarke et al. 2015; Hayward et al. 2016; Mills et al. 2017).
350	
351	Tasmanian devils became extinct on the Australian mainland around 3,000 years ago (Brown 2006).
221	
352	They have undergone recent sharp disease-driven declines that have reduced the population by up
353	to 95% in some areas. Dingoes (and their 'wild dog' hybrids) are persecuted to reduce the predation
354	risk to farm animals, particularly sheep, and excluded from south-eastern Australia via the 'dog
355	fence'. Box C: impacts of reduced predation on ecosystem function; Box D: consequences of the loss
356	of ecosystem function (Letnic et al. 2012; Hollings et al. 2013; Prowse et al. 2014; Hollings et al.
357	2015; Hollings et al. 2016; Morris & Letnic 2017; Rees et al. 2017).
358	
359	Figure 2: Fenced areas, such as this 123km ² exclosure at Arid Recovery, from which feral predators
360	like red foxes and feral cats are eradicated achieve some rewilding objectives but are ultimately
361	inconsistent with the broader aims of rewilding (Picture credit: Charlotte Mills).
362	

Figure 3: Rewilding can benefit people and biodiversity: A. Wildlife watching can bring economic gain
for communities, helping establish direct links between nature and human wellbeing. Rewilding

365	Europe actively promotes this through its <i>Rewilding Europe Capital</i> program. B. Dingoes may confer
366	an economic benefit to farmers in the Australian rangelands by reducing grazing pressure from
367	native herbivores, leaving more vegetation for stock. C. Urban owls, including the powerful owl
368	(Ninox strenua) pictured here, may benefit humans and biodiversity via predation on rodents and
369	aggressive birds (Kavanagh 2004). D. Eastern barred bandicoots (Perameles gunnii) are widespread
370	in Tasmanian gardens. Diggings have positive influences on soil and bandicoots are predators of pest
371	invertebrates such as curl grubs (beetle larvae that may feed on live plant roots). E. Blue-banded
372	bees (Amegilla spp.) perform a specific type of pollination known as buzz pollination. They have
373	been shown to increase tomato yields (Hogendoorn et al. 2006). F. Using storm water runoff to
374	create wetlands in cities, such as this example from Portland, Oregon can provide recreation
375	opportunities and wildlife habitat.

Figure 4: Rewilding is relevant on multiple scales: A. Large-bodied herbivores such as wisent (*Bison bonasus*) exert strong trophic influences over landscape-scales. B. Dam building by beavers (*Castor fiber*), shown here in Sweden, affects tree density, alters flow patterns and influences water tables which influences aquatic biodiversity at regional and local scales. C. Pygmy possums (*Cercartetus spp.*) are small nocturnal marsupials that eat nectar, pollen and insects and have home ranges of under 1 hectare.

Reduced digging by small mammals like greater bilbies (Macrotis lagotis). Picture credit: Mike Letnic

O BARRIER FENCE A 0 Reduced scavenging Altered behaviour and / or increased abundance of native herbivores Reduced water infiltration Altered dispersal of fungi and seeds Reduced soil aeration Reduction of safe sites for germination Altered red fox and feral cat interactions and Increased populations of red fox and Reduced leaf litter breakdown behaviour feral cat В D ncreased blowfly strike on stock Increased grazing pressure Decreased soil moisture Altered soil formation Altered vegetation communities Loss of pasture for stock Reduced soil quality Altered vegetation and fungi communities Lower grass seed production lower abundance of granivorous birds Reduced forest health and plant Lowered biodiversity Altered soil nutrient patterns Declines and extinctions of CWR mammals vigou Altered fire regimes Toxoplasma gondii transmission from cats to sheep

Reduced predation by Tasmanian devils and dingoes. Picture

credits: Menna Jones; Thomas Newsome

384 Figure 1: Rewilding may help reverse the loss of ecosystem function in Australia that has stemmed 385 from population declines and species extinctions of digging animals and predators. Since European settlement of Australia, 23 species of ground-dwelling critical weight range mammals have gone 386 387 extinct and many others have experienced severe range contractions. Predation by red foxes and feral cats, altered fire regimes and habitat loss are key drivers of declines (Bilney et al. 2010; 388 389 Woinarski et al. 2015). Box A: impacts of reduced digging on ecosystem function; Box B: 390 consequences of the loss of ecosystem function (Martin 2003; James et al. 2009; Bilney et al. 2010; Fleming et al. 2014; Clarke et al. 2015; Hayward et al. 2016; Mills et al. 2017). 391 392 Tasmanian devils became extinct on the Australian mainland around 3,000 years ago (Brown 2006). 393 They have undergone recent sharp disease-driven declines that have reduced the population by up to 95% in some areas. Dingoes (and their 'wild dog' hybrids) are persecuted to reduce the predation 394 395 risk to farm animals, particularly sheep, and excluded from south-eastern Australia via the 'dog

396 fence'. Box C: impacts of reduced predation on ecosystem function; Box D: consequences of the loss

of ecosystem function (Letnic et al. 2012; Hollings et al. 2013; Prowse et al. 2014; Hollings et al.

398 2015; Hollings et al. 2016; Morris & Letnic 2017; Rees et al. 2017).

407 Figure 2: Fenced areas, such as this 123km² exclosure at Arid Recovery, from which feral predators

408 like red foxes and feral cats are eradicated achieve some rewilding objectives but are ultimately

409 inconsistent with the broader aims of rewilding (Picture credit: Charlotte Mills).

