#### 1 Stable Isotope Systematics of Fluids and Epidotes in <u>the</u> Bacon-Manito Geothermal Field,

Philippines: Indicators of Fluid Origin and Evolution

#### 3 Julius John T. Dimabayao<sup>a</sup>, Michael C. Rowe<sup>b\*</sup>, and Shaun Barker<sup>c</sup>

4 <sup>*a*</sup>Energy Development Corporation – Bacman Geothermal Business Unit, Legazpi City,

*Philippines* 

- 6 <sup>b</sup>School of Environment, The University of Auckland, Auckland, New Zealand
- 7 <sup>c</sup>Centre for Ore Deposits and Earth Science, University of Tasmania, Hobart, Australia

*Keywords: hydrogen stable isotopes; hydrothermal epidote; magmatic arc geothermal systems; oxygen stable isotopes; renewable energy*

- 10 \* Corresponding author at: University of Auckland, School of Environment, 23 Symonds St,
- 11 1142 Auckland. +64 9 9236682, michael.rowe@auckland.ac.nz

#### 13 Abstract

The physiochemical evolution of active geothermal systems is important for assessing their longterm viability. Although discharge fluid chemistry provides information on geothermal well conditions, it only typically reflects the current state of the reservoir. Integration of fluid chemistry with rock and mineral chemistry can fill this gap by providing a longer-term record of fluctuations in geothermal conditions. This study examines the stable isotope systematics and the hydrogeological model of the Bacon-Manito geothermal field (Bacman) in the Philippines, a liquid-dominated, volcanic field-type geothermal system in a convergent setting. Geochemical data from geothermal-Geotthermal well discharge geochemistrys isare supportedlemented with by hydrogen and oxygen isotope data and elemental composition data from hydrothermal epidotes and reservoir rocks. Chemical and isotopic analyses of well discharges reveals short-term processes that are affecting the Bacman reservoir from the onset of fluid extraction due to field operations. Boiling within the Botong sector and the incursion of peripheral and injection fluids into the main reservoir of Palayang Bayan and Cawayan sectors wasere observed from the changes in isotopic and chemical compositions of well discharges. Meanwhile, changes in epidote morphology and associated mineral assemblages, as well as epidote  $\delta^{18}$ O values and mineral chemistrymajor-element compositions, are related closely linked to reservoir rock composition, fluid chemistry, and temperature. These factors dictate the extent to which water-rock interaction 

and fluid mixing, the two most prominent processes in the isotopic evolution of epidotes and fluids
 in Bacman, affect each particular sector in the reservoir.

We present here an updated and expanded hydrogeological model of Bacman by incorporating the exploration sectors of Rangas and Kayabon. A heat source associated with carbonate reservoir rocks is postulated for the Rangas sector. The presence of carbonate host rocks in Rangas and a postulated heat source would suggest that water-rock interaction is a dominant process. Fluids in the Rangasis sector originated from the main reservoir upflow in Botong and arewere isotopically enriched through interaction with carbonate reservoir rocks, suggesting that water-rock interaction is the dominant process. In contrast, the existence of fluids with varying variable isotopic compositions in the Palayan Bayan and Cawayan sectors would naturally drive indicates varying degrees of fluid mixing as thea dominant process. The present-day fluids, evolved through the continuous mixing of isotopically enriched parent waters with isotopically depleted peripheral waters. Further, fluids and epidotes from Kayabon arewere found to be isotopically and petrologically distinct from the rest of the Bacman reservoir, further suggesting that supporting a relatively cooler and waning heat source exists beneath the sector. 

#### 46 1. Introduction

The Philippines is currently the world's second largest producer of geothermal energy for power production (Bertani, 2015). The country's geological setting as an island arc in the Western Pacific is ideal for the development of Quaternary and Recent volcanism-related high-temperature geothermal systems (Sussman et al., 1993). In line with efforts to increase power production, exploration of frontier areas and development of existing geothermal systems in the country call for a better understanding of how fluids evolve in these magmatic-driven hydrothermal systems. Stable isotopes are particularly important for constraining fluid evolution. Pioneering studies of stable isotopes (e.g., Craig, 1963) have enabled their application to geothermal systems as natural tracers to determine the origin and evolution of these fluids. Stable isotopes also help determine reservoir processes, such as meteoric-magmatic fluid mixing and water-rock interaction, which that may have aaffected the fluid composition of these fluids. 

While fluid the chemistry may record of modern hydrothermal fluids provides evidence on the current conditions of a geothermal field, it is also important to look at the rock record, in particular the alteration mineralogy, to understand past conditions and the evolution of the entire system. Epidote is a common and geologically important alteration mineral associated with water-rock interaction in hydrothermal systems (Bird and Spieler, 2004). Hydrogen, oxygen, and chlorine isotopes are among the most suitable for studying the isotope systematics of epidote due to their abundances in epidote and relation to fluid chemistry (Morrison, 2004). H and O isotopes are the more extensively investigated, primarily because of lower Cl abundances in minerals and fluids (Frei et al., 2004). The fractionation factor of <sup>18</sup>O/<sup>16</sup>O and D/H between epidote minerals and water has been the subject of many works-prior studies (e.g., Zheng, 1993 for O isotopes and Chacko et al., 1999 for H isotopes). Furthermore, these works also determined the effects of temperature oin the isotope fractionation of <sup>18</sup>O/<sup>16</sup>O (Matsuhisa et al., 1979; Matthews et al., 1983; Kohn and Valley, 1998) and D/H (Graham and Sheppard, 1980; Graham et al., 1980; Vennemann and O'Neil, 1996; Chacko et al., 1999) between various epidote group minerals and water through experimental studies through empirical studies. These works paved the way for the application of stable isotopes in a variety of studies (e.g., Zen and Hammarstrom, 1984; Bird et al., 1988; and Cartwright et al., 1996) concerned with determining hydrothermal fluid sources that are involved in the formation of epidote minerals. The range of epidote-hosted systemss examined in these studies includes metamorphic environments, deep-seated plutons, and hydrothermal systems (Morrison, 2004). 

In this study, we focus on investigating the chemical and isotopic composition of geothermal fluids and hydrothermal epidotes in the Bacon-Manito geothermal field (Bacman), Philippines. The primary objectives are to determine the spatio-temporal evolution of hydrothermal fluids in the field, give light on theilluminate processes involved in the changes in the nature ofto the reservoir, and formulate an updated model for the field, which now includes potential sectors for expansion. Although there have been comprehensive studies on the isotopic composition of Bacman geothermal fluids as natural tracers (e.g., Ruaya et al., 1993; Martinez-Olivar et al., 2005), corresponding geochemical studies from reservoir rocks and minerals are lacking in the literature. Thus, reservoir processes and changes, which are better recorded better by rock and mineral samples, are largely overlooked. This gap highlights the limitation of for understanding the nature

of a geothermal reservoir when only looking at datasets from liquid-only samples datasets. Isotopic compositions of hydrothermal epidotes from selected reservoir rocks in Bacman provide additional perspective on the stable isotope systematics of the field. Pope et al. (2014, 2016) stressed the importance of isotope data from water-bearing hydrothermal minerals to complement isotope data from geothermal well discharges. These works investigations utilized both <sup>18</sup>O/<sup>16</sup>O and D/H stable isotopes records from hydrothermal epidotes in the rift-hosted Reykjanes and Krafla Icelandic geothermal fields, both of which are rift-hosted geothermal systems in Iceland. Following the methodology of Pope et al. (2014, 2016), we utilize a holistic geochemical approach combination of fluid, rock, and mineral chemistry to evaluate the origin of hydrothermal fluids, and illustrate different water-rock interactions processes that contributed to the evolution of these fluids, for the magmatic arc-driven Bacman geothermal system. 

# 99 2. Geologic Background

The Bacman geothermal field is located in the Pocdol Mountains, Philippines, a cluster of eruptive volcanic centers that are dated erupted between 6.4 Ma and 0.04 Ma (Bruinsma, 1983; Tebar, 1988; JICA, 1999; Ozawa et al., 2004) and scattered on a rugged topography that is part of the Bicol volcanic arc system inon the Bicol peninsula, Luzon Island (Fig. 1). These volcanic complexes are the outcome of the active subduction of the Philippine Sea Plate, resulting in young volcanism and emplacement of volcanic deposits on top of material overlying sedimentary units, metamorphic, and ophiolitic basement lithologies complexes in the Bicol basin (Andal et al., 2005; DENR-MGB, 2004). This type of setting provides active heat sources for volcanic field-type geothermal systems to develop (Moeck, 2014). Currently, the geothermal producing areas in Bacman are located in the Palayang Bayan, Cawayan and Botong sectors, while potential sectors for expansion includes the Tanawon, Rangas and Kayabon sectors (Villacorte et al., 2015).

Hydrothermal alteration and fluid chemistry of Bacman have been the subject of many different pioneering studies Pioneering studies of hydrothermal alteration and fluid chemistry within the Bacman geothermal field have served as a foundation for the development of conceptual models of the Bacman reservoir (e.g., Lawless et al., 1983; Panem and Alincastre, 1985; Reyes, 1985; Tebar, 1988; Ruaya et al., 1993 and D'Amore et al., 1993). These works have been the foundation of subsequent studies that allowed for the development of conceptual models of the Bacman 

reservoir. Surface investigations and drilling in Bacman showed have shown a predominant hydrothermal alteration assemblage from fthat formed in equilibrium with luid-rock interaction with neutral--pH fluids, along with minor alteration assemblages associated withdue to presence of shallow acidic fluids (Lawless et al., 1983; Reyes, 1985). The intensity and grade of alteration (respectively defined as the abundance of alteration minerals in a rock, and the type oftemperature-dependent mineral assemblage-depending on temperature) vary in different lithologies. The lower inherent permeability of the volcanic rocks compared to deeper sedimentary and intrusive rocks compared to overlying volcanic rocks (Zaide-Delfin et al., 1989) contributes to their lower degree of alteration, evidenced by sectional isotherms based on alteration mineralogy (Ramos and Santos, 2012), are mostly intensely altered (Ramos and Santos, 2012), while sedimentary and intrusive rocks were observed to be less altered (Zaide-Delfin et al., 1989). Hydrothermal mineralogy inIn the predominantly porphyritic andesite host rocks, alteration can forms both from replacement of original minerals and/or from vein minerals infilling fractures (Santos, 2014). 

Mineral-Host-rock alteration mineral assemblages due to interaction of host rocks with associated with dilute neutral-pH fluids are found almost throughout extensive in the deeper portion of the Bacman reservoir. These can be classified into reservoir temperature-dependent mineral suites with occurrences that are strongly dependent on reservoir temperature, and thus are utilized as geothermometers during drilling (Reves, 1985). Low temperature (< 180 °C to 220 °C) minerals include silica phases (cristobalite, opal, tridymite), chlorite, laumontite and clays such as smectite and illite-smectite. High temperature (220 °C to > 300 °C) minerals include illite, epidote, wairakite, tremolite-actinolite and secondary biotite. Along with available fluid inclusion data, these minerals provide information on the reservoir temperature variation across the field (Ramos and Santos, 2012). 

Hydrothermal epidotes are is a common alteration minerals in assemblages from dilute, neutralpH fluid- and rock interaction. The stability and mineral morphology of the mineral isare highly dependent on formation temperature (Keith et al., 1968; Patrier et al., 1990), permeability and fluid composition (Arnason and Bird, 1992), as well asincluding silica activity and CO<sub>2</sub> fugacity (Giggenbach, 1984; Arnason and Bird, 1992). In Bacman and other geothermal fields in the Philippines, epidote is particularly important during geothermal well drilling, as the onset of subhedral epidote in drillthe cuttings indicates that the a formation temperature of the formation

an be estimated at around 220 °C, the minimum temperature required for setting the production
casing shoe of the well (Reyes, 1990). Macroscopically, epidote occurs in euhedral prisms or
aggregates, and may form. It can be present in veins or vugs, or as a replacement mineral
forreplacing plagioclase, pyroxene, and hornblende (Santos, 2014).

Reservoir Bacman reservoir fluid chemistry data enabled the establishment of established a baseline fluid chemistry (Ruaya et al., 1993) prior to the full-blown fluid extraction of the field, revealing a- These data reveal that dilute chloride fluids exist in the Bacman reservoir (D'Amore et al., 1993; Abrigo et al., 2006). The calculated maximum reservoir temperatures based on the from quartz geothermometryer (T<sub>quartz</sub>) (Fouriner, 1977) reach more than exceeds 300°C in the upflow portion of the reservoir in the Botong sector, and temperatures gradually decrease towards the Palayang Bayan sector and and further to the outflow in the northwest the northwest in the direction of the outflow. Reservoir chloride (Cl<sub>res</sub>) data also display a similar trendabundances similarly vary, reaching more than 8,000 mg/kg in the from Botong sector and decreasing to ~6,500 mg/kg in the Palayang Bayan sector (Ruaya et al., 1993; D'Amore et al., 1993). 

