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Steady flow of a Reiner-Rivlin fluid between rotating plates
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This paper considers a von Karman type axisymmetric flow between parallel plates, in which the top
plate rotates and the bottom one is stationary. Between the plates is a weakly non-Newtonian fluid of
Reiner-Rivlin type. A highly accurate spectral method is presented for solving the steady problem,
and Newton’s method is used to find the Fourier coefficients and an eigenvalue. Multiple solutions
are found, of which one is clearly of Batchelor type and another is clearly of Stewartson type, and
these persist in the non-Newtonian regime. Such flows may be of practical use in viscometry, in which
the coefficient of the non-Newtonian viscous term might be measured. Published by AIP Publishing.

https://doi.org/10.1063/1.5053833

l. INTRODUCTION

The original motivation for this work came from a model
of the transition of viscous fluid flow from laminar to turbu-
lent, proposed by Forbes'? and developed further by Forbes
and Brideson® for swirling flow in a round pipe. In sim-
ple geometries, such as Couette flow between moving plates
or Poiseuille flow in a pipe, the Navier-Stokes equations of
viscous flow admit simple closed-form solutions, and these
are believed to be stable to infinitesimal disturbances for all
Reynolds numbers R, (see Ref. 4). Forbes,! however, argued
that the linear Newtonian relationship between stress and
strain-rate, inherent in the Navier-Stokes theory, might not
always be appropriate for the regions of large strain rate that
occur as a flow makes the transition to turbulence. He con-
sidered a weakly non-Newtonian situation, in which a second
term needs to be added to the Navier-Stokes system, to model
the effects of (memoryless) visco-elasticity. He demonstrated
that, in such models, the flow cannot remain stable to small
disturbances for all Reynolds numbers. Instead, there is a tran-
sition value at which a very large number of the eigenmodes all
become unstable; furthermore, their frequencies are not ratio-
nal multiples of one another so that, even in linearized (small
disturbance) theory, the resulting flow behavior would con-
tain a quasi-periodic structure of extremely high dimension.
Non-linear effects would then cause this structure to bifurcate
to a strange attractor of high dimension [through the mech-
anism of a Ruelle-Takens-Newhouse bifurcation; see Ref. 5
(p. 339)]. Forbes'-? and Forbes and Brideson® suggested that
this exotic, high-dimensional chaotic behavior may correspond
to the onset of true turbulence.

As a possible viscometric flow for measuring the two
viscosity parameters, the Reynolds number R, and the non-
linear viscosity coefficient F, we are currently investigating
slow flow between rotating disks with a view to its laboratory
implementation. This is now a classical flow with a famous
similarity-type solution first suggested by von Karman.® He
showed that, when the Navier-Stokes equations of viscous
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fluid flow are written in cylindrical polar coordinates, a sep-
arable solution is possible, in which the steady-state velocity
components and the pressure can each be expressed as simple
powers of the radial coordinate r multiplied by functions of
the vertical coordinate z. These functions of z satisfy a system
of non-linear ordinary differential equations. An enormous
literature now exists on this von Karman rotation, much of
which is discussed in the reviews by Zandbergen’ and Ling-
wood.? From the viscometric viewpoint, the flow of most
interest is likely to be the situation in which there are two
parallel disks with the fluid between them; the top disk at
z = H rotates with constant angular speed Q rad/s, but the
bottom disk at z = 0 is stationary since this would allow pres-
sure transducers to be attached to that plate. This situation
has been of great interest in the literature, particularly due
to the difference of opinion between Batchelor and Stewart-
son concerning the behavior of the fluid. Batchelor® suggested
that the flow configuration would consist of constant angular
speed motion between the plates and a boundary layer near
each plate. However Stewartson'? predicted no rotation in the
core, but boundary layers near each plate. It is now known
that multiple solutions to the steady von Karman problem are
possible; these are illustrated by Holodniok and Hlavacek,'!
although their numerical results are by no means independent
of the number of Fourier modes assumed in their numerical
solution.