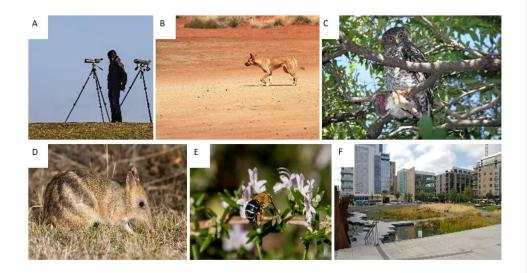


Figure 3: Rewilding can benefit people and biodiversity: A. Wildlife watching can bring economic gain 410 411 for communities, helping establish direct links between nature and human wellbeing. Rewilding 412 Europe actively promotes this through its Rewilding Europe Capital program. B. Dingoes may confer an economic benefit to farmers in the Australian rangelands by reducing grazing pressure from 413 414 native herbivores, leaving more vegetation for stock. C. Urban owls, including the powerful owl (Ninox strenua) pictured here, may benefit humans and biodiversity via predation on rodents and 415 416 aggressive birds (Kavanagh 2004). D. Eastern barred bandicoots (Perameles gunii) are widespread in 417 Tasmanian gardens. Diggings have positive influences on soil and bandicoots are predators of pest invertebrates such as curl grubs (beetle larvae that may feed on live plant roots). E. Blue-banded 418 419 bees (Amegilla spp.) perform a specific type of pollination known as buzz pollination. They have been shown to increase tomato yields (Hogendoorn et al. 2006). F. Using storm water runoff to 420 421 create wetlands in cities, such as this example from Portland, Oregon can provide recreation 422 opportunities and wildlife habitat.

424	Figure 4: Rewilding is relevant on multiple scales: A. Large-bodied herbivores such as wisent (Bison
425	bonasus) exert strong trophic influences over landscape-scales. B. Dam building by beavers (Castor
426	fiber), shown here in Sweden, affects tree density, alters flow patterns and influences water tables
427	which influences aquatic biodiversity at regional and local scales. C. Pygmy possums (Cercartetus
428	spp.) are small nocturnal marsupials that eat nectar, pollen and insects and have home ranges of
429	under 1 hectare.

431 Supporting Information

- 432 Participants (Appendix S1), Methods (Appendix S2), Results (Appendix S3) and a XXX translation of
- 433 the article (Appendix S3) are available online. The authors are solely responsible for the content and
- 434 functionality of these materials. Queries (other than absence of the material) should be directed to
- 435 the corresponding author.

437 Literature cited

438	Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J. 2011. Cascading Effects of Bird Functional
439	Extinction Reduce Pollination and Plant Density. Science 331 :1068-1071.
440	Bilney RJ, Cooke R, White JG. 2010. Underestimated and severe: Small mammal decline from the
441	forests of south-eastern Australia since European settlement, as revealed by a top-order
442	predator. Biological Conservation 143:52-59.
443	BirdLife Australia, Australian Government Department of Environment. 2015. The State of Australia's
444	Birds 2015: Headline trends for terrestrial birds., Available from
445	http://www.birdlife.org.au/documents/SOAB-2015.pdf.
446	Bradshaw CJ. 2012. Little left to lose: deforestation and forest degradation in Australia since
447	European colonization. Journal of plant ecology 5:109-120.
448	Bradshaw CJA, Isagi Y, Kaneko S, Bowman DMJS, Brook BW. 2006. Conservation Value of Non-Native
449	Banteng in Northern Australia. Conservation Biology 20 :1306-1311.
450	Brook LA, Johnson CN, Ritchie EG. 2012. Effects of predator control on behaviour of an apex
451	predator and indirect consequences for mesopredator suppression. Journal of Applied
452	Ecology 49 :1278-1286.
453	Brown OJF. 2006. Tasmanian devil (Sarcophilus harrisii) extinction on the Australian mainland in the
454	mid-Holocene: multicausality and ENSO intensification. Alcheringa: An Australasian Journal
455	of Palaeontology 30 :49-57.
456	Bull JW, Ejrnæs R, Macdonald DW, Svenning JC, Sandom CJ. 2018. Fences can support restoration of
457	human-dominated ecosystems when rewilding with large predators. Restoration Ecology 0.
458	Burbidge AA, McKenzie NL. 1989. Patterns in the modern decline of western Australia's vertebrate
459	fauna: Causes and conservation implications. Biological Conservation 50 :143-198.
460	Cardinale BJ, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486 :59-67.
461	Ceausu S, Hofmann M, Navarro LM, Carver S, Verburg PH, Pereira HM. 2015. Mapping opportunities
462	and challenges for rewilding in Europe. Conservation Biology 29 :1017-1027.
463	Chapron G, et al. 2014. Recovery of large carnivores in Europe's modern human-dominated
464	landscapes. Science 346 :1517.
465	Christensen V, Coll M, Piroddi C, Steenbeek J, Buszowski J, Pauly D. 2014. A century of fish biomass
466	decline in the ocean. Marine Ecology Progress Series 512 :155-166.
467	Clarke LJ, Weyrich LS, Cooper A. 2015. Reintroduction of locally extinct vertebrates impacts arid soil
468	fungal communities. Molecular Ecology 24 :3194-3205.
469	Coggan NV, Hayward MW, Gibb H. 2016. Termite activity and decomposition are influenced by
470	digging mammal reintroductions along an aridity gradient. Journal of Arid Environments
471	133 :85-93.
472	Corlett RT. 2016. Restoration, Reintroduction, and Rewilding in a Changing World. Trends in Ecology
473	& Evolution 31 :453-462.
474	Cresswell ID, Murphy HT. 2017. Australia state of the environment 2016: biodiversity, independent
475	report to the Australian Government Minister for the Environment and Energy Canberra.
476	Available from https://soe.environment.gov.au/sites/g/files/net806/f/soe2016-biodiversity-
477	launch-version2-24feb17.pdf?v=1488792935.
478	Department of the Environment and Energy. 2017. Threatened Species Prospectus, Canberra.
479	Available from http://www.environment.gov.au/system/files/resources/86e2d7df-6523-
480	44b4-bb7a-692576bd0d67/files/threatened-species-prospectus.pdf.
481	Donlan J. 2005. Re-wilding North America. Nature 436 :913-914.
482	Edgar GJ, et al. 2014. Global conservation outcomes depend on marine protected areas with five key
482 483	features. Nature 506 :216-220.
485 484	Edgar GJ, Ward TJ, Stuart-Smith RD. 2018. Rapid declines across Australian fishery stocks indicate
484 485	global sustainability targets will not be achieved without an expanded network of 'no-
	5 / 5 · · · ·
486	fishing' reserves. Aquatic Conservation: Marine and Freshwater Ecosystems 0 .