# 

#### 310 | **162**

# **3. Methods**

# 164 3.1 Fluid Data and Reduction

Geochemical data for Ggeothermal well fluid geochemistrys wasere obtained from Ruaya et al. (1993) and the Energy Development Corporation (EDC). Sampling and analytical procedures to obtain chemical and isotopic parameters wereare laid out conducted in accordance to sampling methods and standards as described by Arnórsson and IAEA (2000). Reservoir fluid compositions were calculated Liquid data reduction was done usingfollowing the methods and calculations developed by Fournier and Truesdell (1974) and revised by subsequent authors (e.g. Arnórsson, and IAEA, 2000, and Horita and Wesolowski, 1994) to recalculate the reservoir fluid compositions. 

| 337<br>338                                                         |                                        |                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 339                                                                | 173                                    | Reservoir fluid compositionshemistry may be modified by physical processes (e.g., phase                                                                                                                                                                                                                                           |
| 340<br>341                                                         | 174                                    | separation, adiabatic boiling, and depressurization) during flow through well borestransport                                                                                                                                                                                                                                      |
| 342                                                                | 175                                    | towards the surface. Back-cCalculating back to these values reservoir compositions requires data                                                                                                                                                                                                                                  |
| 343<br>344                                                         | 176                                    | on separation pressure and discharge enthalpy (H) for each well during sampling. These data                                                                                                                                                                                                                                       |
| 345                                                                |                                        |                                                                                                                                                                                                                                                                                                                                   |
| 346<br>347                                                         | 177                                    | are These variables are used to in determinening the total discharge $(C_{TD})$ and reservoir $(C_{res})$                                                                                                                                                                                                                         |
| 348                                                                | 178                                    | concentrations, which are then used to calculate the concentration of species in the reservoir from                                                                                                                                                                                                                               |
| 349<br>350                                                         | 179                                    | initial measurements through data reduction when given initial laboratory results. C <sub>TD</sub> is the                                                                                                                                                                                                                         |
| 351                                                                | 180                                    | recalculated composition of a-the fluid component at the wellhead based on H (Equation 1), while                                                                                                                                                                                                                                  |
| 352<br>353                                                         | 181                                    | $C_{res}$ is the recalculated composition of <u>the subsurface</u> fluid component <u>assumed to represent the</u>                                                                                                                                                                                                                |
| 354                                                                | 182                                    | initial reservoir fluid in the subsurface and is assumed as the original concentration of the fluid                                                                                                                                                                                                                               |
| 355<br>356                                                         | 183                                    | component in the reservoir (Equation 4).                                                                                                                                                                                                                                                                                          |
| 357<br>358                                                         | 184                                    | $C_{TD} = (1-y) C_1 + yC_v \qquad (Equation 1)$                                                                                                                                                                                                                                                                                   |
| 359<br>360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368 | 185<br>186<br>187<br>188<br>189<br>190 | where $C_{TD}$ = total discharge concentration<br>$C_1$ = concentration at liquid phase as analyszed in the lab<br>$C_v$ = concentration at vapor phase as analyszed in the lab<br>and y is the steam fraction derived from PEPSE steam tables software (Scientech, 2005), expressed<br>as<br>$y = (H-h_f)/h_{fg}$ (Equation 1.1) |
| 369                                                                |                                        |                                                                                                                                                                                                                                                                                                                                   |
| 370<br>371                                                         | 192<br>193                             | where $h_f$ = specific enthalpy of liquid water at a given saturation pressure,<br>as determined from steam tables                                                                                                                                                                                                                |
| 372                                                                | 193<br>194                             | $h_{fg}$ = specific enthalpy change of evaporation at a given saturation                                                                                                                                                                                                                                                          |
| 373                                                                | 195                                    | pressure, as determined from steam tables.                                                                                                                                                                                                                                                                                        |
| 374<br>375                                                         | 196                                    |                                                                                                                                                                                                                                                                                                                                   |
| 376                                                                | 197                                    | For components that are strongly soluble in the liquid phase and (i.e. do not partition to vaporinto                                                                                                                                                                                                                              |
| 377<br>378                                                         | 198                                    | the vapor phase), Equation 1 can be simplified as                                                                                                                                                                                                                                                                                 |
| 379<br>380                                                         | 199                                    | $C_{TD} = (1-y) C_1 \qquad (Equation 2)$                                                                                                                                                                                                                                                                                          |
| 381<br>382                                                         | 200                                    | Geothermometers are utilized to determine To determine their Cres, chemical geothermometers                                                                                                                                                                                                                                       |
| 383                                                                | 201                                    | may be utilized. Due to the empirically-defined relationships of their solubility-dependent                                                                                                                                                                                                                                       |
| 384<br>385                                                         | 202                                    | reactions with temperature, chemical geothermometers (such as the quartz geothermometer, $T_{quartz}$ ,                                                                                                                                                                                                                           |
| 386                                                                | 203                                    | which considers waters in equilibrium with quartz after adiabatic boiling; (Fournier, 1977), are                                                                                                                                                                                                                                  |
| 387<br>388<br>389<br>390<br>391                                    |                                        |                                                                                                                                                                                                                                                                                                                                   |

used to recalculate the concentrations of cations and anions in the reservoir given the original
 laboratorymeasured concentrations-values (C) (Equation 3).

 $T_{quartz} = 1522 / (5.75 - \log C) - 273.15$  (Equation 3)

Equations 3 and 4 assume two things: (1) fluids from the well must come from a single feed zone and, (2) -no flashing has occurred within the wellbore to alter altered the original fluid composition. The latter can be tested by determining if there is an "excess enthalpy," wherein the discharge enthalpy (H) is much greater than the enthalpy of the saturated liquid fraction at the wellhead, which is usually based on  $T_{quartz}$  ( $H_{Tquartz}$ ) (i.e.,  $H \gg H_{Tquartz}$ ). If there is no excess enthalpy, then the calculated  $C_{TD}$  is assumed as to be equivalent to  $C_{res}$  the reservoir concentration. Otherwise,  $C_{res}$  reservoir concentration must be calculated using the steam fraction (y) obtained from  $H_{Tquartz}$ .

 $C_{res} = C \left[ 1 - \left( \left( H_{Tquartz} - h_f \right) / h_{fg} \right) \right]$  (Equation 4)

Similarly, isotopic data must be are reduced recalculated to total discharge and reservoir values.  $\delta$ values refer to isotopic Isotopic ratios of <u>SD</u> and <u>SD/H and <sup>18</sup>O/<sup>46</sup>O</u>, which are relative to the V-SMOW standard (Craig, 1961). Due As to <sup>18</sup>O and D partitioning into both the liquid and vapor phases, calculation of  $\delta_{TD}$  and  $\delta_{res}$  compositions consider both the liquid and steam condensate samples. 

 $\delta_{\text{TD}} = [(1-y)\,\delta_1] + y\delta_y \qquad (\text{Equation 5})$ 

| 426<br>427        | 221<br>222 | where                      | $\frac{\delta_l}{\delta_v}$ | <ul> <li>isotopic composition at liquid phase as analyzedanalysed in</li> <li>isotopic composition of steam condensate as analyzedanalyzed</li> </ul> |                   |
|-------------------|------------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 428<br>429<br>430 | 223        |                            | δ <sub>re</sub>             | $h_{s} = \delta_{TD} + [((H_{Tquartz} - h_{f})/h_{fg}) \ 10^{3} \ln\alpha]$                                                                           | (Equation 6)      |
| 431<br>432        | 224        | where 10 <sup>3</sup>      | <mark>nα</mark> liquid∙     | -vapor fractionation for D and $^{18}$ O based on T <sub>quartz</sub> is derived from                                                                 | the Equations     |
| 433<br>434        | 225        | 7 and 8 as                 | regressed                   | l by Horita and Wesolowski (1994).                                                                                                                    |                   |
| 435<br>436        | 226        | $10^{3}\ln\alpha_{l-v}$ (1 | D) = 1158                   | $3.8 (T^{3}/10^{9}) - 1620.1(T^{2}/10^{6}) + 794.84 (T/10^{3}) - 161.04 + 2.999$                                                                      | $2(10^{9}/T^{3})$ |
| 437<br>438        | 227        |                            |                             |                                                                                                                                                       | (Equation 7)      |
| 439<br>440<br>441 | 228        | $10^3 \ln \alpha_{l-1}$    | $V_{V}(^{18}\text{O}-) =$   | $-7.685 + 6.7123(10^{3}/T) - 1.6664(10^{6}/T^{2}) + 0.35041(10^{9}/T^{3})$                                                                            | (Equation 8)      |
| 442               | 229        |                            |                             |                                                                                                                                                       |                   |
| 443<br>444<br>445 | 230        | 3.2 Rock s                 | ampling a                   | and analysis                                                                                                                                          |                   |
| 446               |            |                            |                             |                                                                                                                                                       |                   |
| 447               |            |                            |                             |                                                                                                                                                       |                   |

Rock and mineral samples were gathered from borehole cuttings and available cores from selected sampling depths ranging from 1600 m to 2700 m, in four geothermal wells. These wells were selected to achieve optimal representation of different sections of across the geothermal field. Borehole cuttings with appreciable epidote alteration from four wells (PAL18D and PAL30D from the Palayang Bayan sector, RS1D from the Rangas sector, and PAL8RD from the Kayabon sector; Fig. 1) were retrieved from the reservoir. For well PAL8RD, a new well without muchlacking comprehensive reservoir and fluid discharge data, whole rock major element compositions were measured by X-ray fluorescence (XRF) analysies at the University of Auckland were also performed on a PANalytical Axios XRF spectrometer foron selected samples. However However<u>unfortunately</u>, XRF data is unavailable for the other three wells.- Loss on ignition (LOI) determination was conducted on all sample powders by after heating them at 900 °C for 16 hours. Glass beads for XRF analysis, made from a 2:1 mixture by mass of non-ignited powder and lithium meta (64.7%)/ tetra (36.3%) borate, were fused in a PANalytical Eagon 2 at 1000 °C for 85 minutes. Compositions were determined on a PANalytical Axios XRF spectrometer with **F**Reproducibility for major elements is  $6 \le 6 \le 10^{-1}$  wt%. Results of the whole rock XRF analyses are provided in Supplemental Table 2. 

Alteration mineralogy was described semi-quantitatively by taking note from observations of alteration intensity and abundance of alteration minerals. The cuttings were further ground to a maximum diameter of at most ~1-2 mm to dislodge epidote crystals from other minerals and the groundmass. Grains-Epidote grains that were large enough (at least 0.2 mm in length), did not have and lacked altered rims, visible inclusions, or other attached minerals, were hand-picked from the rest of the sample using under a binocular microscope. Following mineral separation, <sup>18</sup>O/<sup>16</sup>O, D/H isotopic analysis and electron microprobe analysis (EMPA) were performed on the epidote grains.

Epidote major- and minor-element abundances Major and minor element compositions of epidote
(Si, Ca, Al, Fe, Mg, Mn, Ti, Ca, and Cr) were determined using electron microprobe analysis
(EMPA) at Victoria University of Wellington on a JEOL 8230 'Superprobe'. Epidotes wasere
analysed using a 12 nA, 15 kV focused electron beam. Internal standards Biotite-110 and Engels
Hornblende were used analysed as a check ofto monitor accuracy and precision, independent of

calibration standards. Results of the EMPAEpidote compositions are presented in Table 2. To ensure data quality, results were cross-referenced with epidote compositions from different sources (E.g. Shikazono, 1984; Bird et al., 1988, and Arnason et al., 1993) and checked stoichiometrically. 

Epidote stable isotope compositions was measured by the GNS Isotope Laboratory in Lower Hutt, New Zealand. For D/H analysis, samples were analysed in triplicate using a HEKAtech high temperature elemental analyser coupled with a GV Instruments IsoPrime mass spectrometer. All results are reported with respect to V-SMOW, normalized to international standards IAEA-CH-7, NBS30 and NBS22 with reported  $\delta D$  values of -100‰, -66‰ and -118‰, and waters USGS46, 47, 48, and W62001 (-235.8‰, -150.2‰, -2.0‰, and -41.1‰, respectively). The external precision for these measurements is better than 2‰. For <sup>18</sup>O/<sup>16</sup>O analysis, oxygen extraction was done first using on a CO<sub>2</sub>-laser and BrF<sub>5</sub>-laser ablation line following the methods of Sharp (1990). Samples were then analyszed using a Geo20-20 mass spectrometer with. Sample results were normalized to NBS-28 (+9.6%), with reproducibility, based on replication of NBS-28 (N=4), at <0.15‰. IThe results of isotopic analysis results are expressed in delta notation relative to V-SMOW (%). Epidote-fluid The fractionation factors ( $10^{3}\ln\alpha$ ) between epidote and water for both D/H and <sup>18</sup>O/<sup>16</sup>O were determined using Equation 9 following O'Neil (1986). 

$$10^{3}\ln\alpha = 10^{3}\ln(1000 + \delta_{epidote} / 1000 + \delta_{fluidwater}) \approx \delta_{epidote} - \delta_{fluid}$$
(Equation 9)

TThe temperatures foron specific sample depths were obtained from well temperature-depth profiles provided by EDC. To calculate the  $\delta D$  and  $\delta^{18}O$  isotopic composition of fluids in equilibrium with epidote were calculated using -Equations 10 (Chacko et al., 1999) and 11 (Pope et al., 2016; as derived from the results of Matsuhisa et al., 1979; Matthews et al., 1983; and Kohn and Valley, 1998), were used following the procedure of Pope et al. (2016).

 $10^{3} \ln \alpha D_{epidote-fluid} = 9.3000 (10^{6}/T^{2}) - 61.90$ (Equation 10)

 $10^{3} ln \alpha^{18} O_{epidote-fluid} = 1.53 \ (10^{6}/T^{2}) - 3.31$ (Equation 11)

A comparison between Equation 11 and fractionation curves derived by Zheng (1993) and Matthews et al. (1983) indicates a close approximation between these approaches (within  $\sim 2\%$ ), and choice in the fractionation equation does not produce a significant effect on calculated results.

**4. Results** 

# 292 4.1. Petrography and whole rock chemistry

Petrographic data-observations from the four wells show a predominant propyliticly neutral and propylitic-alteration mineralogy of (illite + chlorite + epidote + tremolite/actinolite.) as a result of host rock interaction with dilute neutral-pH fluids in the Bacman reservoir. Alteration intensity is moderate to high and is often controlled by lithologic type and permeability. For example, andesite, volcanic breccia and sedimentary breccia units generally have moderate to high intensity-alteration grade and moderate to abundant alteration intensity. However, microdiorites and hornfels from the deeper sections of well RS1D have weak alteration intensity and few alteration mineralsgrade and intensity. Alteration minerals occur through replacement of primary minerals such as plagioclase and clinopyroxene, or through direct deposition in veins and vugs. Also, the alteration mineral assemblage indicates that the alteration grade increases with depth (i.e., prograding) for wells PAL18D, PAL30D, and RS1D, with temperature estimates increasing from 220 °C up to 280 °C. A common trend observed with increasing depth is increasing epidote crystallinity and concurrent appearance of index mineral geothermometers (from illite-smectite, to illite, to epidote, to wairakite/laumontite, to tremolite/actinolite). For well PAL8RD, the alteration grade stays uniform throughout the observed samples, yielding a temperature estimate of 240-260 °C. This estimate is in close agreement with the results of fluid inclusion homogenization temperatures (244°C) analysis offrom PAL8RD core samples from (Doma, (2015). However, mineral paragenesis of the cuttings from the well shows relict alteration and multiple veining episodes, which indicates discordant conditions in the Kayabon reservoir. This reduces the current temperature estimate of the reservoir to 200-220 °C based on the presence of relict actinolite and sericite that retrograded to chlorite or sphene/leucoxene. 