The interest here is in a Reiner-Rivlin model of viscous
fluid flow, rather than the more common Navier-Stokes equa-
tions. This is because it is the simplest memoryless model for
viscous behavior, which does not assume a linear relationship
between the stress tensor in the fluid and the strain-rate tensor.
Thus it may have relevance to the process of flow transition-
ing from laminar to turbulent, and further details are given
in the work of Forbes.! It turns out that a von Kdrman type
similarity solution is also possible in this case, too, as was
apparently first recognized by Bhatnagar.!> More recently, it
has been shown that von Karman type similarity solutions
are also possible in more general non-Newtonian fluids (see
Refs. 13 and 14). These articles do not discuss the possibil-
ity of multiple solutions, although multiplicity is mentioned
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for general non-Newtonian fluids in the review article by
Rajagopal.”

The governing equations are reviewed in Sec. II, where
an appropriate non-dimensionalization is discussed and the
spectral solution method is outlined. Results are discussed in
Sec. III. The possible use of this flow for accurate viscometric
work in the laboratory is discussed in Sec. IV, particularly
at low Reynolds numbers and in the light of the existence of
multiple solutions.

Il. THE GOVERNING EQUATIONS

We consider a flat stationary disk on the x—y plane of a
Cartesian coordinate system in which the z-axis points ver-
tically. There is another flat disk at height z = H, and it
rotates with angular speed Q rad/s. Between the two disks
is a Reiner-Rivlin viscous fluid, and it is subject to the acceler-
ation of gravity g downwards, in the direction of the negative
z-axis. The fluid has constant density p since it is assumed
incompressible, and its velocity vector is q.

Dimensionless variables are defined forthwith, using the
disk separation distance H as the length scale and +/H/g as
the unit of time. Then speeds are referenced to \/@ , and the
pressure p in the fluid is made dimensionless with respect to
the quantity pgH. The equations of motion are expressed in
cylindrical polar coordinates (r, 8, z) according to the usual
relations x = cos #, y =r sin 8, and new unit vectors (e, €g, €;)
in the three coordinate directions are defined. The fluid velocity
vector can now be represented as q = ue, + veg + we,. Non-
dimensionalization shows that the problem is described by
three dimensionless parameters

| H
o w=00% O
F  pH? g

Here, R, is a Reynolds number, 1/F is the coefficient of non-
Newtonian viscosity, and w is the dimensionless rotation speed
of the top plate (now at z = 1). The dimensional constants u
and 7 are, respectively, the Newtonian and non-Newtonian
viscosity coefficients, here assumed constant. It is possible to
write parameter F in terms of the more common Weissenberg
and Reynolds numbers,! but this is avoided here since F is a
pure measure of non-Newtonian behavior in the fluid.
Since the fluid is incompressible, the continuity equation
is
V.-q=0. 2)

The fundamental law expressing conservation of linear
momentum within a continuous medium is Cauchy’s momen-
tum equation

dq
ot
in these dimensionless variables, in which T is the stress tensor
in the continuum. In Navier-Stokes theory, stress is assumed

to vary linearly with the strain-rate tensor D according to the
relation

+(q-V)g=f+divT A3)

2
T=—pl+— 4
4 R 4
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in which p is the (dimensionless) pressure in the fluid and R,
is the Reynolds number as defined in (1). The 3 X 3 tensor I is
the identity matrix. This linear assumption is basic to Navier-
Stokes theory, but Stokes himself allowed that a non-linear
stress—strain-rate relation might also be considered, leading to
a constitutive law of the form

2 2
T=-pl+—D+ =D’ 5
Phr D+ 4 Q)]

with the second viscosity coefficient 1/F given in (1). This
relation (5) is discussed in detail by Aris. !0 Tt is, in fact, the
general form of a non-linear stress—strain-rate law of the type
T = f(D) for any non-linear analytic function f(Z) that can be
represented by a Taylor-MacLaurin series since, by the Cayley-
Hamilton theorem [see Ref. 17 (p. 183)], every higher power
Df, k=3,4,5, ..., of the 3 X 3 tensor D can be written as a
linear combination of the three matrices I, D, and D? in Eq. (5).
The combination of (5) and (3) then leads to the Reiner-Rivlin
equation

9q

1 2 .
o (@ Vg +Vp = e+ Evzq + Fdw(Dz), (6)

in which D is the rate-of-strain tensor,

D= %[Vq + (V'] (7)

In these dimensionless variables, the body force per mass
appropriate for the gravitational acceleration becomes simply
f = —e, as shown in (6) above.