487 488	Estes JA, et al. 2011. Trophic Downgrading of Planet Earth. Science 333 :301-306. Fernández N, Navarro LM, Pereira HM. 2017. Rewilding: A Call for Boosting Ecological Complexity in	
489	Conservation. Conservation Letters:n/a-n/a.	
490	Fleming PA, Anderson H, Prendergast AS, Bretz MR, Valentine LE, Hardy GES. 2014. Is the loss of	
491	Australian digging mammals contributing to a deterioration in ecosystem function? Mammal	
492	Review 44 :94-108.	
493	Fleming PJS, Allen BL, Ballard G-A. 2012. Seven considerations about dingoes as biodiversity	
494	engineers: the socioecological niches of dogs in Australia. Australian Mammalogy 34 :119-	
495		
496	Forsyth D, Latham D, Davis N, Caley P, Letnic M, Moloney P, Woodford L, Woolnough A. In press.	
497	Interactions between dingoes and introduced wild ungulates: concepts, evidence and	
498	knowledge gaps. Australian Mammalogy Accepted 30/1/18.	
499	Fricke EC, Tewksbury JJ, Rogers HS. 2018. Defaunation leads to interaction deficits, not interaction	
500	compensation, in an island seed dispersal network. Global Change Biology 24 :e190-e200.	
501	Gibbons P, Lindenmayer DB 2002. Tree hollows and wildlife conservation in Australia. CSIRO,	
502	Collingwood.	
503	Griffiths Christine J, Hansen Dennis M, Jones Carl G, Zuël N, Harris S. 2011. Resurrecting Extinct	
504	Interactions with Extant Substitutes. Current Biology 21 :762-765.	
505	Hayward MW, Kerley GIH. 2009. Fencing for conservation: Restriction of evolutionary potential or a	
506	riposte to threatening processes? Biological Conservation 142 :1-13.	
507	Hayward MW, Ward-Fear G, L'Hotellier F, Herman K, Kabat AP, Gibbons JP. 2016. Could biodiversity	
508	loss have increased Australia's bushfire threat? Animal Conservation 19 :490-497.	
509	Hobday AJ, McDonald J. 2014. Environmental Issues in Australia. Annual Review of Environment and	
510	Resources 39 :1-28.	
511	Hogendoorn K, Gross CL, Sedgley M, Keller MA. 2006. Increased tomato yield through pollination by	
512	native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). Journal of	
513	Economic Entomology 99 :828-833.	
514	Hollings T, Jones M, Mooney N, McCallum H. 2013. Wildlife disease ecology in changing landscapes:	
515	Mesopredator release and toxoplasmosis. International Journal for Parasitology: Parasites	
516	and Wildlife 2 :110-118.	
517	Hollings T, Jones M, Mooney N, McCallum H. 2014. Trophic Cascades Following the Disease-Induced	
518	Decline of an Apex Predator, the Tasmanian Devil. Conservation Biology 28:63-75.	
519	Hollings T, Jones M, Mooney N, McCallum H. 2016. Disease-induced decline of an apex predator	
520	drives invasive dominated states and threatens biodiversity. Ecology 97:394-405.	
521	Hollings T, McCallum H, Kreger K, Mooney N, Jones M. 2015. Relaxation of risk-sensitive behaviour of	
522	prey following disease-induced decline of an apex predator, the Tasmanian devil.	
523	Proceedings of the Royal Society B: Biological Sciences 282.	
524	Hunter DO, Britz T, Jones M, Letnic M. 2015. Reintroduction of Tasmanian devils to mainland	
525	Australia can restore top-down control in ecosystems where dingoes have been extirpated.	
526	Biological Conservation 191 :428-435.	
527	James AI, Eldridge DJ, Hill BM. 2009. Foraging animals create fertile patches in an Australian desert	
528	shrubland. Ecography 32 :723-732.	
529	Jepson P. 2016. A rewilding agenda for Europe: creating a network of experimental reserves.	
530	Ecography 39 :n/a-n/a.	
531	Johnson CN, Wallach AD. 2016. The virtuous circle: predator-friendly farming and ecological	
532	restoration in Australia. Restoration Ecology 24 :821-826.	
533	Jones ME, Oakwood M, Belcher C, Morris K, Murray AJ, Woolley PA, Firestone KB, Johnson B, Burnett	
534	S. 2003. Carnivore concerns: Problems, issues and solutions for conserving Australasia's	
535	marsupial carnivores. Pages 418-430 in Jones ME, Dickman CR, and Archer M, editors.	
536	Predators with pouches: The biology of carnivorous marsupials. CSIRO Publishing,	
537	Melbourne.	
557	menounner	