Whole rock <u>major element</u> chemistry was employed for PAL8RD samples <u>serve</u> as a supplement
for the lack of comprehensive reservoir information on this well. XRF <u>results data show</u> there is
little variation with depth <u>i</u>on silica and alkali concentrations (SiO<sub>2</sub> at 51.30–53.<u>879</u>%, K<sub>2</sub>O at

# 1.14–2.15%, and Na<sub>2</sub>O at 1.34–4.24%, see Supplemental Table 2). Meanwhile, there is an apparent increase in CaO concentrations wt% with depth from 7.81% at 1998 m to 16.27% at 2690 m, corresponding to changes in lithology.

#### *4.2 Epidote chemistry*

Generally, epidote was observed as<u>is</u> subhedral to euhedral crystals inwith a prismatic or drusy habit, formed either in veins or as replacement of primary minerals such as plagioclase, clinopyroxene, and hornblende. It is often found associated with illite, chlorite, wairakite, and actinolite/tremolite. Chemically, there is an observable compositional variation in the epidote froms in all four wells. The cation proportions computed from EMPA data can be approximated within the Ca<sub>2</sub>Fe<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH)–Ca<sub>2</sub>Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) binary <u>systemphase</u>, with the mole fraction of Ca<sub>2</sub>Fe<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) (or X<sub>Fe</sub>) generally ranging from 0.20 to 0.35.

Compositional variation in epidote demonstrates inversely proportional is observed in inversely proportional fluctuations in measured Al<sub>2</sub>O<sub>3</sub> and FeO<sub>t</sub> abundances, consistent with the common octahedral substitution between Fe<sup>3+</sup> and Al<sup>3+</sup> cations. Epidote Al<sub>2</sub>O<sub>3</sub> varies from 19-29.4 wt. % (with a single outlier at 12.7 wt. %), while FeO<sub>t</sub> varies from 6.3-18.2 wt. % (with the same outlier at 25.4 wt. % FeO<sub>t</sub>). Stoichiometric<del>ry</del> epidote mineral formulae, calculated on 12.5 oxygens per formula unit (pfu), contain 8 cations. However, epidote compositions reported here range primarily from 8.15 to 8.45 cations pfu, in close approximation to theoretical values. The "excess" observed cations are unlikely to be solely an analytical artifact, the result of the analytical procedure and instead also likely reflect real heterogeneity in the secondary epidote compositions. This is supported by inversely correlated Fe and Al abundances (both wt. % and calculated cations pfu) to total calculated cations. Despite this clear chemical correlation there is no observational relationship between the sum of Al<sup>3+</sup> and Fe<sup>3+</sup> cations and total calculated cations. 

Chemical zonation within epidotes is observed, particularly in <u>thea</u> majority of epidotes in PAL30D at 1700 m depth, wherein <u>mineral</u> cores of the epidote are more Al-rich than the rims, which are more Fe-rich. For example, aAt this depth, the Al<sub>2</sub>O<sub>3</sub> content of a particular epidote grain in PAL30D (Fig. 2) is about four percent richer<u>4</u> wt% higher in the core than the rim (25.27% versus 21.50%, respectively), while the opposite is true for FeO<sub>T</sub> content (11.31% at the core versus 15.31% at the rim; Supplemental Table 1). This zonation is also evident in backscatter electron images with bright Fe-rich rims compared to darker Al-rich cores (Fig. 2).visually; wherein Al-rich cores register a darker shade of gray than Fe-rich rims in backscattered electron images of the mineral (Fig. 2). Major element epidote compositions as a function of depth indicate a wide range in compositions at every depth interval (likely related to crystal zoning). Only PAL30D shows a weak systematic variation with depth, with average  $Al_2O_3 \pm CaO$  concentrations decreasing with depth (with corresponding FeO<sub>T</sub>Fe increases; Fig. 3). Other wells have no evident systematic variations in epidote major element chemistry with depth of sampling. 

#### *4.3. Epidote isotopic composition*

Results of isotopic analysis of hydrothermal epidote from samples from wells PAL18D, PAL30D, RS1D, and PAL8RD are presented in Table 1. The overall range of epidote  $\delta D$  value of all epidotes collected in this study is from -69.1% to -46.4%, while for  $\delta^{18}$ O, the field-wide range is from 0.0% to +11.6\%. Although sample numbers are limited, epidote average isotopic compositions are distinctly different between the four sampled wells. Average  $\delta D$  and standard deviation of analytical results per well ranges from  $-46.9 \pm 0.6\%$  (PAL8RD; n=5) to  $-64.2 \pm 1.1\%$  (RS1D; n=3). Inversely proportion to the trend in  $\delta D$ , average  $\delta^{18}O$  varies from  $0.7 \pm 0.6\%$  (PAL8RD) to  $10.5 \pm 1.6\%$  (RS1D), with average intermediate epidote isotope compositions for PAL18D ( $\delta D$  of  $-59.0 \pm 9.2\%$  and  $\delta^{18}$ O of  $6.2 \pm 4.9\%$ ; n=3) and PAL30D ( $\delta$ D of  $-56.2 \pm 0.3\%$  and  $\delta^{18}$ O of  $4.2 \pm$ 0.3%; n=3)-compositionally intermediate. In general, the  $\delta D$  and  $\delta^{18}O$  values for PAL30D, RS1D, and PAL8RD epidotes record relatively small ranges in isotopic composition, with commonly less than ~1.5% variance for either isotopic system. For these three wells, the  $\delta D$  range of epidotes only differs by 0.4‰, 2.1‰ and 1.6‰, respectively. Well PAL18D in contrast has a significant variation in both  $\delta D$  and  $\delta^{18}O$  values, ranging from -69.1% to -51.1%, and +0.5% to +9.8%, respectively. Overall, there is no indication of a systematic change in epidote isotopic composition with depth of sampling (Table 1).

*4.4. Fluid chemistry* 

For this study, liquid discharge data w<u>asere</u> gathered from a total of 34 wells<del>; <u>covering</u>21 wells</del> from the Palayang Bayan sector (21), five wells from the Botong sector (5), four wells from the Cawayan sector <u>(4)</u>, three wells from the Tanawon sector <u>(3)</u>, and one well from the Rangas sector (1). Thisese includes physical and chemical parameters such as composition, discharge enthalpy, sampling pressure, and pH. Full results are available in the online supplement. Results indicate that all geothermal well discharges are alkali-chloride fluids having with a near-neutral pH.

Chloride is dominant among the components measured in the geothermal well discharge samples. As a conservative component in the fluid, along with boron (B), Cl (and B) tends to stay dissolved within the liquid phase (Arnórsson and IAEA, 2000). Among the wells, chloride concentrations are high, with reservoir values ranging from 1,822 to 12,344 mg/kg. Boron has a much concentrations are significantly lower concentration in the fluids, with measured values varying from 13.6 to 353 mg/kg. Across the geothermal field, the average molar ratio of Cl/B calculated from measured abundances is 57. Homogeneity in molar Cl/B is better reflected in the different sectors. Wells in Tanawon and Cawayan sectors have relatively high Cl/B values (average of 71 and 65, respectively), while wells in Palayang Bayan sector have moderate Cl/B values (ranging widely from 33 to 79, with an average of 63). These wells are in stark contrast to wells in Botong and Rangas sectors, which have low to very low molar ratios (23 and 6, respectively; Fig. 4b). 

Reservoir  $\delta D$  ( $\delta D_{res}$ ) values for Bacman well discharges range from around approximately -23.5‰ (well RS1D, Rangas sector) to -17.9‰ (PAL23D, Palayang Bayan sector) relative to V-SMOW and have an average of -20.0‰. For reservoir  $\delta^{18}$ O ( $\delta^{18}$ O<sub>res</sub>), values for the fluid samples range from -3.32‰ (CN1, Cawayan sector) to +7.2‰ (RS1D) relative to V-SMOW. The average  $\delta^{18}$ Ores for the Bacman reservoir is -0.90%. Overall, wells in the Botong and Rangas sectors have the most depleted fluids based on  $\delta D_{res}$  and the most enriched fluids based on  $\delta^{18}O_{res}$ , with fluid from RS1D representing the lowest  $\delta D_{res}$  and highest  $\delta^{18}O_{res}$  in the Bacman reservoir. Increasing  $\delta D_{res}$  and decreasing  $\delta^{18}O_{res}$  occurs westward towards the Palayang Bayan, Tanawon, and Cawayan sectors (Fig. 5b). For wells with corresponding epidote isotopic analyses, PAL18D and PAL30D,  $\delta D_{res}$  is -23.0% and -21.0% while  $\delta^{18}O_{res}$  is -0.6% and -2.4%, respectively (Table 1; PAL18D from Ruaya et al., 1993). No fluid isotopic data is available for well PAL8RD. These isotopicIsotopic and chemical differences between sectors in the field are attributed to the influence of peripheral fluids (Solis et al., 1998) and effect of fluid extraction in from the reservoir (see section 5.2; Espartinez and See, 2015) and is thoroughly discussed in section 5.2. 

#### **5. Discussion**

#### 404 5.1. Epidote-fluid disequilibrium

Host rock compositions and lithology appear to exert significant influence on the major element composition of epidotes (See Table 2 and Supplemental Table 2), likely through replacement of primary minerals during progressive fluid--rock interaction. For well PAL8RD, there is a correlation between the composition between whole rock XRF datawhole rock and epidote compositions and epidote microprobe data (Fig. 6). Results suggest that the Ca<sub>2</sub>Fe<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) mole fraction of epidotes correlates well with the Fe/(Fe+Al) oxide ratio of the cuttings. Likewise, variations in the trace element oxides in epidote such as MgO and Na<sub>2</sub>O are correlated with whole rock composition, particularly on the three deepest samples from the well at 2298, 2388 and 2690 m (Fig. 6). 

In addition to reservoir lithology, fluid chemistry can have a significant role inmay also affect the major-element composition of epidote (Giggenbach, 1984; Arnason and Bird, 1992; Arnason et al., 1993). For In the case of epidote Fe-Al chemical zonation observed in some epidotes in all four wells, fluids parameters such as temperature, pH, and O<sub>2</sub> and CO<sub>2</sub> fugacity may significantly influence epidote Fe<sup>3+</sup> and Al<sup>3+</sup> molar proportions (Fe<sup>3+</sup>/Al<sup>3+</sup>; Arnason et al., 1993). Distinguishing between these factors in a dynamic system is challenging and beyond the scope of this investigation. For example, assuming constant fluid compositions, the increasing X<sub>Fe</sub> can result from decreasing formation temperatures. However, in near-pH neutral fluids at the 250-300°C temperatures based on downhole measurements in Bacman wellsFurther, the solubilities of Fe(OH)<sub>3</sub> and Al(OH)<sub>4</sub>, the primary Fe<sup>3+</sup> and Al<sup>3+</sup> complexes at these conditionsnear-neutral pH and elevated temperatures (>200°C), are also dependent on fluid pH (Arnason et al., 1993). Under conditions of the Bacman wellsAt conditions of the Bacman wells (242-301°C, see Table 1), the increase of  $\sim 0.1 X_{\text{Fe}}$  in epidote rims can result from a relatively small increase ( $\sim 0.25-0.3$ ) in pH, at constant temperatures (Arnason et al., 1993). From these results, Wwe conclude that that epidote here records mineral-rock-fluid disequilibrium whereby the average or "bulk" major-element composition of epidote is dictated strongly influenced by the host-rock mineralogy and chemistry, while mineral epidote zonation instead likely reflects subtle changes in fluid chemistry. 

Mineral and fluid chemistry data from this study showdemonstrate that the composition of epidotes in the Bacman field is largely dependent on fluid mixing and water-rock interaction. The isotopic composition of the fluids (Fig. 7;- See also Supplemental Table 4 for the complete fluid isotopic data-) indicate that the Bacman geothermal field, as an andesitic geothermal system along a convergent plate boundary, typifies the "classical"  $\delta^{18}$ O isotope enrichment of fluids relative to meteoric waters (Bacman  $\delta^{18}O = -4.8\%$ ; Salonga, 2015). This enrichment is often due to water-rock interaction and mixing with fluids having isotopic compositions close to magmatic end members ((Craig, 1963; Giggenbach, 1992). For example, at the extreme compositional end, we see that well RS1D fluid ( $\delta^{18}$ O at +7.2‰ and  $\delta$  D at -23.5‰) coincides with fumarolic condensates from andesitic volcanoes in the Philippines and is similar to andesitic or "magmatic" fluids as defined by Giggenbach (1992). Further, this study demonstrates the dependence of rock and mineral isotopic composition not only on reaction processes and coupled varying fluid-rock ratios (Bowers and Taylor, 1985; Lee and Bethke, 1996; Kleine et al., 2018), but also onas well as on temperature-dependent equilibrium fractionation constants, which are ultimately dependent on temperature (Chacko et al., 1999). Thus, what controls the O- and H--isotope composition of the-epidotes is the degree of fluid-rock buffering and the temperature that of epidote growth occurs at. 

From the calculated equilibrium fluids ( $\delta_{\text{fluid(eq)}}$ ; Equations 10 and 11), variations in both  $\underline{\delta D}$ hydrogen and  $\delta^{18}O$  oxygen isotopes are evident when compared to measured  $\delta_{\text{fluid}}$  (Table 1). The discharge fluid samples represent a modern, "final" or average fluid composition and do not necessarily represent the heterogeneity of fluids at depth as recorded by epidote, or potential changes in the composition of fluids over time (Table 1). Intra-well variations thus reflect the effectivity of epidote in recording vertical isotopic variations of the fluids in equilibrium with the mineral. Currently, the fluids discharging from wells are isotopically distinct ( $\delta D = -23.5\%$  to -17.9%;  $\delta^{18}O = -3.32\%$  to +7.2%; Supplemental Table 4) from the calculated epidote-equilibrium fluids from which epidotes formed ( $\delta D_{\text{fluid}(eq)} = -38.6\%$  to -19.3%;  $\delta^{18}O_{\text{fluid}(eq)} = -2.4\%$  to +10.3%; Table 1). in equilibrium with.