On the stationary bottom plate, the no-slip boundary
condition gives

u=0, v=0, w=0, onz=0. (8)

The no-slip boundary condition on the steadily rotating top
disk gives

u=0, v=rw, w=0, onz=1. )

The celebrated von Karman similarity solution,® extended
by Bhatnagar!? to allow for non-Newtonian effects in the
Reiner-Rivlin equation (6), takes the form

u(r,z,t) =rU(z, 1),
v(r,z,t) =rV(z,1),
w(r,z,t)=W(z,1t),
p(r,z,0) = P(z, 1)+ Q(z, 1).

(10)

Steady flow is now assumed so that the time variable ¢ no
longer appears. Accordingly, when (10) are substituted into
the continuity equation (2), they give the ordinary differential
equation

20+ W =0. (11)

In cylindrical polar coordinates (7, 6, z), the three components
of the Reiner-Rivlin equation (6) yield four ordinary differ-
ential equations since the z-component equation involves two
linearly independent functions r° and 2 of the radial coor-
dinate, which must be treated separately. These can then be
integrated with respect to z at once, to give
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P(2) =Py —z+(1/R)W’' = (1/2)W? + (7/F)U?,
Q) = kos + 3= [(U"Y + (V']
in which Py and kpg are both constants of integration. The
first constant Py plays no role of importance and so can be
ignored, but the second kg is an eigenvalue and must be deter-
mined as part of the steady solution. The radial and azimuthal
components of (6) become
U? = V2 + WU’ + 2kgs
= (1/R)U" - 3 [(U")* +3(V')* +20U"],
20V + WV’
=(1/R)V"+(1/F)[U'V' =UV"].

13)

The quantity Q(z) has already been eliminated in the first of
these equations, using (12).

The two boundary conditions (8) and (9) yield the six
requirements

U®) =0,
U(l)=0,

V(0) = 0,
V() = w,

W) =0,

w(1) =0, (4

which must be obeyed by the non-linear steady solution. To
account for these conditions (14), we choose the spectral forms

N
U(z) = 3 Ay sin(nnz),
n=1 v ( 1 5)
V() =wz+ Y, B, sin(nnz).
n=1

The sums in these expressions should consist of infinitely many
terms, but in numerical implementation, they must be truncated
at some maximum number N of Fourier modes, as indicated in
(15). The Fourier coefficients A,, and B,, are to be determined.

The continuity equation (11) then requires

N
W(z) = - ZA,,%[I — cos(nnz)], (16)
n=1

after the condition W(0)=01n (14) has been taken into account.
When the condition W(1) = 0 on the top boundary is imposed,
it follows that

N
A =— ZA,Z%[I — cos(nm)]. (17)
=2

1
2
n
Thus only the N — 1 coefficients A,, .. ., Ay are independent.
These series expressions (15)—(17) are substituted into the
two equations in the system (13) and Fourier analyzed using
the orthogonality of the trigonometric functions. The radial
momentum equation yields

1
2R,

2k
Ap(lr)? + 2201~ cos(en)]
e
1
+ / [U2 -Vi+ WU'] sin(€nz) dz
0

1
1 "2 "2 ] —
+ﬁ/[(U) +3(V)"+2UU ]sm(&rz)dz—o,
0

{=1,...,N, (18)
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and the azimuthal component gives
1

1
R Be(tn)* + / [2UV + WV'] sin(¢nz) dz
e

—U'V’] sin({nz)dz = 0,

=1,...,N. 19)

These two sets of Egs. (18) and (19) constitute a system of 2N
non-linear algebraic equations for the 2N -vector of unknowns,

T
X = [kos,Az..... Ay, B1,Ba,....By] . (20)

This system is solved using Newton’s method.

lll. PRESENTATION OF RESULTS

A typical result from the spectral solution technique of
Sec. II is illustrated in Fig. 1. Here, the Reynolds number is
R, = 10° and the non-linear viscosity coefficient is F = 10%.
These are highly accurate and well-converged solutions gen-
erated with N = 81 Fourier modes. In addition, 801 grid points
in z were used to carry out the numerical integration, using the
Gaussian quadrature package lgwt written by von Winckel.'®
The eigenvalue kg is plotted against rotation speed w, and it
is evident that up to three solution branches exist for appropri-
ate rotation speeds w. The corresponding calculation has also
been done for the pure Navier-Stokes flow, with F = co, and
the graph in that case is almost identical to Fig. 1, and so it is
not shown here.