538 Jørgensen D. 2015. Rethinking rewilding. Geoforum 65:482-488.

- Kavanagh R. 2004. Conserving owls in Sydney's urban bushland: current status and requirements.
 Pages 93-108 in Lunney D, and Burgin S, editors. Urban Wildlife: more than meets the eye.
 Royal Zoological Society of NSW, Mosman, NSW.
- Law A, Gaywood MJ, Jones KC, Ramsay P, Willby NJ. 2017. Using ecosystem engineers as tools in
 habitat restoration and rewilding: beaver and wetlands. Science of The Total Environment
 605–606:1021-1030.
- Law A, McLean F, Willby NJ. 2016. Habitat engineering by beaver benefits aquatic biodiversity and ecosystem processes in agricultural streams. Freshwater Biology **61**:486-499.
- Letnic M, Ritchie EG, Dickman CR. 2012. Top predators as biodiversity regulators: the dingo Canis
 lupus dingo as a case study. Biological Reviews 87:390-413.
- Lindenmayer DB, et al. 2014. New Policies for Old Trees: Averting a Global Crisis in a Keystone
 Ecological Structure. Conservation Letters 7:61-69.
- Martin BG. 2003. The role of small ground-foraging mammals in topsoil health and biodiversity:
 Implications to management and restoration. Ecological Management & Restoration 4:114 119.
- Marzinelli EM, Leong MR, Campbell AH, Steinberg PD, Vergés A. 2016. Does restoration of a habitat forming seaweed restore associated faunal diversity? Restoration Ecology 24:81-90.
- Medina FM, Bonnaud E, Vidal E, Tershy BR, Zavaleta ES, Josh Donlan C, Keitt BS, Corre M, Horwath
 SV, Nogales M. 2011. A global review of the impacts of invasive cats on island endangered
 vertebrates. Global Change Biology 17:3503-3510.
- Mills CH, Gordon CE, Letnic M. 2017. Rewilded mammal assemblages reveal the missing ecological
 functions of granivores. Functional Ecology:1-11.
- Mills CH, Letnic M. 2018. Reversing functional extinction of mammals prompts a rethink of
 paradigms about seed fate in arid Australia. Royal Society Open Science 5.
- Monbiot G 2013. Feral: searching for enchantment on the frontiers of rewilding. Penguin UK.
 Morris T, Letnic M. 2017. Removal of an apex predator initiates a trophic cascade that extends from
- herbivores to vegetation and the soil nutrient pool. Proceedings of the Royal Society B:
 Biological Sciences 284.
- Moseby KE, Blumstein DT, Letnic M. 2016. Harnessing natural selection to tackle the problem of prey
 naïveté. Evolutionary Applications **9**:334-343.
- Moseby KE, Crowther MS, Letnic M. 2018. Ecological Role of an Apex Predator Revealed by a
 Reintroduction Experiment and Bayesian Statistics. Ecosystems.
- Moseby KE, Hill BM, Read JL. 2009. Arid Recovery A comparison of reptile and small mammal
 populations inside and outside a large rabbit, cat and fox-proof exclosure in arid South
 Australia. Austral Ecology 34:156-169.
- Nesshöver C, et al. 2017. The science, policy and practice of nature-based solutions: An
 interdisciplinary perspective. Science of The Total Environment 579:1215-1227.
- Nogués-Bravo D, Simberloff D, Rahbek C, Sanders NJ. 2016. Rewilding is the new Pandora's box in
 conservation. Current Biology 26:R87-R91.
- Pech R, Maitland M. 2016. Conservation of native fauna in highly invaded systems: managing
 mammalian predators in New Zealand. Restoration Ecology 24:816-820.
- 580 Pereira HM, Navarro LM 2015. Rewilding european landscapes. Springer.
- Pettorelli N, Barlow J, Stephens PA, Durant SM, Connor B, Schulte to Bühne H, Sandom CJ,
 Wentworth J, du Toit JT. 2018. Making rewilding fit for policy. Journal of Applied
 Ecology:n/a-n/a.
- Prior J, Ward KJ. 2016. Rethinking rewilding: A response to Jørgensen. Geoforum 69:132-135.
 Prowse TAA, Johnson CN, Cassey P, Bradshaw CJA, Brook BW. 2014. Ecological and economic
 benefits to cattle rangelands of restoring an apex predator. Journal of Applied Ecology
- 587 **52**:455-466.