By comparing the fractionation factors between the epidote and well discharges to isotopic
equilibrium for D/H (Chacko et al., 1999) and <sup>18</sup>O/<sup>16</sup>O (Pope et al., 2016) as a function of
temperature, we can assess the current relative epidote-fluid disequilibrium in isotopic space (Fig.
8). Fractionation factors are skewed away from the theoretical isotopic equilibrium based on

modern downhole well temperatures, to a lesser extent for D/H and more significantly for  ${}^{18}O/{}^{16}O$ . In addition, several calculated fractionation factors are out of thermal equilibrium, defined by the temperature range where the occurrence of hydrothermal epidotes is expected in Bacman or in other geothermal fields (180-320°C; Reyes, 1985; Reyes, 1990; Bird and Spieler, 2004). However, based on uncertainty in D/H fractionation by Chacko et al. (1999) considered to be  $\pm 10\%$ , most data points could still be included within the theoretical range of hydrogen isotope equilibrium. Given that proportionally hydrogen is far less abundant in rocks compared to the fluid, the disequilibrium of fluid D/H may readily reflect changes in fluid isotopic composition. Meanwhile, the <sup>18</sup>O/<sup>16</sup>O fractionation factors are skewed <del>away</del> to a greater degree from the isotopic equilibrium, which suggest a greater fluid-epidote disequilibrium than observed in D/H space (Fig. 8). This-likely reflecting reflects the significant oxygen buffering by the host rock. In short, similar to the complex nature of major elements discussed above, D/H isotopes reflects potential changes in fluid compositions while <sup>18</sup>O/<sup>16</sup>O likely instead reflects the complexity of variable fluid-rock interactions. 

#### 475 5.2. Changes in Fluid Composition

Stable isotope data compositions offrom geothermal fluids were gathered as part of the baseline hydrothermal fluid data to define the baseline chemistry (Ruaya et al., 1993) and hydrogeology (Caranto, 1999) of the Bacman geothermal field, and alsonecessary for monitoring reservoir changes during field operations (Martinez-Olivar et al., 2005). Ruaya et al. (1993) illustrated determined that the composition of discharge fluids from Bacman geothermal wells are heavily affected by water-rock interaction, where fluids are said to be isotopically shifted with respect towith shifts in the fluid oxygen isotopes from the global meteoric water line (Giggenbach, 1992). The spatial variation of  $\delta^{18}O_{res_{a}}$  also resembles similar to the  $Cl_{res}$  and  $T_{quartz}$  trends and shows variations, demonstrates that wells with higher  $\delta^{18}O_{res}$  values (~+3.00‰) are located close to Botong sector (Fig. 5a). These isotopic values gradually decrease for wells in the Palayang Bayan and Cawayan sectors, which get closer to the fringes of the reservoir and are more likely to have significant meteoric water input (Martinez-Olivar et al., 2005).

Changes in the chemical characteristics of fluids in the Bacman geothermal field are evident since
the start of commercial operation (Fig. 4, 5; Espartinez and See, 2015; Ramos and Espartinez,

2015). On average, wells in the Botong sector still have the most isotopically enriched fluids among the rest of the field, when oxygen isotope data from this study are compared with baseline values from Ruaya et al. (1993), although the single Rangas well has maintains the most enriched  $\delta^{18}O_{res}$  fluid (Fig. 5). Although the same <u>spatial</u> trends in  $\delta^{18}O_{res}$  exist with increasing isotopic depletion to the west, the movement of shifting -2‰ and -1‰ contour lines (Fig. 5) to the east from the Cawayan sector to the Palayang Bayan sector is observed when compared to the original contour figure from the baseline data of Ruaya et al. (1993). This suggests that the onset of production stage in the Bacman field has also ushered the movement of isotopically depleted fluids from the west of the field to the main portion of the reservoir. 

The molar ratio of chloride and boron (Cl/B) from well discharge fluids compared to initial conditions indicates a similar trend as observed in  $\delta^{18}O_{res}$  data (Fig. 4; Ruaya et al., 1993). Comparison of the molar Cl/B contours (Fig. 4) shows the movement of peripheral fluids from the west towards the central Bacman reservoir. There is a noticeable increase in Cl/B values based on fluid samples from this study, where fluids with high Cl/B values (~60 to 75) have now moved to the southern Palayang Bayan sector and east of the Cawayan and Tanawon sectors. This clearly represents demonstrates that the geothermal field is already tapping a different type of fluid coming from the western periphery of the reservoir. This trend was first observed shortly after the onset of production, and it was suggested that continuous fluid extraction from the wells prompted fluids that come from the Masakrot area in the immediate western periphery of the field to migrate eastwards (Solis et al., 1998). These geothermal fluids are characterized as relatively cooler, and isotopically depleted and degassed fluids compared to those coming directly from the reservoir. The migration of Masakrot fluids is also regarded as the reason for the only a minimal decline in reservoir pressure in the field (Solis et al., 1998). On the other hand, the increase in Cl<sub>res</sub>, especially for most wells in the Palayang Bayan sector can be explained by fluids from geothermal wells injected reinjection of well fluid back into the reservoir (Fig. 9). Geothermal fluids extracted from production wells and separated from steam are relatively cooler and have low gas content, but have high solute concentrations when injected backreinjected. In Bacman, injection sinks are located away from the main production area, towards the northwest in the Palayang Bayan sector and further west in the Cawayan sector. However, due to continuous extraction and injection of fluids, the incursion of injection fluids have has already manifested in the form of a steady increase in 

Cl<sub>resa</sub> to concentrations\_<u>whichthat</u> approach <u>that of the</u> injection fluids, particularly in the northern
 part of <u>the</u> Palayang Bayan <u>sector</u> and in <u>the</u> Cawayan<u>sector</u> (Espartinez and See, 2015).

In contrast to regional trends, there is a noticeable enrichment in  $\delta^{18}O_{res}$  values of fluids from wells OP3D ( $\Delta$  +0.69‰) and OP4D ( $\Delta$  +0.55‰) in the Botong sector (Fig. 9). This enrichment suggests that localized boiling is expanding within the reservoir at-in the Botong sector due to fluid extraction, and that these wells are tapping residual fluids. Although bBoiling in the reservoir has been is occurring in the natural state, but it is currently limited only to the Botong sector (Ruaya et al., 1993; Martinez-Olivar et al., 2005). Data from Martinez-Olivar et al. (2005) showed that the  $\delta^{18}O_{res}$  of OP6D had been depleted to +0.72‰, which suggests that OP6D has already been tapping steam condensates (Fig. 9). Meanwhile for wells tapping the residual fluids, it is expected that they would have manifested an isotopic enrichment and/or increase in solute concentrations, such as the case of wells OP3D and OP4D (Fig. 9; Supplemental Table 3). As boiling near the reservoir upflow continues, it can be sepected that the vapor-rich zone forming in the reservoir could expand not just in Botong sector, but also well-into the Palayang Bayan sector and the rest of the field. 

# 

### 5.3. Hydrogeological model of Bacman

By integrating various geochemical data from well discharge fluids and reservoir rocks, this study shows that the influence of particular reservoir processes on the evolution of fluids differs from one location to anotherbetween locations in the reservoir. Here we present an updated and expanded Bacman hydrogeological model that summarizes the effect of fluid mixing and waterrock interaction on the present configuration of the Bacman reservoir in <u>the</u> Palayang Bayan and Botong sectors. Also, we have now incorporated in this model the reservoir processes occurring in the exploration sectors of Rangas and Kayabon (Fig. 10).

The present and widely-accepted hydrogeological model by most authors for the Bacman reservoir (e.g., Reyes, 1985; Zaide-Delfin et al., 1989; Ruaya et al., 1993; D'Amore et al., 1993; and Ramos and Santos, 2012) points to Botong sector, specifically underneath Mt. Pangas, as the location of the main heat source and upflow region. for the Bacman reservoir. This model has been contested in the past (e.g., Reves et al., 1995) due to the existence of other volcanic centers in Bacman that 

were postulated to be separate heat sources. However, beyond this assumptioninference, there have has been no conclusive data that could constrain these areas until the prior to drilling wells RS1D and PAL8RD-were drilled.

Petrologic and geochemical data of well RS1D in the Rangas sector presented a strong case that for a heat source distinct from the one in the Botong sector does exist in Rangas (Santos, 2014; Ramos et al., 2015). However, subsequent drilling in the Rangas sector showed subpar temperature estimates and limited wellbore permeability relative to RS1D and other wells in the Bacman field (Ramos et al., 2015), which suggested that Rangas has a separate but localized heat source. Here, we agree with previous studies (Ramos, 2002; Santos, 2014; Ramos et al., 2015) that the source of fluids in RS1D is also coming from the Botong sector, where a small component of hydrothermal fluids flows southeast towards the Rangas sector along permeable faults. The fluids and epidotes in the Rangas sector are isotopically more enriched (based on  $\delta^{18}$ O) compared to any other wells in the field. We argue that the most-likely mechanism for  $\delta^{18}$ O isotopic enrichment of fluids in the Rangas sector is through a higher degree of water-rock interaction with reservoir rocks. This is similar to what was presented by Ruaya et al. (1993) to explain the enriched  $\delta^{18}$ O compositions of fluids from Botong wells through intensive interaction with carbonates in the reservoir. This too may have likely happened occurred when fluids from the upflow region travelled laterally through faults and fractures to the Rangas sector, resulting into greater fluid isotopic enrichment. High B concentration in the fluid (and low Cl/B) from the Rangas sector well may further corroborate this model, with the high B reflecting extensive interaction with reservoir rocks (Arnórsson and IAEA, 2000). 

For the Palayan Bayan sector, wells PAL18D and PAL30D present contrasting chemical and isotopic compositions of epidote and equilibrium calculated fluids. based on the epidotes and the calculated fluids in equilibrium with the minerals. The heterogeneous isotopic compositions of PAL18D epidotes is are in stark contrast with the relatively consistent compositions of PAL30D epidotes, suggesting that the two wells have experienced different reservoir conditions in the Palayang Bayan sector as a result of differential fluid mixing and water-rock interactions. PAL18D fluids may have resulted through be the result of mixing of meteoric (Bacman  $\delta^{18}O = -4.8\%$ ; Salonga, 2015) and magmatic waters (e.g.  $\delta D$  -20 to -29‰ and  $\delta^{18}O$  +2.6 to +8‰ as defined by fumerole condensates from Philippine arc volcanoes; Giggenbach, 1992) in varying degrees 

throughout the evolution of the geothermal reservoir. Meanwhile, the PAL30D fluid likely evolved through continuous fluid mixing in the past. The onset of fluid extraction in <u>the Bacman field</u> has accelerated this fluid evolution, making the PAL30D fluid<u>with</u> more enriched in- $\delta D_{res}$  and more depleted in- $\delta^{18}O_{res}$  in the PAL30D fluid.-

Compared with hydrothermal epidotes elsewhere in the Bacman system, the epidotes from well PAL8RD in the Kayabon sector retain isotopic signatures in equilibrium with distinct fluid compositions (based on D/H and arguments above about controls on epidote isotopic compositions). The petrogenesis of Kayabon epidotes is deemed interpreted an earlier event to have formed from a previously hotter heathigher temperature source, prior or contemporaneous to when fluids in the main part of the reservoir were still more isotopically enriched than their present compositions (Ruaya et al., 1993; Martinez-Olivar et al., 2005). Also, the calculated epidoteequilibrium fluid with epidote is similar to the isotopice compositions of PAL18D and PAL30D discharge fluids. The depleted nature of calculated PAL8RD fluid, relative to PAL18D, PAL30D, and RS1D fluids, suggests a distinct source from-relative to the fluids originating from the Palayang Bayan or Rangas sectors. However, with respect to hydrogen isotopes, the enriched H-isotopic nature of theis fluid and the epidotes in PAL8RD, relative to the respective fluid and epidote samples of the those in other wells in this study come into question since it is unusual, since for fluids in equilibrium with the reservoir rocks tend to have elevated  $\delta D$ . One possible explanation is the that presence of pre-existing hydrous silicates that were involved ininfluenced water-rock reactionsinteraction in the Kayabon sector, producing enriched D/H epidote. to produce the epidotes that were sampled. Interaction of meteoric water and relatively fresh rock may have commenced earlier in the hotter ancientprior to modern geothermal activity in the -Kayabon reservoir, producing these preexisting hydrous silicates.and may have produced these preexisting hydrous silicates, which resulted to increased D/H values of Kayabon epidotes from the onset compared to the rest of the Bacman reservoir. Subsequent interactions of the altered rock with meteoric water fluids in modern reservoir conditions close to the present may have resulted in further increase enrichment in D/H to present-day compositions. A similar interpretation exists for the Hakone geothermal system where substantial groundwater recharge fluids led to the long-term  $\delta D$  enrichment and  $\delta 18O$  depletion of both fluids and host rock-values until they reached present compositions. This is similar to the characteristics of fluids in Hakone geothermal system (Matsuo 

608 et al., 1985; Giggenbach, 1992), where substantial involvement of recharge fluids from the 609 groundwater enriched the  $\delta D$  values in both the rocks and fluids, and depleted them with in  $\delta^{18}O$ 610 at the same time.

#### 612 6. Conclusions

Investigating the chemical and isotopic properties of well discharge fluids and hydrothermal epidotes reveals the spatial variation and temporal evolution undergone byof the hydrothermal fluids and reservoir rocks across the Bacon-Manito Geothermal Field. These changes through space and time have been are the result of a combination of fluid mixing and water-rock interaction, which have largely influenced the present configuration of the geothermal reservoir. The  $\delta D_{epidote}$ values wereas found to be generally in equilibrium with present-day geothermal fluids from well discharges. On the contrary In contrast,  $\delta^{18}O_{evidote}$  values were was not in mineral-fluid equilibrium, suggesting a greater sensitivity to reservoir processes forthat epidote oxygen isotopes-are-more sensitive to prevailing reservoir processes compared to hydrogen isotopes. As, such, theat variations in  $\delta^{18}O_{epidote}$  values better reflects the effects of boiling, fluid mixing and/or water-rock interaction better than compared to  $\delta D_{epidote}$  values. 