In Fig. 2, we show the velocity function U(z) associated
with the radial outflow component u(r, z) of the velocity vec-
tor, as defined in (10). These three diagrams are for the same
case R, = 10°, F = 10* as in Fig. 1. Here, the rotation rate has
been chosen to be w = 0.5, which corresponds to a vertical line
at the very right edge of Fig. 1. The result in Fig. 2(a) is for
the bottom branch in Fig. 1 and shows a sharp flow of fluid

0.012

0.008F
os
0.0061

0.004 -

0.002F

0 0.1 0.2 0.3 0.4 0.5

FIG. 1. Dependence of the non-linear eigenvalue kgg on rotation rate w, for
Reynolds number R, = 1000 and F = 10 000.
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FIG. 2. The radial velocity function U(z) for the three solution branches
illustrated in Fig. 1, with (a) bottom branch, (b) middle branch, and (c) top
branch. The rotation rate is w = 0.5, and the Reynolds number R, = 1000 and
F =10000.

radially outwards in a narrow boundary layer out along the top
plate near z = 1. Below this layer, over the approximate interval
0 < 7 <0.85, the function U(z) is small and negative, represent-
ing a slow inward movement of the fluid back inwards toward

Phys. Fluids 30, 103104 (2018)

the centre, as is required by the conservation of mass. For this
bottom solution branch, therefore, the most dramatic outflows
occur in the upper boundary layer near the top plate. For the
top branch in Fig. 1, illustrated in Fig. 2(c) at rotation speed
w = 0.5, there is still the strong outflow in a narrow boundary
layer out along the top plate z = 1, but for this branch, there
is also a sharp inflow towards the centre, in a boundary layer
near the bottom plate at z = 0. In a region near the middle sec-
tion z = 0.5 between the two plates, there is almost no radial
flow, with U = 0. The middle branch illustrated in part (b) also
has radial outflow occurring in a narrow boundary layer near
the moving top plate, but also has a broad region of inwardly
directed return flow over the approximate interval 0 < z < 0.4
of the fluid layer.

The continuity equation (2) can be satisfied identically
using a vector potential A(r, z), and without loss of generality,
this may be assumed to have only two components ¥ and A
so that

A = Veg + Ae,. (2D

The velocity vector can be written as q =V X A, and since this
axisymmetric flow has no #-dependence, the three velocity
components in the radial, azimuthal, and vertical directions
become

oY oA 10

=——, =—-—, =—-——@rY 22

! 0z ! o’ YT ar(’ ) 22)

in these cylindrical polar coordinates. When these formulae
(22) are combined with the von Karman similarity forms (10),

they lead to the expressions

¥(r,z7) = %rW(z), A(r,7) = —%rZV(z) (23)

for the two streamfunctions W(r,z) and A(r,z). Forbes and
Brideson® also made use of a bi-streamfunction formulation
similar to (23) in their analysis of turbulence in a rotating cir-
cular pipe. It follows that, since the radial and vertical velocity
components # and w in Eq. (22) are independent of the second
streamfunction A, it is possible to view axisymmetric stream-
surfaces as cross sections in the (r, z) plane by considering the
first streamfunction ¥ only.

The velocity vector q is required to be tangent everywhere
to such a streamsurface, and this consideration gives rise to the
defining equation

dr u

dz  w 24
for the streamsurface. It follows then from the similarity forms
(10) and the definitions (23) that

1
r¥(r,z) = ErzW(z) = constant on a streamsurface. (25)

Figure 3 shows cross sections of some streamsurfaces for
the same Reynolds number R, = 1000 and non-linear viscosity
parameter F = 10000 as in Fig. 1. The three diagrams presented
here were obtained by drawing contours of the function »¥ in
(25). In addition, the velocity vector ue, + we, in the verti-
cal plane is indicated by the field of arrows in each diagram.
The lengths of these arrows are an indication of the relative
magnitudes of the velocities at each point. The rotation rate
is w = 0.5, as was considered in Fig. 2. The flow pattern for
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FIG. 3. Streamsurfaces in (r, z) space for (a) bottom branch, (b) middle
branch, and (c) top branch solutions, for the same parameter values
R, =1000 and F = 10000 as in Fig. 1 and with rotation rate w = 0.5.