588	Rees JD, Kingsford RT, Letnic M. 2017. In the absence of an apex predator, irruptive herbivores
589	suppress grass seed production: Implications for small granivores. Biological Conservation
590	213, Part A :13-18.
591	Regos A, Domínguez J, Gil-Tena A, Brotons L, Ninyerola M, Pons X. 2016. Rural abandoned
592	landscapes and bird assemblages: winners and losers in the rewilding of a marginal
593	mountain area (NW Spain). Regional Environmental Change 16 :199-211.
594	Ripple WJ, Beschta RL. 2007. Restoring Yellowstone's aspen with wolves. Biological Conservation
595	138 :514-519.
596	Ripple WJ, et al. 2015. Collapse of the world's largest herbivores. Science Advances 1.
597	Ritchie EG, Elmhagen B, Glen AS, Letnic M, Ludwig G, McDonald RA. 2012. Ecosystem restoration
598	with teeth: what role for predators? Trends in Ecology & Evolution 27 :265-271.
599	Rohwer Y, Marris E. 2016. Renaming restoration: conceptualizing and justifying the activity as a
600	restoration of lost moral value rather than a return to a previous state. Restoration Ecology
601	24 :674-679.
	Rubenstein DR, Rubenstein DI. 2016. From Pleistocene to trophic rewilding: A wolf in sheep's
602	
603	clothing. Proceedings of the National Academy of Sciences 113 :E1.
604	Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP. 2014. Reversing defaunation: Restoring species in a
605	changing world. Science 345 :406-412.
606	Silver MJ, Carnegie AJ. 2017. An independent review of bell miner associated dieback. Final report
607	prepared for the Project Steering Committee: systemetic review of bell miner associated
608	dieback., Available from http://www.environment.nsw.gov.au/resources/vegetation/bell-
609	miner-associated-dieback-independent-review.pdf.
610	Soulé ME, Estes JA, Berger J, Del Rio CM. 2003. Ecological Effectiveness: Conservation Goals for
611	Interactive Species
612	Efectividad Ecológica: Metas de Conservación para Especies Interactivas. Conservation Biology
613	17 :1238-1250.
614	Stringer AP, Gaywood MJ. 2016. The impacts of beavers <i>Castor</i> spp. on biodiversity and the
615	ecological basis for their reintroduction to Scotland, UK. Mammal Review 46 :270-283.
616	Svenning J-C, et al. 2016a. Reply to Rubenstein and Rubenstein: Time to move on from ideological
617	debates on rewilding. Proceedings of the National Academy of Sciences 113 :E2-E3.
618	Svenning J-C, et al. 2016b. Science for a wilder Anthropocene: Synthesis and future directions for
619	trophic rewilding research. Proceedings of the National Academy of Sciences of the United
	States of America 113 :898-906.
620	
621	Sweeney OF. 2016. National Rewilding Forum 2016: Outputs summary, discussion and next steps,
622	Available from <u>https://drive.google.com/open?id=0B_ZbagoizgizYldfMXdYM0tiNWc</u> .
623	Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR.
624	2010. Habitat cascades: the conceptual context and global relevance of facilitation cascades
625	via habitat formation and modification. Integrative and comparative biology 50 :158-175.
626	Van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG, Newsome TM.
627	2017. Managing conflict between large carnivores and livestock. Conservation Biology:n/a-
628	n/a.
629	Wallach AD, Ripple WJ, Carroll SP. 2015. Novel trophic cascades: apex predators enable coexistence.
630	Trends in Ecology & Evolution 30 :146-153.
631	Watson DM, Watson MJ. 2015. Wildlife restoration: Mainstreaming translocations to keep common
632	species common. Biological Conservation 191:830-838.
633	Watson JEM, Jones KR, Fuller RA, Marco MD, Segan DB, Butchart SHM, Allan JR, McDonald-Madden
634	E, Venter O. 2016. Persistent Disparities between Recent Rates of Habitat Conversion and
635	Protection and Implications for Future Global Conservation Targets. Conservation Letters
636	9 :413-421.
637	West R, Letnic M, Blumstein DT, Moseby KE. 2017. Predator exposure improves anti-predator
638	responses in a threatened mammal, Journal of Applied Ecology 1-10

639	White LC, Saltré F, Bradshaw CJA, Austin JJ. 2018. High-quality fossil dates support a synchronous,
640	Late Holocene extinction of devils and thylacines in mainland Australia. Biology Letters 14.
641	Woinarski JCZ, Burbidge AA, Harrison PL 2014. The action plan for Australian Mammals 2012. CSIRO,
642	Collingwood, VIC.
643	Woinarski JCZ, Burbidge AA, Harrison PL. 2015. Ongoing unraveling of a continental fauna: Decline

and extinction of Australian mammals since European settlement. Proceedings of the
 National Academy of Sciences **112**:4531-4540.

647 Supporting information

648	Appendix S1
649	45 people representing 27 organisations attended the forum (Table 1). Participants involved in
650	rewilding at an academic, government or non-government level were identified by the four
651	organising organisations: National Parks Association of NSW Inc; Taronga Conservation Society;
652	Conservation Volunteers and FAUNA Research Alliance.
653	
654	Industries represented included environmental NGOs; academia; the zoo industry; wildlife disease
655	specialists; government natural resource management agencies; animal welfare groups and land
656	managers. Animal welfare groups, land managers, policy makers, the corporate sector, the tourism
657	sector, the education sector and the Indigenous community were under-represented.

658

659 Table 1: Participants in the National Rewilding Forum and their affiliated organisations

Name	Organisation
Andrea Reiss	Zoo and Aquarium Association / Wildlife Health Australia
Andy Sharp	South Australian Department of Environment Water and Natural Resources
Andrew Elphinstone	Taronga Conservation Society
Anne Reeves	National Parks Association of NSW
Ben Holmes	Conservation Volunteers Australia
Bob Debus	FAUNA Research Alliance
Cameron Kerr	Taronga Conservation Society
Cathy Merchant	NPA NSW
Cecilia Myers	FAUNA Research Alliance / Land manager
Dave Watson	FAUNA Research Alliance
Diane Latta	National Parks Association of NSW

Frans Schepers	Rewilding Europe				
Gary Fry	Taronga Conservation Society				
Geeta Ortac	National Parks Association of NSW				
Gilly Llewellyn	Worldwide Fund for Nature				
Hayley Bates	University of New South Wales				
Ian Walker	Conservation Volunteers Australia				
Jeff Bell	Natural Resources Commission				
John Rodger	FAUNA Research Alliance				
John Turnbull	National Parks Association of NSW (Facilitator)				
Kellie Leigh	Science for Wildlife				
Kevin Evans	National Parks Association of NSW				
Kiran Charles	National Parks Association of NSW				
Lachlan Howell	University of Newcastle				
Leah Kemp	Australian Wildlife Conservancy				
Linda Bell	Office of Environment and Heritage NSW				
Madeline Lalor	University of Newcastle				
Maggie Watson	Charles Sturt University				
Mandy Paterson	Royal Society for the Prevention of Cruelty to Animals Queensland				
Margot Law	National Parks Association of NSW				
Mark Anscombe	Worldwide Fund for Nature				
Mark Bachmann	Nature Glenelg Trust				
Matthew Taylor	Bush Heritage				
Menna Jones	University of Tasmania				
Mike Archer	University of New South Wales				
Mike Letnic	University of New South Wales				