Comparison of baseline fluid chemistry to present-day concentrations with datasets from the reservoir's natural state and the present state during continuous field operations, particularly increasing molar Cl/B and decreasing  $\delta^{18}$ O across the field, has clarified the occurrence of revealed several reservoir processes, such as localized boiling in the Botong sector and incursion of peripheral waters and injection fluids in the Palayang Bayan and Cawayan sectors. This was indicated by significant changes in calculated geochemical parameters such as increase in molar Cl/B ratio and decrease in \delta<sup>18</sup>O across the field relative to baseline values. Meanwhile, epidote chemistry reflects variations in whole rock composition, fluid composition and the degree of , and, related to both, the amount of fluidwater-rock interaction. Major-element cChemical zoning in epidote is likely related to variations in fluid chemistry (e.g. temperature, pH) whereas average epidote compositions reflects host lithologiescompositions. Similarly, epidoteEpidote D/H variations are largely near-equilibrium with fluids, based on fractionation factors and downhole temperatures, while epidote <sup>18</sup>O/<sup>16</sup>O compositions reflect variable water-rock interaction. 

The combined results from this study and literature data enable us to formulate an updated and more comprehensive hydrogeological model of the Bacman reservoir. We present here that the main heat source of the field is located beneath Mt. Pangas in the Botong sector and that the fluids originating in the upflow of the resource vary spatially and evolve temporally due to a combination of reservoir processes. And Llastly, while evidence indicate that the existence of heat sources in the Rangas and Kayabon existsectors, these heat sources appear to be localized for the Rangas sector and appear to have waned through time in the Kayabon sector. 

#### 644 7. Conflict of Interest Statement

First author Julius Dimabayao was funded to conduct research presented in this manuscript as
part of his MSc at the University of Auckland on the Bacon-Manito Geothermal Field (Bacman)
by Energy Development Corporation (EDC) and is an employee of the EDC. Interpretations
were developed independent of EDC input as independent research at the University of
Auckland.

#### 650 8. Acknowledgement

This study was made possible through the support of the Energy Development Corporation and the Bacman Geothermal Business Unit, for providing the drill cuttings and data for the fluid discharge samples, and for funding the isotopic analysis. We also thank the School of Environment, University of Auckland for providing the funding for whole rock and microprobe analysis. Special thanks are given to Josephine Rosell, Andres Arcila Rivera, Ilyas Qasim, and Ian Schipper for their assistance in the various analyses performed in this study. We would also like to thank two anonymous reviewers for their detailed and helpful comments to improve this manuscript.

**659** 1277

# **References**

Abrigo, F., Bayon, F. E., See, F., Siega, F., Sunio, E., 2006. General Trends and Characteristics of Philippine Geothermal Gases. A Joint Scientific Study of PNOC-EDC and Unocal Philippines. Makati City, Philippines.

| 1289 |     |                                                                                                    |
|------|-----|----------------------------------------------------------------------------------------------------|
| 1290 |     |                                                                                                    |
| 1291 |     |                                                                                                    |
| 1292 | 664 |                                                                                                    |
| 1293 | 665 | Andal, E. S., Yumul, G. P., Listanco, E. L., Tamayo, R. A., Dimalanta, C. B., Ishii, T., 2005.     |
| 1294 | 666 | Characterization of the Pleistocene volcanic chain of the Bicol Arc, Philippines: Implications for |
| 1295 | 667 | geohazard assessment. Terrestrial Atmospheric and Oceanic Sciences, 16(4), 865-883.                |
| 1296 | 668 |                                                                                                    |
| 1297 | 669 | Arnason, J. G., Bird, D. K., 1992. Formation of zoned epidote in hydrothermal systems.             |
| 1298 | 670 | Proceedings 7th International Symposium on Water-Rock Interactions. Park City, Utah, pp.           |
| 1290 | 671 | 1473-1476.                                                                                         |
|      |     | 14/5-14/0.                                                                                         |
| 1300 | 672 |                                                                                                    |
| 1301 | 673 | Arnason, J. G., Bird, D. K., Liou, J. G., 1993. Variables controlling epidote composition in       |
| 1302 | 674 | hydrothermal and low-pressure regional metamorphic rocks. Proceedings 125 Years                    |
| 1303 | 675 | Knappenwand. Salzburg, Austria, pp. 17-25.                                                         |
| 1304 | 676 |                                                                                                    |
| 1305 | 677 | Arnórsson, S., International Atomic Energy Agency, 2000. Isotopic and chemical techniques in       |
| 1306 | 678 | geothermal exploration, development and use. International Atomic Energy Agency. Vienna,           |
| 1307 | 679 | Austria.                                                                                           |
| 1308 | 680 |                                                                                                    |
| 1309 | 681 | Bertani, R., 2015. Geothermal Power Generation in the World 2010-2014 Update Report.               |
| 1310 |     | Proceedings World Geothermal Congress 2015. Melbourne, Australia.                                  |
| 1311 | 682 | Proceedings world Geomermar Congress 2015. Merbourne, Australia.                                   |
| 1312 | 683 |                                                                                                    |
| 1313 | 684 | Bird, D. K., Cho, M., Janik, C. J., Liou, J. G., Caruso, L. J., 1988. Compositional,               |
| 1314 | 685 | Order/Disorder, and Stable Isotope Characteristics of Al- Fe Epidote, State 2–14 Drill Hole,       |
| 1315 | 686 | Salton Sea Geothermal System. Journal of Geophysical Research: Solid Earth, 93(B11), 13135-        |
| 1316 | 687 | 13144.                                                                                             |
| 1317 | 688 |                                                                                                    |
| 1318 | 689 | Bird, D. K., Spieler, A. R., 2004. Epidote in geothermal systems. Reviews in Mineralogy and        |
| 1319 | 690 | Geochemistry, 56(1), 235-300.                                                                      |
| 1320 | 691 |                                                                                                    |
| 1321 | 692 | Bowers, T. S., Taylor, H. P., 1985. An integrated chemical and stable-isotope model of the origin  |
| 1322 | 693 | of midocean ridge hot spring systems. Journal of Geophysical Research: Solid Earth, 90(B14),       |
| 1323 | 694 | 12583-12606.                                                                                       |
| 1324 |     | 12385-12000.                                                                                       |
| 1325 | 695 |                                                                                                    |
| 1326 | 696 | Bruinsma, J. W., 1983. Results of potassium-argon age dating on twenty rock samples from the       |
| 1327 | 697 | Pinatubo, Southeast Tongonan, Bacon-Manito, Southern Negros and Tongonan, Leyte areas,             |
| 1328 | 698 | Philippines. Proprietary Report by Robertson Research Ltd. to PNOC-EDC, 24 p.                      |
| 1329 | 699 |                                                                                                    |
| 1330 | 700 | Caranto, J. A., 1999. Integrated Hydrogeological Study of Bacon-Manito Geothermal Production       |
| 1331 | 701 | Field and Surrounding Areas. Technical Report, PNOC-EDC.                                           |
| 1332 | 702 |                                                                                                    |
| 1333 | 703 | Cartwright, I., Buick, I. S., Vry, J. K., 1996. Polyphase metamorphic fluid flow in the Lower      |
| 1334 | 704 | Calcsilicate Unit, Reynolds Range, central Australia. Precambrian Research, 77(3), 211-229.        |
| 1335 | 705 | ······································                                                             |
| 1336 | 706 | Chacko, T., Riciputi, R., Cole, R., Horita, J., 1999. A new technique for determining equilibrium  |
| 1337 | 707 | hydrogen isotope fractionation factors using the ion microprobe: Application to the epidote-       |
| 1338 |     |                                                                                                    |
| 1339 | 708 | water system. Geochimica et Cosmochimica Acta, 63(1), 1-10. doi:10.1016/S0016-                     |
| 1340 | 709 | 7037(99)00007-1                                                                                    |
| 1341 |     |                                                                                                    |
| 1342 |     |                                                                                                    |
| 1343 |     |                                                                                                    |

| 1345 |     |                                                                                                                           |
|------|-----|---------------------------------------------------------------------------------------------------------------------------|
| 1346 |     |                                                                                                                           |
| 1347 | 710 |                                                                                                                           |
| 1348 | 710 | Crois II 1061 Stondard for non-orting concentrations of douterium and average 18 in natural                               |
| 1349 | 711 | Craig, H., 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural                              |
| 1350 | 712 | waters. Science, 133, 1833–1834.                                                                                          |
| 1351 | 713 |                                                                                                                           |
| 1352 | 714 | Craig, H., 1963. The isotopic geochemistry of water and carbon in geothermal areas. Proceedings                           |
| 1353 | 715 | Conference on Nuclear Geology on Geothermal Areas. Pisa, Italy, pp. 17-53.                                                |
| 1354 | 716 |                                                                                                                           |
| 1355 | 717 | D'Amore, F., Maniquis-Buenviaje, M., Solis, R., 1993. An Evaluation of the Deep Reservoir                                 |
| 1356 | 718 | Conditions of the Bacon-Manito Geothermal Field, Philippines using Gas Chemsitry.                                         |
| 1357 | 719 | Proceedings 18th Workshop on Geothermal Reservoir Engineering. Stanford, California, pp.                                  |
| 1358 | 720 | 235-240.                                                                                                                  |
| 1359 | 721 |                                                                                                                           |
| 1360 | 722 | Department of Environment and Natural Resources-Mines and Geosciences Bureau (DENR-                                       |
| 1361 | 723 | MGB), 2004. In Aurelio, M. A., Peña, R. E. (Eds.), Geology and mineral resources of the                                   |
| 1362 | 723 | Philippines (Revised edition). DENR-MGB, Quezon City, Philippines.                                                        |
| 1363 |     | rimppines (Revised edition). DENR-WOB, Quezon City, rimppines.                                                            |
| 1364 | 725 |                                                                                                                           |
| 1365 | 726 | Doma, L. D., 2015. Petrology of Well PAL8RD (KB1D). Technical Report, EDC.                                                |
| 1366 | 727 |                                                                                                                           |
| 1367 | 728 | Espartinez, C. M. R., See, F. S., 2015. The BacMan Geothermal Field, Philippines: Geochemical                             |
| 1368 | 729 | changes and challenges after twenty years of operation. Proceedings World Geothermal                                      |
| 1369 | 730 | Congress 2015. Melbourne, Australia.                                                                                      |
| 1370 | 731 |                                                                                                                           |
| 1371 | 732 | Fournier R.O., 1977. Chemical geothermometers and mixing models for geothermal systems.                                   |
| 1372 | 733 | Geothermics, 5, 41-50.                                                                                                    |
| 1373 | 734 |                                                                                                                           |
| 1374 | 735 | Fournier, R. O., Truesdell, A. H., 1974. Geochemical indicators of subsurface temperature2.                               |
| 1375 | 736 | Estimation of temperature and fraction of hot water mixed with cold water. U.S. Geol. Survey J.                           |
| 1376 | 737 | Res. 2, 263-270.                                                                                                          |
| 1377 | 738 | 105. 2, 205 270.                                                                                                          |
| 1378 | 739 | Frei, D., Liebscher, A., Franz, G., Dulski, P., 2004. Trace element geochemistry of epidote                               |
| 1379 |     |                                                                                                                           |
| 1380 | 740 | minerals. Reviews in Mineralogy and Geochemistry, 56(1), 553-605.                                                         |
| 1381 | 741 |                                                                                                                           |
| 1382 | 742 | Giggenbach, W. F., 1984. Mass transfer in hydrothermal alteration systems—a conceptual                                    |
| 1383 | 743 | approach. Geochimica et Cosmochimica Acta, 48(12), 2693-2711.                                                             |
| 1384 | 744 |                                                                                                                           |
| 1385 | 745 | Giggenbach, W. F., 1992. Isotopic shifts in waters from geothermal and volcanic systems along                             |
| 1386 | 746 | convergent plate boundaries and their origin. Earth and Planetary Science Letters, 113(4), 495-                           |
| 1387 | 747 | 510.                                                                                                                      |
| 1388 | 748 |                                                                                                                           |
| 1389 | 749 | Graham, C. M., Sheppard, S. M. F., 1980. Experimental hydrogen isotope studies,                                           |
| 1390 | 750 | II: fractionations in the systems epidote-NaCl-H <sub>2</sub> O, epidote-CaCl <sub>2</sub> -H <sub>2</sub> O and epidote- |
| 1391 | 751 | seawater, and the hydrogen isotope composition of natural epidotes. Earth and Planetary Science                           |
| 1392 | 752 | Letters, 49, 237-251.                                                                                                     |
| 1393 | 753 | ···· ·, ·, ·                                                                                                              |
| 1394 |     |                                                                                                                           |
| 1395 |     |                                                                                                                           |
| 1396 |     |                                                                                                                           |
| 1397 |     |                                                                                                                           |
| 1398 |     |                                                                                                                           |
| 1399 |     |                                                                                                                           |
| 1400 |     |                                                                                                                           |