the lowest solution branch is shown in Fig. 3(a). It indicates a
strong outflow near the top wall at z = 1 and a much weaker
return inflow over the rest of the fluid region. This is consistent
with the diagram of the radial velocity function U(z) shown

Phys. Fluids 30, 103104 (2018)

for this same solution branch in Fig. 2(a). The middle and top
branch streamline patterns are shown in Figs. 3(b) and 3(c),
respectively, and the solution for the top branch in part (c),
in particular, indicates an outflow boundary layer near the top
plate, with a corresponding inflow in a boundary near the sta-
tionary bottom plate at z = 0. This again confirms the result
shown in Fig. 2(c).

The azimuthal velocity function V(z) is shown in Fig. 4,
for the three solution branches illustrated in Fig. 1, at rotation
speed w = 0.5 (at the right-most edge of Fig. 1). This diagram
confirms strongly that the bottom branch at the right side of
Fig. 1 is indeed a Stewartson-type solution, since there is no
rotation at all in the core, and a boundary layer to the right
of the diagram, in which the speed rises sharply to its value
V = 0.5 on the top plate at z = 1. By contrast, the top-branch
solution illustrates clearly an azimuthal flow consistent with
the predictions of Batchelor;? there is no flow at the stationary
bottom disk, but the rotation speed rises rapidly to a nearly
constant value of about V ~ 0.16 in the region between the
disks. Finally, the rotational speed rises sharply to its even-
tual value V = 0.5, in a narrow boundary layer at the top
plate.

The middle-branch solution is interesting, for it consists
of reverse rotation over most of the fluid domain between the
plates, returning to zero only at the height z ~ 0.84, after which
it rises rapidly to the speed V = 0.5 at the rotating disk, in a
narrow boundary layer. A solution of this type, with a large
region of slow reverse rotation, is undoubtedly unstable. This
has not been pursued here, however, since the far more interest-
ing stability question necessarily involves a consideration of
non-axisymmetric flow geometry, which is outside the scope
of this present paper.

The pressure in the fluid is illustrated in Fig. 5, for the same
parameter values as shown in Fig. 3. Only the bottom and top
solution branches are shown, since the middle solution branch
is anticipated to be unstable, and so would not be seen in the
laboratory. For the bottom-branch solution in Fig. 5(a), the
pressure at the lower plate z = 0 essentially does not change
with radius 7, similar to the pure Navier-Stokes solution. This

Re:103 JF=10"; ©=05

0.6 ‘ ‘ : : :
0.5r

0.4F H

0.3r q

Viz) Top
0.2F g
0.11 q
Bottom
0 1
Middle
701 1 1 1 1 1 1 L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V4

FIG. 4. The azimuthal velocity function V(z) for the three solution branches
illustrated in Fig. 1, for rotation rate w = 0.5 with Reynolds number R, = 1000
and F = 10000.
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FIG. 5. Pressure p as a function of r and z, for (a) the bottom branch and
(b) the top branch solutions, for the case illustrated in Fig. 3, in which
R, = 1000 and F = 10000 with rotation rate w = 0.5.

is because the function Q(z) in Eq. (10) is extremely small
(Q ~ 12 x 107°) and so makes no appreciable contribu-
tion to the overall pressure. From the viscometric point of
view, this solution branch is therefore of little interest since
the experimental determination of the two viscosity param-
eters R, and F in the way discussed in the Introduction
would rely on measurable differences in the pressure p with
radius r on the bottom plate. For the top solution branch
shown in Fig. 5(b), however, the variation of pressure p
with radius r across the bottom plate is significant (since
0 = 0.0115), making viscometric determination of the non-
linear viscosity parameter F' a possibility. This is discussed
further in Sec. I'V.

The pressure on the non-rotating bottom plate is sensitive
to the Reynolds number, which in Figs. 1-5 has been set to
the value R, = 1000. It is of interest now to consider a lower
Reynolds number, and accordingly, we present in Fig. 6 a sim-
ilar bifurcation diagram to Fig. 1, but now at the much lower
Reynolds number R, = 5. The viscoelastic parameter remains
at its previous value F = 10*. Solutions are now shown for
larger rotation speeds w, and the eigenvalue kpg also takes

Phys. Fluids 30, 103104 (2018)

180 T

160f ' , .