Monique Van Sluys	Taronga Conservation Society
Nardi Simpson	Taronga Conservation Society
Oisín Sweeney	National Parks Association of NSW
Pete Ridgeway	Greater Sydney Local Land Services
Peter Mawson	FAUNA Research Alliance / Perth Zoo
Phil Palmer	Bush Heritage
Renae Hockey	Conservation Volunteers Australia
Rob Brewster	Rewilding Australia
Rob Quirke	National Parks and Wildlife Service NSW
Rod Kavanagh	Australian Wildlife Conservancy
Ryan Witt	University of Newcastle
Scott Ryan	Australian Reptile Park
Simon Clulow	FAUNA Research Alliance
Suzanne Hand	University of New South Wales
Tim Faulkner	Devil Ark / Australian Reptile Park
Thomas Newsome	Deakin University / University of Sydney
Vince Scoleri	University of Tasmania

661 Appendix S2

662 The forum lasted for a single day (7th September 2016) and adopted a facilitated group format where

the 45 participants split into six groups. In session one the groups were asked to define what

activities were and were not rewilding. In session two, each group was asked to identify the goals of

- rewilding and to put forward five main goals to the broader group. In order to achieve this
- 666 participants were asked to rank the identified goals and to vote on which were priorities if needed.
- 667 Those goals that addressed a common theme were clustered together as participants presented
- their goals to produce overarching goal themes. The third session focused on identifying and

670	participants to identify those initiatives or projects would be most effective to progress rewilding in
671	Australia.
672	
673	Appendix S3
674	The results of session one (defining rewilding) are summarised in Table 2. Session two identified six
675	overarching rewilding goal themes. These themes, their contributing goals and the top three success
676	factors and obstacles as identified in session three are summarised in Table 3. Identified projects
677	from the session four are presented in Table 4. Note that results are presented in 'raw' format and
678	thus there may be duplication in tables. This is done in order to reflect as accurately as possible the
679	outputs from attendees. Results were summarised and discussed and made available, along with the

overcoming obstacles to progressing the identified goal themes, and the forth session invited

680 raw data, to all participants in October 2016 Sweeney 2016.

682 Table 2: Outputs of session one: responses of participants to the scoping session designed to elucidate what does and does not constitute rewilding in Australia

Rewilding is	Rewilding is not
Optimising the biodiversity of an ecosystem	De-extinction
Giving control back to nature and changing the emphasis from	Recreating a given point in history or an idealised time period
holding what we have now—including in protected area	Using non-native species as ecological surrogates
management	Standard threatened species recovery actions
• Existing activities (e.g. reintroductions) conducted in a holistic	• A mammal-centric concept (it's an ecosystem approach)
context	A complete lack of management intervention
• Using the paleo record to see how things have changed and to	Restoring a perfect picture or ideal state of the past (human
inform rewilding under future climate	settlement and the new nature are inescapable)
• A means to restore ecosystem function, leading to better	Ruling out the use of ecologically important species because
environmental health for flora and fauna and 'future proofing'	they are considered socially unacceptable
landscapes	• The use of animals as tools or quick fixes
• Restoring interactions between species, including predation,	Single species reintroductions solely to conserve that species
parasitism and other ecological processes	focus on ecological function must accompany reintroductions
	to be considered rewilding)

• Reducing the need for human control of pests species as

natural processes (such as predation) take over

- The reintroduction of species to areas of their former range
- A complementary approach to other conservation initiatives

(not a replacement)

- Using indigenous Aboriginal knowledge
- Engaging the community in environmental decision making
- Restoring ecosystem resilience and adaptability using climate

modelling and the paleo record

- Helping ecosystems to become self-sustaining
- A 'total ecosystem' approach—i.e. considers ecosystems in

their entirety and not components in isolation

• Appreciating the role that predation plays and the necessity of

predation in ecological systems

• Adaptive and should accommodate the 'new nature'¹

¹ 'New nature' as used here describes patterns of species abundance, distribution and interactions resulting from human activities

- Restoring ecological processes and ecosystem function
- A long-term vision
- Applicable at multiple scales
- Encompassing different types of landscapes
- Connecting nature to people and communities
- A focus on native wildlife
- Increasing ecological resilience (including through genetic

diversity)

- Increasing biodiversity
- Increasing connectivity on a landscape-scale
- Moving beyond fences (fences are stepping stones to wider

landscape outcomes in a staged process)

- Maximising genetic diversity
- Achieving a social license for activities

Goal theme	Contributing goals	Succes	s factors to achieving goals	Obstacles to achieving goals
Ecosystem	To secure critical weight range	1.	Management intervention (of	Public relations problems (e.g. with dingoes)
function	mammals via the restoration of apex		feral animals, weeds, aquatic	Aligning community animal welfare concerns with
	predator populations; to restore		and terrestrial habitats) should	realities of ecological processes
	ecosystem function and resilience in		be minimal after an 'initial	Introduced megafauna and a lack of ecological tools to
	key landscapes and to ensure that		push'	cope with these
	ecoystems are self-sustaining with	2.	Choose locations carefully as	
	functioning ecological processes at all		success is important – there is	
	trophic levels.		an urgent need to	
			demonstrate 'proof of	
			concept'	
		3.	Solve keystone predator issues	
Scale and	To ensure that rewilding works across	1.	Consensus between	Inadequate funding relevant to the scale and
scope	boundaries including state, sector		stakeholders and the public	timeframe of the problem
	(government and non-gevernment)		and a long term vision	