| 1401 |     |                                                                                                             |
|------|-----|-------------------------------------------------------------------------------------------------------------|
| 1402 |     |                                                                                                             |
| 1403 | 754 | Carbon C.M. Shannard S.M.E. Hastan T.H.E. 1000 E-maximum tal hadron instance                                |
| 1404 | 754 | Graham, C. M., Sheppard, S. M. F., Heaton, T. H. E., 1980. Experimental hydrogen isotope                    |
| 1405 | 755 | studies –I. Systematics of hydrogen isotope fractionation in the systems epidote-H <sub>2</sub> O, zoisite- |
| 1406 | 756 | H <sub>2</sub> O and AlO(OH)-H <sub>2</sub> O. Geochimica et Cosmochimica Acta, 44, 353-364.                |
| 1407 | 757 |                                                                                                             |
| 1408 | 758 | Horita, J., Wesolowski, D. J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes             |
| 1409 | 759 | of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta,                    |
| 1410 | 760 | 58(16), 3425-3437.                                                                                          |
| 1411 | 761 |                                                                                                             |
| 1412 | 762 | Japan International Cooperation Agency (JICA), 1999. Report on regional survey for mineral                  |
| 1412 |     |                                                                                                             |
| 1414 | 763 | resources in the Bicol area, the Republic of the Philippines: Final Report. Japan.                          |
| 1414 | 764 |                                                                                                             |
|      | 765 | Keith, T., Muffler, L., Cremer, M., 1968. Hydrothermal epidote formed in Salton Sea                         |
| 1416 | 766 | Geothermal System, California. American Mineralogist, 53(9-10), 1635-1644.                                  |
| 1417 | 767 |                                                                                                             |
| 1418 | 768 | Kleine, B.I., Stefansson, A., Halldorsson, S.A., Whitehouse, M.J., Jonasson, K., 2018. Silicon              |
| 1419 | 769 | and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochemical                  |
| 1420 | 770 | Perspectives Letters, 7, 5-11.                                                                              |
| 1421 | 771 |                                                                                                             |
| 1422 | 772 | Kohn, M. J., Valley, J. W., 1998. Oxygen isotope geochemistry of the amphiboles: Isotope                    |
| 1423 | 773 | effects of cation substitutions in minerals. Geochimica et Cosmochimica Acta, 62, 1947-1958.                |
| 1424 | 774 | criters of earon substitutions in millerars. Geochimiea et cosmociminea real, 62, 1947-1956.                |
| 1425 |     | Lawless, J., Bromley, C., Leach, T., Licup, A., Cope, D., Recio, C., 1983. Bacon-Manito                     |
| 1426 | 775 |                                                                                                             |
| 1427 | 776 | Geothermal Field: A geoscientific exploration model. Proceedings 5th New Zealand Geothermal                 |
| 1428 | 777 | Workshop, pp. 97-102.                                                                                       |
| 1429 | 778 |                                                                                                             |
| 1430 | 779 | Lee, M. K., & Bethke, C. M., 1996. A model of isotope fractionation in reacting geochemical                 |
| 1431 | 780 | systems. American Journal of Science, 296(9).                                                               |
| 1432 | 781 |                                                                                                             |
| 1433 | 782 | Martinez-Olivar, M. V. M., See, F., Solis, R., 2005. Isotopic Response to Changes in the                    |
| 1434 | 783 | Reservoir in Bacman Geothermal Production Field, Philippines. Proceedings World Geothermal                  |
| 1435 | 784 | Congress 2005. Antalya, Turkey.                                                                             |
| 1436 | 785 |                                                                                                             |
| 1437 | 786 | Matsuhisa, Y., Goldsmith J. R., Clayton R. N., 1979. Oxygen isotopic fractionation in the system            |
| 1438 | 787 | quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43, 1131-1140.                              |
| 1439 | 788 | quartz aisite anortinite water. Geoenninea et cosmoenninea rieta, 15, 1151 1110.                            |
| 1440 |     | Matsuo, S., Kusakabe, M., Niwano, M., Hirano, T., Oki, Y., 1985. Origin of thermal                          |
| 1441 | 789 |                                                                                                             |
| 1442 | 790 | waters from the Hakone geothermal system, Japan. Geochemical Journal, 19(1), 27-44.                         |
| 1443 | 791 |                                                                                                             |
| 1444 | 792 | Matthews, A., Goldsmith, J. R., Clayton, R. N., 1983. Oxygen isotope fractionation between                  |
| 1445 | 793 | zoisite and water. Geochimica et Cosmochima Acta, 47, 645-654.                                              |
| 1446 | 794 |                                                                                                             |
| 1447 | 795 | Moeck, I., 2014. Catalog of geothermal play types based on geologic controls. Renewable and                 |
| 1448 | 796 | Sustainable Energy Reviews, 37, 867-882. doi:10.1016/j.rser.2014.05.032                                     |
| 1449 | 797 |                                                                                                             |
| 1450 | 798 | Morrison, J., 2004. Stable and radiogenic isotope systematics in epidote group minerals. Reviews            |
| 1451 | 799 | in Mineralogy and Geochemistry, 56(1), 607-628.                                                             |
| 1452 |     |                                                                                                             |
| 1453 |     |                                                                                                             |
| 1454 |     |                                                                                                             |
| 1455 |     |                                                                                                             |
| 1456 |     |                                                                                                             |

| 1457 |     |                                                                                                    |
|------|-----|----------------------------------------------------------------------------------------------------|
| 1458 |     |                                                                                                    |
| 1459 | 000 |                                                                                                    |
| 1460 | 800 |                                                                                                    |
| 1461 | 801 | O'Neil, J.R., 1986. Theoretical and experimental aspects of isotopic fractionation. Reviews in     |
| 1462 | 802 | Mineralogy and Geochemistry, 16, 1-40.                                                             |
| 1463 | 803 |                                                                                                    |
| 1464 | 804 | Ozawa, A., Tagami, T., Listanco, E. L., Arpa, C. B., Sudo, M., 2004. Initiation and propagation    |
| 1465 | 805 | of subduction along the Philippine Trench: evidence from the temporal and spatial distribution of  |
| 1466 | 806 | volcanoes. Journal of Asian Earth Sciences, 23(1), 105-111.                                        |
| 1467 | 807 |                                                                                                    |
| 1468 | 808 | Panem, C. C., Alincastre, R. S., 1985. Surface geology of the Bacon-Manito Geothermal              |
| 1469 | 809 | Reservation. Technical Report, PNOC-EDC                                                            |
| 1470 | 810 |                                                                                                    |
| 1471 | 811 | Patrier, P., Beaufort, D., Touchard, G., & Fouillac, A. M., 1990. Crystal size of epidotes: a      |
| 1472 | 812 | potentially exploitable geothermometer in geothermal fields? Geology, 18(11), 1126-1129.           |
| 1473 | 813 | potentiarly explorable geotiermonieer in geotiermar news: Geology, 10(11), 1120-112).              |
| 1474 | 814 | Pope, E. C., Bird, D. K., Arnórsson, S., 2014. Stable isotopes of hydrothermal minerals as tracers |
| 1475 |     |                                                                                                    |
| 1476 | 815 | for geothermal fluids in Iceland. Geothermics, 49, 99-110.                                         |
| 1477 | 816 |                                                                                                    |
| 1478 | 817 | Pope, E. C., Bird, D. K., Arnórsson, S., Giroud, N., 2016. Hydrogeology of the Krafla              |
| 1479 | 818 | geothermal system, northeast Iceland. Geofluids, 16, 175-197. doi: 10.1111/gfl.12142               |
| 1480 | 819 |                                                                                                    |
| 1481 | 820 | Ramos, S. G., 2002. Potential Constraints to the Development of the Rangas Sector based on         |
| 1482 | 821 | Petrologic Evaluation of the Bacman Geothermal Field, Philippines. Proceedings 27th Workshop       |
| 1483 | 822 | on Geothermal Reservoir Engineering. Stanford, California.                                         |
| 1484 | 823 |                                                                                                    |
| 1485 | 824 | Ramos, M. E. S., Espartinez, C. M. R., 2015. The Bacon-Manito surface thermal features-            |
| 1486 | 825 | geochemical and physical changes after three decades (1983-2013) of Monitoring. Proceedings        |
| 1487 | 826 | World Geothermal Congress 2015. Melbourne, Australia.                                              |
| 1488 | 827 | World Geothermai Congress 2015. Merobarne, Mashana.                                                |
| 1489 | 828 | Ramos, S. G., Santos, B. N. E. A., 2012. Updated Hydrogeological Model of the Bacon-Manito         |
| 1490 | 829 | Geothermal Field, Philippines. Proceedings 37th Workshop on Geothermal Reservoir                   |
| 1491 |     |                                                                                                    |
| 1492 | 830 | Engineering. Stanford, California.                                                                 |
| 1493 | 831 |                                                                                                    |
| 1494 | 832 | Ramos, S. G., Padrique, M. G. C., Jara, M. P., 2015. Conceptual Hydrogeological Model of the       |
| 1495 | 833 | Rangas Sector, Bacman Geothermal Field, Philippines. Proceedings World Geothermal Congress         |
| 1496 | 834 | 2015. Melbourne, Australia.                                                                        |
| 1497 | 835 |                                                                                                    |
| 1498 | 836 | Reyes, A. G., 1985. A comparative study of "acid" and "neutral pH" hydrothermal alteration in      |
| 1499 | 837 | the Bacon-Manito Geothermal Area, Philippines. Master of Science in Geology Thesis,                |
| 1500 | 838 | University of Auckland. Auckland, New Zealand.                                                     |
| 1501 | 839 |                                                                                                    |
| 1502 | 840 | Reyes, A. G., 1990. Petrology of Philippine geothermal systems and the application of alteration   |
| 1503 | 841 | mineralogy to their assessment. Journal of Volcanology and Geothermal Research,                    |
| 1504 | 842 | 43(1), 279-309. doi:10.1016/0377-0273(90)90057-M                                                   |
| 1505 | 843 |                                                                                                    |
| 1506 | 0.0 |                                                                                                    |
| 1507 |     |                                                                                                    |
| 1508 |     |                                                                                                    |
| 1509 |     |                                                                                                    |
| 1510 |     |                                                                                                    |
| 1511 |     |                                                                                                    |

| 1514 |     |                                                                                                 |
|------|-----|-------------------------------------------------------------------------------------------------|
| 1515 | 044 | Device A. C. Zeide Delfin M. C. Dueze F. J. 1005 Detrological Identification of Multiple        |
| 1516 | 844 | Reyes, A. G., Zaide-Delfin, M. C., Bueza, E. L., 1995. Petrological Identification of Multiple  |
| 1517 | 845 | Heat Sources in the Bacon-Manito Geothermal System, Philippines. Proceedings World              |
| 1518 | 846 | Geothermal Congress 1995. Florence, Italy, pp. 713-717.                                         |
| 1519 | 847 |                                                                                                 |
| 1520 | 848 | Ruaya, J. R., Buenviaje, M. M., Solis, R. P., Gonfiantini, R., 1993. Chemical and Isotopic      |
| 1521 | 849 | Studies in the Bacon-Manito Geothermal Field, Philippines. Proceedings Application of Isotope   |
| 1522 | 850 | and Geochemical Techniques to Geothermal Exploration in the Middle East, Asia, the Pacific      |
| 1523 | 851 | and Africa. Dumaguete City, Philippines, pp. 185-208.                                           |
| 1524 | 852 |                                                                                                 |
| 1525 | 853 | Salonga, N. D., 2015. Estimating the Isotopic Composition of Meteoric Water Index in            |
| 1526 | 854 | Geothermal Fields in the Philippines. Proceedings 2015 World Geothermal Congress 2015,          |
| 1527 | 855 | Melbourne, Australia.                                                                           |
| 1528 | 856 |                                                                                                 |
| 1529 | 857 | Santos, B. N. E. A., 2014. Thermometric Indicators of Fluid-Rock Interaction in the Bacon-      |
| 1530 | 858 | Manito Geothermal Field, Philippines. Master of Science in Geology Thesis, University of        |
| 1531 | 859 | Auckland, Auckland, New Zealand.                                                                |
| 1532 | 860 | Auckland, Auckland, New Zealand.                                                                |
| 1533 | 861 | Scientech, LLC (2005). PEPSE Steam Tables [Computer software]. Idaho falls, ID.                 |
| 1534 |     | Sciencen, LEC (2005). TET SE Steam Tables [Computer Software]. Idano fans, ID.                  |
| 1535 | 862 | Sham 7 D 1000 I again based mission analytical method for the in-sity determination of any son  |
| 1536 | 863 | Sharp, Z. D., 1990. Laser-based microanalytical method for the in situ determination of oxygen  |
| 1537 | 864 | isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 1353-1357.         |
| 1538 | 865 |                                                                                                 |
| 1539 | 866 | Solis, R. P., Ramos-Candelaria, M. N., Maturgo O. O., Fragata, J. J., Ramos, S.G., 1998.        |
| 1540 | 867 | Migration of high Cl/B molar ratio, gas depleted and cooler Masakrot fluids towards the Central |
| 1541 | 868 | Palayang Bayan sector of the Bacman Geothermal Production Field, Philippines. Proceedings,      |
| 1542 | 869 | PNOC-EDC Geothermal Conference. Manila, Philippines, pp. 311-318.                               |
| 1543 | 870 |                                                                                                 |
| 1544 | 871 | Sussman, D., Javellana, S. P., Benavidez, P. J., 1993. Geothermal energy development in the     |
| 1545 | 872 | Philippines: an overview. Geothermics, 22(5), 353-367.                                          |
| 1546 | 873 |                                                                                                 |
| 1547 | 874 | Tebar, H. J., 1988. Petrology and Geochemistry of Pocdol Mountains, Sorsogon, Philippines.      |
| 1548 | 875 | Master of Science in Geology Thesis, University of Canterbury. Christchurch, New Zealand.       |
| 1549 | 876 |                                                                                                 |
| 1550 | 877 | Vennemann, T. W., O'Neil, J. R., 1996. Hydrogen isotope exchange reactions between hydrous      |
| 1551 | 878 | minerals and molecular hydrogen: I. A new approach for the determination of hydrogen isotope    |
| 1552 | 879 | fractionation at moderate temperatures. Geochimica et Cosmochima Acta, 60, 2437-2451.           |
| 1553 | 880 | nactionation at moderate temperatures. Geochninea et cosmochnina Acia, 60, 2457-2451.           |
| 1554 |     | Villagerta I.D. Colina P.N. Marquez S.I. Sta Ana F.Y.M. 2015 An Undate on the 2D                |
| 1555 | 881 | Villacorte, J. D., Colina, R. N., Marquez, S. L., Sta Ana, F. X. M., 2015. An Update on the 3D  |
| 1556 | 882 | Numerical Model of the Bacon-Manito Geothermal Field. Proceedings 2015 World Geothermal         |
| 1557 | 883 | Congress, Melbourne, Australia.                                                                 |
| 1558 | 884 |                                                                                                 |
| 1559 | 885 | Zaide-Delfin, M. C., Bueza, E. L., Reyes, A. G., Tebar, H. J., 1989. BACMAN II Resource         |
| 1560 | 886 | Assessment. Technical Report, PNOC-EDC.                                                         |
| 1561 | 887 |                                                                                                 |
| 1562 | 888 | Zen, A., Hammarstrom, J., 1984. Magmatic epidote and its petrologic significance.               |
| 1563 | 889 | Geology, 12(9), 515-518.                                                                        |
| 1564 |     |                                                                                                 |
| 1565 |     |                                                                                                 |
| 1566 |     |                                                                                                 |
| 1567 |     |                                                                                                 |

Zheng, Y. F., 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planetary Science Letters, 120, 247-263.

# **Figure Captions**

Figure 1. Location map of the Bacman geothermal field in the Pocdol Mountains, showing the different sectors: Palayang Bayan, Botong, Cawayan, Tanawon, Rangas, and Kayabon. The diagonal line represents a profile section of the field in Figure 10.