120F : : 1
100F 1
os
60F 1

401 ,

(O]

FIG. 6. Dependence of the non-linear eigenvalue kg on rotation rate w, for
Reynolds number R, = 5 and F = 10 000.

correspondingly larger values. Again there are three solution
branches that have been found, and these are highly accurate
numerical results.

Streamline patterns are illustrated in Fig. 7 for this case
R, =35, F = 104, for the three different solution branches that
have been obtained at the rotation rate w = 60 at the right-most
point of Fig. 6. Similar to Fig. 3, the bottom-branch solu-
tion shown in Fig. 7(a) is of Stewartson type, with only slight
motion near the bottom plate but a strong outflow in a bound-
ary layer confined to a region near the rotating top plate. The
top-branch solution in (c), however, is of the Batchelor type,
with inflow along the bottom plate and outflow near the top
and an approximately constant flow region in the core. This
is again confirmed by an inspection of the azimuthal veloc-
ity function V(z), which is qualitatively similar to the results
shown in Fig. 4 for each of the solution branches. The middle-
branch solution again has a large core region of slow reverse
rotation, suggesting again that it would be unstable even within
the confines of this axisymmetric flow geometry.

From the viscometric point of view, the function Q(z)
appearing in (10) as part of the overall expression for pres-
sure is of particular interest. For pure Navier-Stokes flow,
0O(z) = 0 so that non-zero values of this function provide a
direct measure of the non-Newtonian effects within the fluid.
Figure 8 shows the function Q(z) for each of the three solu-
tion branches at the right-most section of Fig. 6, for angular
speed w = 60. In each case, the function Q(z) is nearly con-
stant for much of the fluid domain between the plates, although
it rises slightly in the region of the boundary layer near the
top plate at z = 1. The bottom branch gives a function that is
so small that it would be almost indistinguishable from pure
Newtonian fluid; while the values of Q(z) associated with the
middle branch are significantly larger, this branch would be
unstable and therefore also of little value in viscometry. The
top branch, however, possesses a pressure deviation function
0O(z) that is large enough to be of significance. As a result, this
Batchelor-type solution would be preferred as a way of measur-
ing the viscoelastic parameter F using wall-mounted pressure
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FIG. 7. Streamsurfaces in (r, z) space for (a) bottom branch, (b) mid-
dle branch, and (c) top branch solutions, for the same parameter values
R, =5 and F = 10000 as in Fig. 6 and with rotation rate w = 60.

transducers and hence obtaining the value of the dimensional
quantity 7 in (1).

Figure 9 presents the dependence of the eigenvalue kpg
on the coefficient 1/F of the non-linear viscosity term in the
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FIG. 8. Behavior of the non-Newtonian pressure component Q(z) with height
z, for Reynolds number R, = 5 and F = 10000 and at rotation rate w = 60.

Reiner-Rivlin equation (6). The vertical axis at 1/F = 0 is the
pure Navier-Stokes case, and the three lines that intersect it
correspond to the three solution branches for w = 0.5 at values
of kgs equal to those shown on the right-most edge of Fig. 1.
Thus the portion of Fig. 9 to the right of the ks-axis represents
shear-thickening Reiner-Rivlin fluids with F > 0, whereas the
region to the left of the axis corresponds to shear-thinning
fluids with F' < 0. As these results were being generated by
the solution algorithm described in Sec. II, it was anticipated
that perhaps these two branches that exist in the shear-thinning
region 1/F < 0 might eventually coalesce, perhaps joining in
a fold bifurcation, but Fig. 9 shows conclusively that this is
not what happens. Instead, the two solution branches meet
and exchange positions at about 1/F = —2.6, as may be seen in
Fig. 9. In spite of the appearance of these two solution branches

0.025F .
0.02F .

0.015F ' .

0.005F .