684 Table 3: Outputs from sessions two and three: rewilding goal themes, the contributing goals and success factors and obstacles to achieving rewilding goals in Australia

	and tenure (public and private);	2.	Feral species managed	Fragmentation of effort when attempting to deliver
	rewilding promotes coexistence		permanently and on a large	national projects on a local level
	between native and non-native		scale	Public opposition to 'no boundaries'
	species via ecological processes and	3.	Definition of and a means to	Large spatial scales
	interactions; to work on a continental		measure success	Large time scales
	scale and consider climate change and			Staff turnover
	connectivity and the application of			
	rewilding to all ecosystems (marine,			
	freshwater and terrestrial).			
People	To inspire and engage the community;	1.	Use social research to identify	Compassion fatigue leading to reduced community
	to achieve a 'social license' for		the key stakeholders, values	engagement
	rewilding; to ensure the community		and perceptions	Urbanisation and lost connections between the public
	values nature (intrinsically and	2.	Use best-practice community	and nature
	economically); to incorporate		engagement	Differing perceptions and values between groups
	Aboriginal knowledge and work with			Heterogeneity within the community
	indigenous communities to increase			Cultural values that don't accommodate nature

	awareness of Australia's nature; to	3.	Access existing knowledge—	Lack of political support
	overcome the rural-urban divide to		both indigenous and non-	Perceived conflict between conservation and
	progress rewilding and to ensure		indigenous	production
	communities derive economic benefit			
	from rewilding efforts.			
Vision and	To articulate a vision and strategy for	1.	An inspirational vision	Differing agendas and competing interests between
strategy	rewilding in Australia; rewilding as a	2.	An independent, trusted lead	organisations
	potential means to tackle inherited		author	Achieving cross-government agency involvement
	and novel problems (such as	3.	Overcome competing interests	Adequate funding
	introduced species); to be bold, take		between organisations:	Commitment to ongoing involvement
	risks and take action.		Projects need to be 'tenure	
			blind' between organisations;	
			i.e. chose best location, chose	
			best delivery partnership, and	
			other partners fall into line to	
			support	

Policy	To ensure that resourcing of rewilding	1.	Hold a national conference	Political risks of introducing predators
	programmes is sustainable and long-	2.	Host another forum to	Clarifying the problem and vision to policy makers
	term; institutional structures support		facilitate a policy paper and	Developing a clear policy objective
	rewilding; barriers to rewilding are		communication strategy for	Developing a holistic focus (wildlife, ecosystems and
	removed and regional management		rewilding	economy)
	efforts for wildlife conservation and	3.	Clarify the obstacles and key	Identifying the next steps beyond fencing
	feral species control are strengthened.		issues as to why we should	Flora and habitat have become a surrogate and fauna
			pursue rewilding	less important
				A lack of partnerships and community engagement
				Losing the fundamental meaning of rewilding (diluting
				the message)
				Amount of funding and the necessary timeframes
Research	To establish proof of concept and an	1.	Proof of concept that	Funding
	evidence-base for Australian		demonstrates change visible	
	rewilding; to identify research		to non-scientists	

opportunities to support rewilding	2.	'Sell' rewilding to the public by
objectives.		choosing projects that will
		maximise the chance of
		success and with high visibility
		(e.g. in urban areas; areas of
		high tourist visitation)
	3.	Develop rewilding monitoring
		protocols to maximise learning
		opportunities and avoid
		repetition

686	Table 4: Outputs from session four: ideas to	progress rewilding in Australia
-----	--	---------------------------------

Project name	Description	Outcomes	Key steps	Resources required
Fences down	Removal of boundary fences to	1. Enhanced connectivity	1. Identify trial location (farm,	1. Community
	share issues with the	2. Natural fauna movement	dingo fence, emu fence)	2. Landholders
	community and lead to	3. Removal of social boundaries	2. Engage local community	3. Researchers
	community feral animal control,	4. Enhanced community	3. Identify species to monitor	(academics, NGOs)
	improved networks enhanced	ownership	4. Establish reverse fencing or	4. Community support
	connectivity and cooperation		invisible fencing	network
			5. Monitor	5. Media
			6. Communicate findings	6. Education program and
				resources
				7. Identified zones
Community	Everyone is Australia has a role	1. New behaviour becomes the	1. Local government	1. A national toolkit that
behaviour change	in rewilding and the urban	norm	involvement	is flexible enough to be
	majority become aware of the	2. Easy to follow actions	2. Local community group	applied locally across
	diversity of urban wildlife and		involvement	Australia

	alter pet ownership behaviour	3.	Clearly communicated and	3.	'Sustainable schools'	2. Citizen science apps
	as a result		easily explained		model	3. Volunteer wildlife
				4.	Vegetation mapping	groups (e.g. WIRES)
					(identify habitats and gaps)	
De-fencing Australia	Experimental removal of fences	1.	Enhanced connectivity	1.	Identify the threats driving	1. Funding (to provide
	and investigation of alternatives	2.	Information on alternatives to		fencing (dingoes,	incentives)
	to fencing on farms to restore		fencing (bio-fencing, guardian		macropods or grazers,	2. Community support
	habitat connectivity on a large		animals)		weeds)	3. Political will
	scale	3.	Enhanced ecosystem function	2.	Achieve stakeholder	4. Stakeholder buy-in
					support (incentives may be	5. Human resources
					required)	(research
				3.	Communicate proof of	
					concept	
				4.	Remove the 'scare factor'	
				4.		

			5. Staged approach with early	
			adopters in areas with and	
			without threats	
			6. Monitor small mammal	
			communities and	
			ecosystem function	
Tasmanian devils on	Tasmanian devils evolved on	By 2020 a population of	1. Identify literature that	1. Political will
the mainland	mainland Australia. They play a	Tasmanian devils is secure on	supports the concept	2. Cross government and
	significant role in ecosystem	the mainland where their	2. Define the experimental	agency cooperation
	function in Tasmania suggesting	impacts on feral animals in	design and monitoring	3. Funding
	a function has been lost on the	regards competition, predation	3. Resource the	4. NGOs to assist in
	mainland	and altered behaviour can be	reintroduction	coordination and
		tested	4. Community consultation	community
			(preliminary and ongoing)	engagement
			5. Understand baseline	
			ecology of release site	