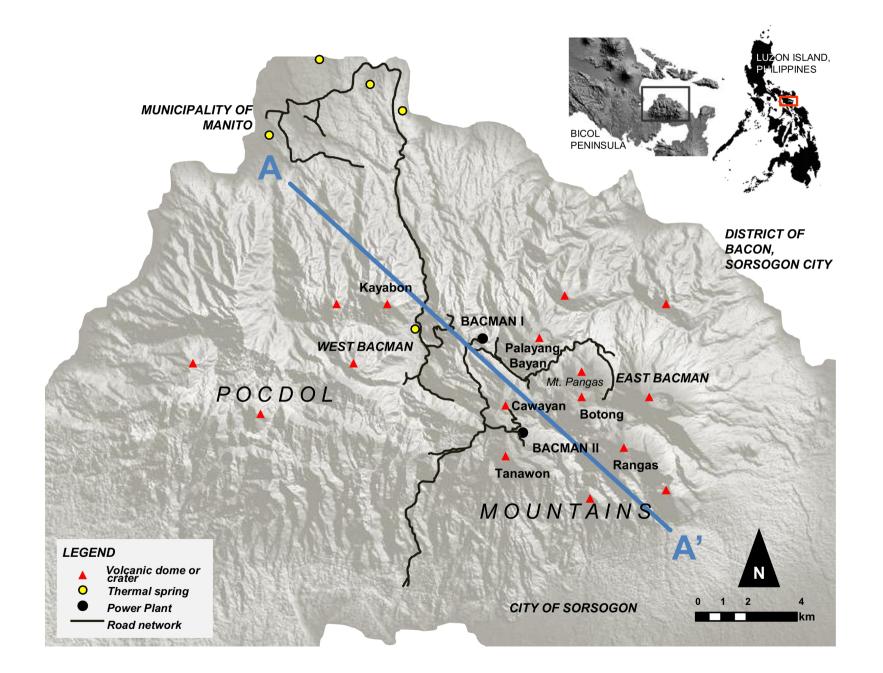
Figure 2. Backscattered electron image of a grain samplecutting from PAL30D at a depth of 1700 m, measured depth (mMD). Euhedral epidote (ep) crystals register a lighter grey color in contrast to the dark gray calcite (ct) mineral. There is also a noticeable brightness difference in the color within-epidote grains due to compositional zoning, where the mineral interior is darker and more Al-rich compared to the rims which are lighter and more Fe-rich.

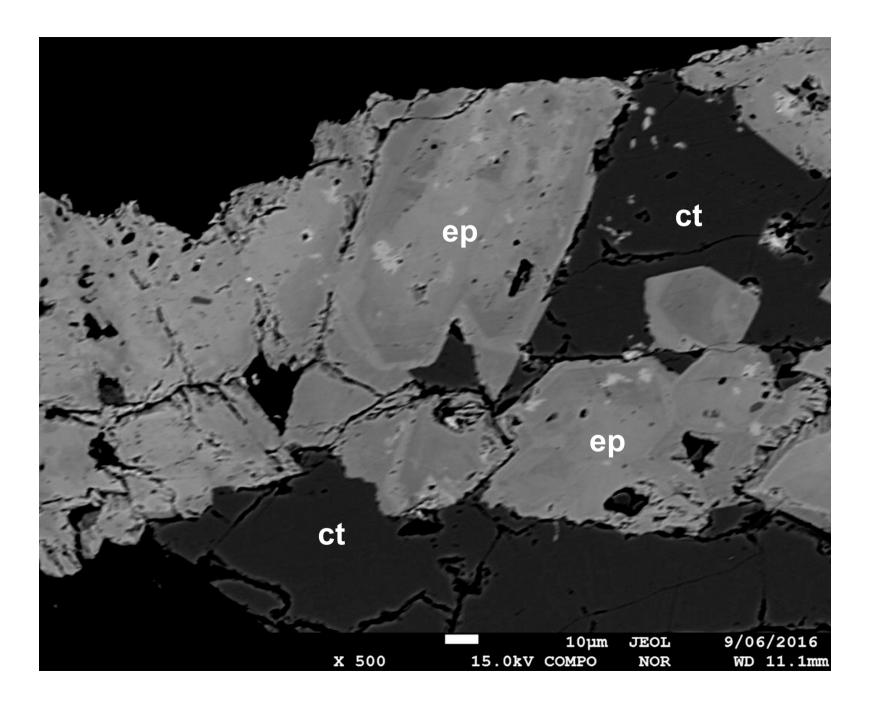
Figure 3. Compositional electron microprobe data of Epidote compositions (FeO, SiO<sub>2</sub>, CaO, and Al<sub>2</sub>O<sub>3</sub>) in epidotes-from selected depths of for wells PAL18D, PAL30D, RS1D, and PAL8RD. The black diamonds points are representative average compositionsal values from all epidotes analyzed in the same sampling depthat a given depth. Depths are expressed in m, measured depth (mMD).

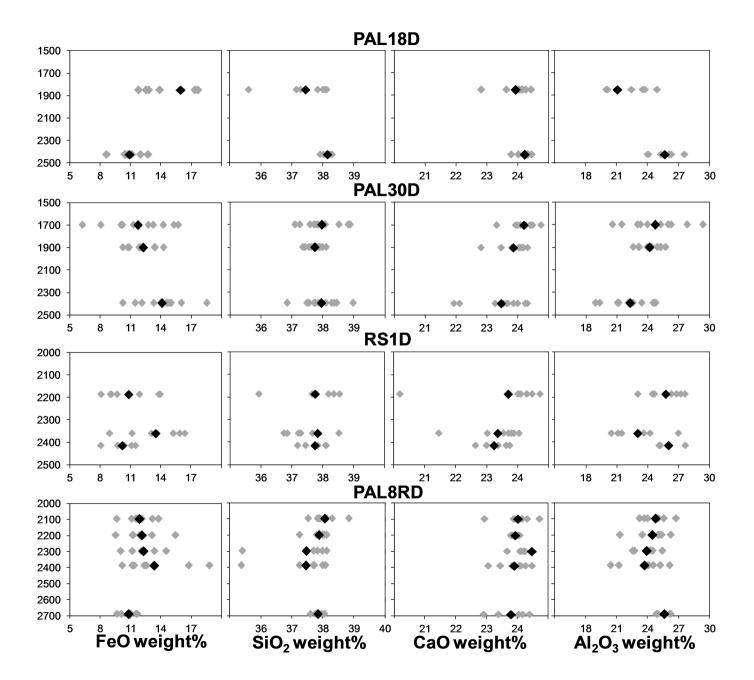
Figure 4. Baseline (a) and updated (b) iso-Cl/B compositions of discharge fluids across different sectors in the Bacman geothermal reservoir. Baseline contours were generated from the data provided by Ruaya et al. (1993), while updated contours were generated from the data in this study.

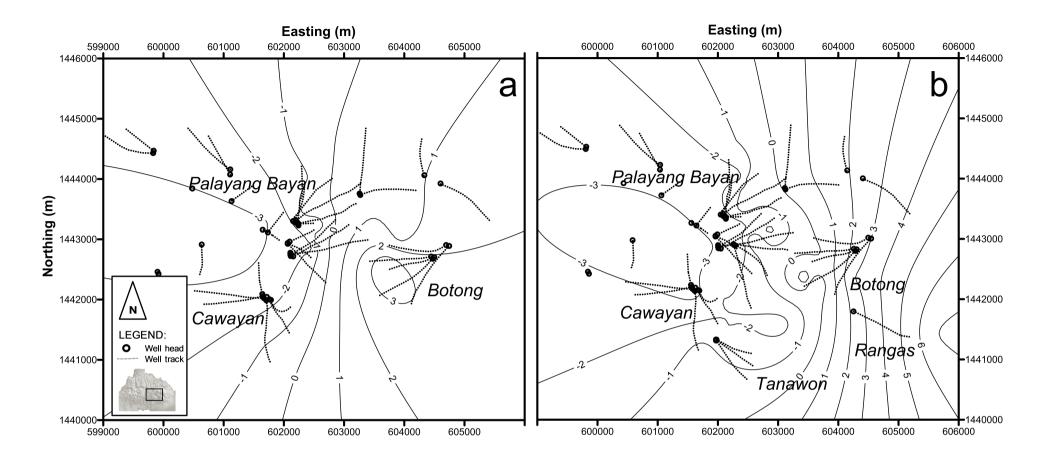
Figure 5. Baseline (a) and updated (b) iso- $\delta^{18}O_{res}$  compositions of discharge fluids across different sectors in the Bacman geothermal reservoir. Baseline contours were generated from the data provided by Ruaya et al. (1993), while updated contours were generated from the data in this study.

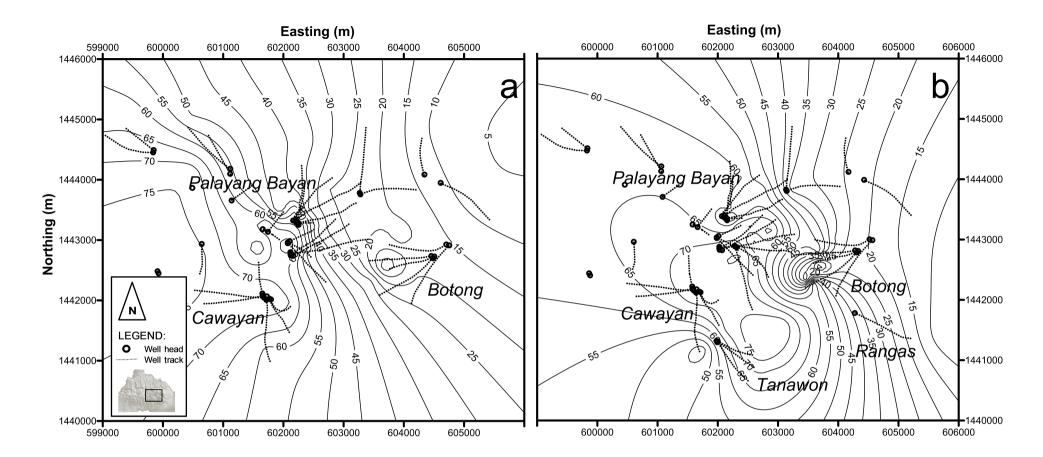
Figure 6. (a) Fe-Al mole fraction and oxide ratio, and (b) MgO versuss. depth from for PAL8RD samplescuttings. The gray datasets symbols correspond to XRF datawhole rock compositions from cuttings and the black datasets symbols correspond to representative electron microprobe data from epidote mineral chemistrys. Compositions are in weight percent oxide, while depths are expressed in mMD.

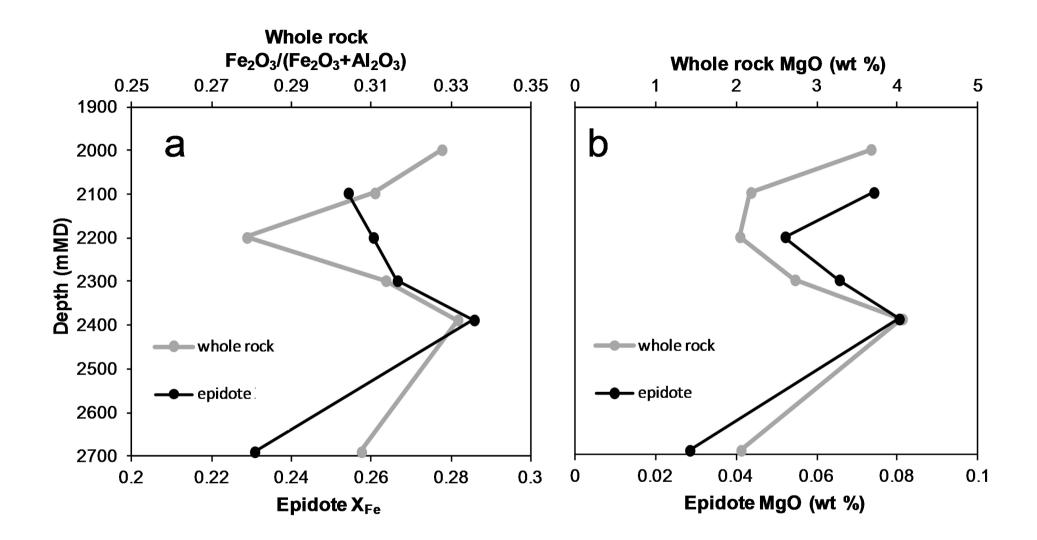

Figure 7.  $\delta D$  vs.  $\delta^{18}O$  plot of well fluid and epidote samples from the Bacman geothermal system, Philippines. Gray data pointssymbols refer to well fluid compositions from this study (see Supplemental Table 4), while the elongated field delineated field by a dotted line represents baseline well fluid compositions from Ruaya et al. (1993). The black cross corresponds to representative local meteoric waters ( $\delta D = -24.7$  ‰ and  $\delta 18O = -4.8$  ‰) from Salonga (2015).