~ ,

-4 -2 0 2

4 6 8 10
1/F x10°

FIG. 9. Bifurcation diagram for the Stewartson (red line, bottom branch)
and Batchelor (blue line, top branch) type solutions, for Reynolds number
R, = 1000 and at rotation rate w = 0.5. The dependence of the eigenvalue
kgs on the viscoelastic coefficient of the non-Newtonian viscosity term is
shown.
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in Fig. 9, this point does not correspond to a transcritical
bifurcation since it occurs in the much higher-dimensional
space that includes the Fourier coefficients in the represen-
tation (15) through the vector (20).

IV. CONCLUSIONS

This paper has considered the famous von Karman simi-
larity form of the equations for viscous flow between two flat
plates, one of which rotates and the other is stationary. This
is a topic which has received an enormous amount of atten-
tion, primarily for Navier-Stokes flow, but here the interest is
in a weakly non-Newtonian fluid described by Reiner-Rivlin
theory. As indicated in the Introduction, a partial reason for
this is to test empirically the theory of the transition to turbu-
lence propounded by Forbes' and colleagues. Highly accurate
solutions have been generated using a spectral method that
has the somewhat novel feature that one of the series coef-
ficients must be determined in terms of the others and that
an integration constant kpg then serves as an eigenvalue for
the nonlinear problem. As indicated in the Introduction, the
Reiner-Rivlin fluid can be regarded as the simplest model
of a nonlinear stress—strain-rate law in a visco-elastic fluid
without memory, and Forbes' suggested that all such fluids
may undergo a transition to turbulent flow behavior that is at
least qualitatively equivalent to the highly complex elastic-
inertial instability that occurs in the Reiner-Rivlin equation.
Purely Navier-Stokes fluids would generate constant pres-
sure across the non-rotating bottom plate, and so any vari-
ation in pressure would be the evidence of fluid material
nonlinearity.

As anticipated from studies with Newtonian fluids
(Ref. 11) and some non-Newtonian fluids (Ref. 15), multiple
solutions were obtained. The “top” branch in our bifurcation
diagrams is clearly a flow of Batchelor type while the “bottom”
branch is of the Stewartson type. No mathematical connection
has so far been observed between these two branches, which
appear as disjoint solutions in Figs. 1 and 9, for example. It
is possible that, by generalizing this mathematical problem
and thus introducing additional physical parameters, perhaps
by allowing both disks to rotate or by including a boundary
at some finite radius, such a connection between these two
solution branches may be found. Nevertheless, this question
is not of primary concern in this viscometric investigation. A
third “middle” solution branch has also been found, although
it is presumably unstable. The stability of these axisymmet-
ric solutions has not been pursued here since that question
is not of great importance; rather, the stability of such flows
to azimuthal disturbances is of interest, but goes beyond the
scope of the present study.

It has been demonstrated numerically here that the devia-
tion of pressure r>Q(z) on the stationary bottom plate depends
on the two viscosity parameters R, and F and the rotation
rate w of the top disk. However, it is also very sensitive to
which solution branch is considered. With Reynolds number
R, =1000, visco-elastic constant F' = 10 000, and rotation rate
w = 0.5 illustrated in Fig. 5, the ratio of the deviation function
0O(z) between the top-branch and bottom-branch solutions is
0.0115/1073 ~ 1150. Thus the Stewartson solution represented
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by the bottom branch is of little value viscometrically, but the
Batchelor-type top-branch solution is of far greater interest.
In dimensional variables, if the fluid between the two disks is
water, then its kinematic viscosity is approximately 10~%m?/s,
and so the Reynolds number R, = 1000 assumed in Fig. 5 corre-
sponds to adimensional separation distance H ~ 5 mm between
the upper and lower disks, from Eq. (1). Under these circum-
stances, the rotation rate w = 0.5 corresponds to a dimensional
rotation speed Q =~ 22 rad/s or about 3.5 revolutions/s. Then
Fig. 5(b) indicates that the Batchelor-type solution branch pro-
duces a dimensionless pressure difference of about Ap = 1.5
across the portion 0 < r < 11 of the bottom plate shown, which
in dimensional variables represents a pressure difference of
approximately 70 Pa across about 55 mm. This may therefore
prove significant in attempts to determine the non-Newtonian
coefficient 1/F using pressure measurements on the stationary
bottom plate. The much lower Reynolds number R, = 5 used
in Fig. 8 would represent a significantly more viscous fluid
than water, if a similar separation distance between the plates
is used.
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