Dingo reintroduction	Relocating the dingo fence so	The trophic influence of dingoes	1. Develop a clear narrative	1. Social science support
	that Sturt National Park is	is tested via a before and after	(costs and benefits)	2. Government support
	moved north of the fence	experiment	2. Address community	
			concerns and opposition	
			3. Communicate	
			4. Ensure means to address	
			potential dingo predation	
			/ hyperpredation	
Rewilding Southern	A. Reintroducing (i) endemic	1. A landscape-scale sanctuary	1. Pre-planning (done)	1. Funding
Yorke Peninsula	and non-endemic native	for threatened species	2. Community engagement	
	predators, (ii) soil engineers, (iii)	2. Prevent further loss of	(done)	
	pollinators.	ecological functionality	3. Community group	
	B. Habitat restoration on	3. Increase ecosystem services	involvement (done)	
	Wauraltee IPA (Wardang	to agriculture	4. Obtain local government	
	Island), to create an in-situ	4. Enhance natural capital	support (done)	
	captive breeding program.	available to local ecotourism		

		5. Build resilience to climate	5	. Implement delivery		
		change		partnership (MoU) (done)		
			e	. Implement threat		
				mitigation (done)		
			7	. Undertake baseline		
				monitoring (ongoing)		
			8	. Finalise and approve		
				translocation plans		
Rewilding supports	Prove through targeted trials	Rewilding initiatives are a win	1	. Incorporate social and	1.	Secure
regional economies	that rewilding can help diversify	for communities and a win for		cultural values of		government
	regional and local economies	biodiversity so communities		community in project		funding
		achieve ownership and		design	2.	Secure non-
		appreciate the benefits	2	. Identify and support		government
				community champions		funding
			3	. Build local partnerships	3.	Human resources
						(related to above)

			4.	Community and
				practitioners work
				together to plan,
				implement and manage
				rewilding efforts
			5.	Communicate (social
				media, youth programs)
			6.	Monitor and market
				success
Devils v foxes	Tasmanian devils are	Information gathered on the	1.	Fenced exclosure as first 1. Political will
	reintroduced into at least two	nature of devil / fox interactions		release
	sites (Barrington Tops and	and whether devils can play a		
	Orange) to test their impact on	keystone role		
	foxes			

Embedding disease	Identify potential disease risks	1. Human intervention does not	1. Gather existing information	1. Technical expertise
risk assessment in	and establish processes to	increase the risk for wildlife	on disease	2. Guidelines
translocations and	manage risk	disease	2. Identify knowledge gaps	3. National policy
reintroductions		2. Translocated and wild	and how to fill them	
		populations are healthy	3. Prioritise diseases for	
			investigation	
			4. Test, quarantine and treat	
			animals prior to	
			translocation	
			5. Monitor populations	
			6. Develop a national	
			database and sample	
			archive	
Devils in south-west	A single-sex trial reintroduction	1. Test the efficacy of devils as a	1. Community consultation	1. Lead NGO
Victoria	of Tasmanian devils into a	top-down tool to manage	2. Develop experimental	2. Partner organisation
			design	3. Research partner

	60,000ha reserve subject to >10	mainland temperate	3. Obtain approvals and	4. Funding (staff)
	years of intensive fox baiting	ecosystems	source devils	5. Permits (scientific and
		2. Determine whether observed	4. Implement and monitor	ethics)
		perverse outcomes from	5. Review, refine and	6. Devils
		baiting can be reversed	progress goals	7. Equipment
		3. Subject to 1, test a self-	6. Conduct trials elsewhere	
		sustaining wild population		
		4. Pave the way for		
		reintroductions of other lost		
		species using Tasmania as a		
		reference site		
Process driven vision	Identify ecological processes	Improved ecosystem health	1. Manipulate processes (e.g.	1. Locations
and strategy for	that have been altered by		via Tasmanian devil	2. Funding
Australia	invasive species, lost predators		reintroduction to	3. NGO partner (AWC?) to
	and ecosystem engineers and		Barrington tops, cats in	help overcome public
	put in place bold solutions		midland Tasmania)	and political hurdles

			2	Address public and political	4.	Meetings
				misunderstandings and	5.	Online fora
				fear	6.	Websites (Rewilding
			3	Provide a space for		Australia?)
				researchers and NGOs to		
				collaborate to ensure risk is		
				spread		
Establishing priority	Priority areas should be in	1. A tool to help guide	1	Develop a steering group	1.	GIS mapping expertise
areas for rewilding	locations where actions are	stakeholder decision making		of land managers, experts	2.	Community and
in Australia	feasible, with high connectivity,	for rewilding initiatives for use		(research, NGOs),		landholder surveys
	high value for eco-tourism, high	by NGOs, landholders and		traditional owners and	3.	Communication
	conservation value, a receptive	government		politicians		strategy
	community, and be of a		2	Identify willing landholders	4.	Collaborate with Atlas
	sufficient size			and regional organisations		of Living Australia
			3	Raise money		

			4. Develop a criteria (tool) to	
			decide on priority areas	
Rewilding data	To analyse the results of past	1. Compare extant animals with	1. Share data	1. Student + supervisor
apture	reintroductions, and ensure	reintroduced to see whether	2. Monitor reintroductions	
	future reintroductions provide	reintroductions have	closely	
	release data (who, what, where,	influenced Area of Occupancy		
	when, sex ratio etc) to	/ Extent of Occurrence		
	regulator, ALA, museum	2. Improved reintroduction		
		protocols		
		3. Reintroduction handbook		
		and/or template		
dentifying metrics	Identifying ecologically	1. Indices identified (e.g.	1. Establish protocols	1. Academic researchers
or baseline	meaningful, practical indices to	ecological engineers)	2. Identify key sites	2. Volunteers to
nonitoring	measure before, during and	2. Response variables identified	3. Share data	undertake monitoring
	after rewilding	(e.g. soil health, water quality,		3. Conservation
		vegetation quality)		Volunteers Australia

3. Means of monitoring

identified (e.g. teabag index)