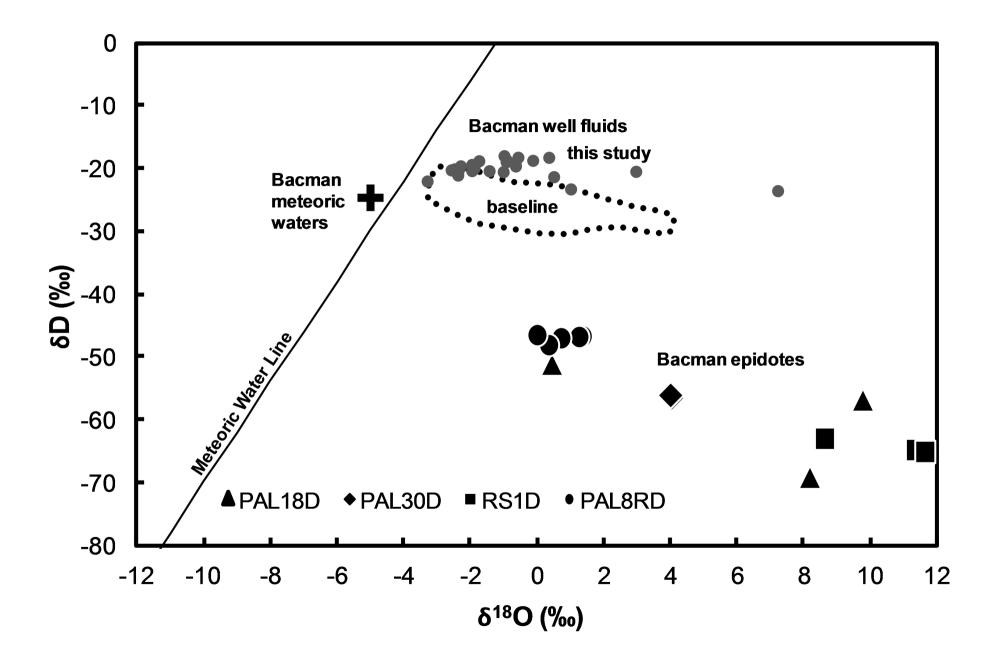

Figure 8. D/H (from Chacko et al., 1999) vs. <sup>18</sup>O/<sup>16</sup>O (from Pope et al., 2016) isotope fractionation
 values between epidote and fluid as a function of temperature. The <u>plotted</u> values <u>plotted</u> were
 obtained from are the difference in the isotopic composition of epidotes and well discharges. The

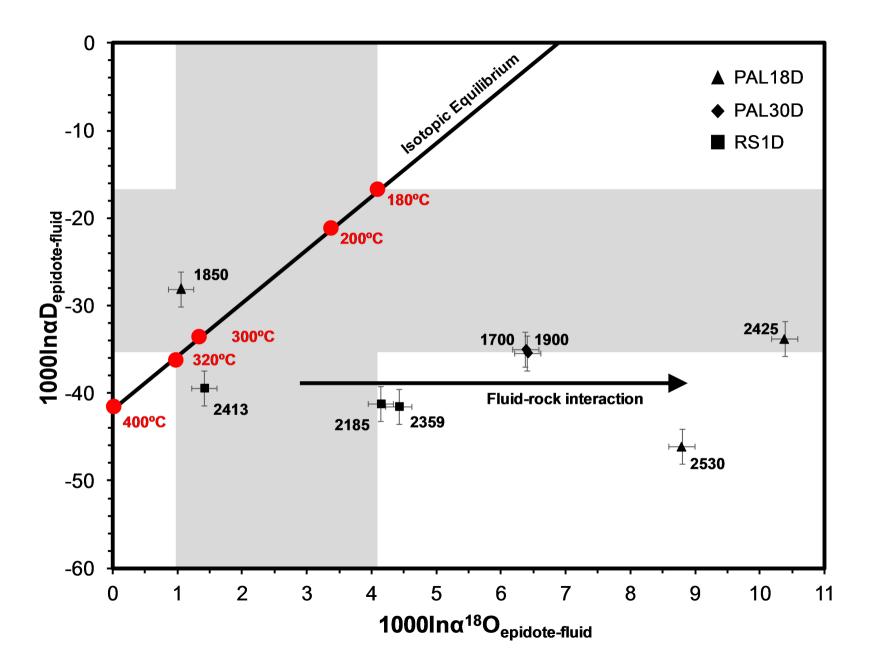

numbers beside the data points correspond to the depths Sample depth in mMD is indicated next to each symbol-of the samples. The black line delineates the isotopic equilibrium with respect to the isotope fractionation values for both D/H and <sup>18</sup>O/<sup>16</sup>O as a function of temperature. The vertical and horizontal gray fields are delineated from the temperature range where epidotes typically occur in geothermal systems, and the corresponding isotope fractionation values for both D/H and 18O/16O

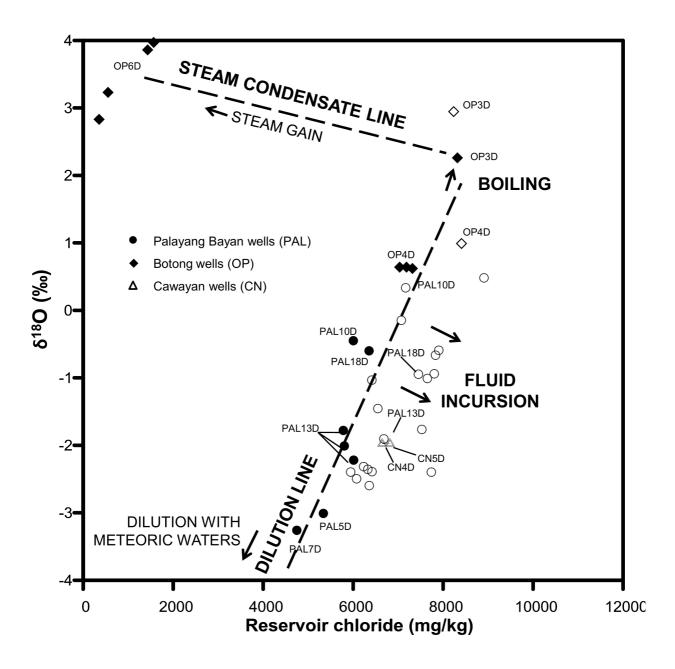

Figure 9. Reservoir  $\delta^{18}$ O vs. reservoir chloride<u>Cl</u><sub>res</sub> plot offor selected Bacman wells. Filled data points represent the natural state baseline chemistry prior to production (baseline data, from Ruaya et al., 1993), while unfilled dataopen symbols points represent the production state of the field (data from this study). Arrows indicate compositional changes movement of data points through time, which are caused by particular reservoir processes as discussed in the text. 


Figure 10. Profile section of the Bacman geothermal field showing the updated hydrogeological model of the geothermal reservoir which now includes the Rangas and Kavabon sectors. Fluid mixing and water-rock interaction are regarded as the two-most important reservoir processes that have influenced the evolution of Bacman reservoir fluids. Up-or/-down arrows next to  $\delta^{18}$ O or  $\delta D$ indicate the corresponding respective increase or decrease in the isotopic composition of the resulting fluid due to each dominant reservoir process. Refer to Figure 1 for the transect line. Profile not drawn to scale. 













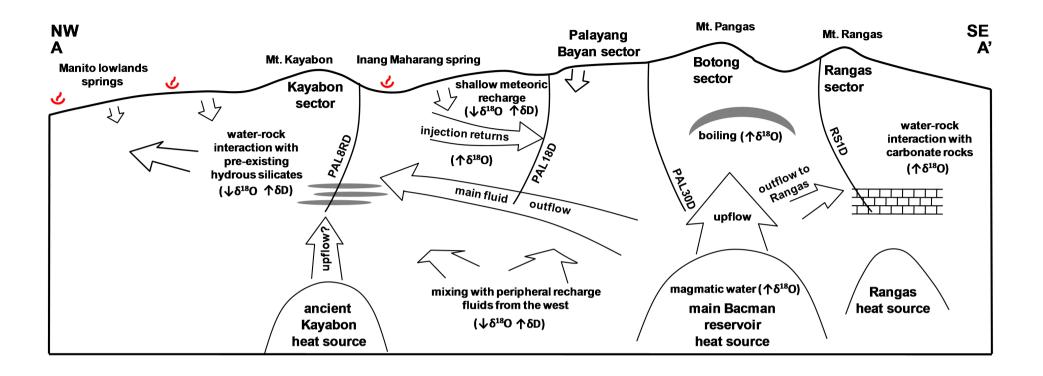




Table 1. Whole rock and alteration mineralogy of borehole samples, and corresponding  $\delta D$  and  $\delta^{18}O$  isotopic composition of reservoir fluids from discharge data, epidotes, and fluids in equilibrium with epidote ( $\delta D_{\text{fluid}(eq)}, \delta^{18}O_{\text{fluid}(eq)}$ ).

| Well   | Depth | Elevation | Whole rock<br>Lithology                                   | Dominant<br>Alteration                                  | Discharg<br>(δ <sub>flui</sub> |                   | Epic  | lote              | Fluid in equil<br>( | ibrium with<br>δ <sub>fluid(eq)</sub> ) | epidote                    |
|--------|-------|-----------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------|-------------------|-------|-------------------|---------------------|-----------------------------------------|----------------------------|
|        | mMD   | mRSL      |                                                           | Mineralogy                                              | δD                             | δ <sup>18</sup> O | δD    | δ <sup>18</sup> O | Temperature (°C)    | $\delta D_{fluid(eq)}$                  | $\delta^{18}O_{fluid(eq)}$ |
| PAL18D | 1850  | -1012     | porphyritic andesite                                      | chlorite, epidote                                       | -23.0*                         | -0.6*             | -51.1 | +0.5              | 277                 | -19.9                                   | -1.3                       |
|        | 2425  | -1518     | micordiorite                                              | epidote, chlorite                                       |                                |                   | -56.8 | +9.8              | 276                 | -25.8                                   | +8.0                       |
|        | 2530  | -1620     | microdiorite                                              | tremolite/actinolite,<br>chlorite, epidote              |                                |                   | -69.1 | +8.2              | 271                 | -38.6                                   | +6.3                       |
| PAL30D | 1700  | -850      | porphyritic andesite                                      | epidote                                                 | -21.0                          | -2.4              | -56.4 | +4.0              | 257                 | -27.6                                   | +1.9                       |
|        | 1900  | -1010     | porphyritic andesite                                      | epidote, tremolite/<br>actinolite                       |                                |                   | -56.0 | +4.0              | 261                 | -26.7                                   | +1.9                       |
|        | 2395  | -1442     | sedimentary breccia                                       | tremolite/actinolite,<br>chlorite, epidote              |                                |                   | -     | +4.5              | 242                 | -                                       | +2.1                       |
| RS1D   | 2185  | -1353     | calcareous sedimentary<br>breccia, limestone              | calcite, epidote,<br>tremolite/actinolite               | -23.5                          | +7.2              | -64.7 | +11.3             | 295                 | -31.6                                   | +9.9                       |
|        | 2359  | -1498     | fossiliferous limestone,<br>minor porphyritic<br>andesite | calcite, epidote,<br>wairakite/<br>laumontite, chlorite |                                |                   | -65.0 | +11.6             | 301                 | -31.3                                   | +10.3                      |
|        | 2413  | -1544     | calcareous sedimentary<br>breccia                         | <u>calcite, epidote,</u><br>tremolite/actinolite        |                                |                   | -62.9 | +8.6              | 292                 | -30.1                                   | +7.1                       |
| PAL8RD | 2097  | -1542     | tuffaceous volcanic<br>breccia                            | chlorite, epidote,<br>illite, tremolite/<br>actinolite  | -                              | -                 | -46.6 | +1.3              | -                   | -                                       | -                          |
|        | 2199  | -1618     | tuffaceous volcanic<br>breccia                            | epidote, chlorite,<br>illite, tremolite/<br>actinolite  |                                |                   | -46.7 | +1.2              | -                   | -                                       | -                          |
|        | 2298  | -1693     | <u>tuffaceous volcanic</u><br>breccia                     | epidote, chlorite,<br>tremolite/actinolite              |                                |                   | -46.9 | +0.7              | -                   | -                                       | -                          |
|        | 2388  | -1761     | tuffaceous volcanic<br>breccia                            | epidote, wairakite/<br>laumontite, chlorite             |                                |                   | -48.0 | +0.3              | -                   | -                                       | -                          |
|        | 2690  | -1990     | porphyritic andesite                                      | epidote, quartz,<br>wairakite/laumontite                | e                              |                   | -46.4 | 0.0               | 244                 | -19.3                                   | -2.4                       |

\*Baseline isotopic composition of PAL18D obtained from Ruaya et al. (1993).

Depth and elevation are expressed in mMD (meters, measured depth) and mRSL (meters, relative to sea level), respectively. The  $\delta D_{\text{fluid}(eq)}$  and  $\delta^{18}O_{\text{fluid}(eq)}$  values were calculated using Equations 2 and 3 given the isotopic data from discharge fluids and downhole temperature. The  $\delta D$  and  $\delta^{18}O$  values for each well were applied to every depth. Temperature values were obtained from downhole measurements from EDC, except for PAL8RD temperature which was obtained from fluid inclusion homogenization temperature estimates from Doma (2015).

|        | D 41   |                  |       |                   |       | Wei              | ght Percent (                  | (%)        |           |       |       |       |
|--------|--------|------------------|-------|-------------------|-------|------------------|--------------------------------|------------|-----------|-------|-------|-------|
| WELL   | Depth  | TiO <sub>2</sub> | CaO   | Na <sub>2</sub> O | MgO   | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | MnO        | $Cr_2O_3$ | FeO   | Cl    | Total |
| PAL18D | 1850   | 0.05             | 23.93 | 0.005             | 0.039 | 37.44            | 21.08                          | 0.11       | 0.009     | 15.94 | 0.002 | 98.60 |
|        | 2425   | 0.18             | 24.22 | 0.008             | 0.053 | 38.14            | 25.65                          | 0.29       | 0.009     | 10.90 | 0.003 | 99.45 |
| PAL30D | 1700   | 0.13             | 24.20 | 0.004             | 0.024 | 37.95            | 24.72                          | 0.20       | 0.015     | 11.74 | 0.003 | 98.99 |
|        | 1900   | 0.07             | 23.86 | 0.004             | 0.056 | 37.73            | 24.17                          | 0.42       | 0.019     | 12.26 | 0.007 | 98.58 |
|        | 2395   | 0.01             | 23.47 | 0.021             | 0.556 | 37.94            | 22.29                          | 0.16       | 0.013     | 14.11 | 0.017 | 98.58 |
| RS1D   | 2185   | 0.05             | 23.69 | 0.008             | 0.326 | 37.73            | 25.74                          | 0.09       | 0.015     | 10.82 | 0.008 | 98.48 |
|        | 2359   | 0.00             | 23.35 | 0.154             | 0.090 | 37.81            | 23.02                          | 0.11       | 0.010     | 13.49 | 0.025 | 98.06 |
|        | 2413   | 0.05             | 23.23 | 0.010             | 0.055 | 37.73            | 26.01                          | 0.10       | 0.020     | 10.19 | 0.003 | 97.41 |
| PAL8RD | 2097   | 0.05             | 24.02 | 0.067             | 0.074 | 38.06            | 24.77                          | 0.30       | 0.025     | 11.88 | 0.005 | 99.24 |
|        | 2199   | 0.12             | 23.93 | 0.011             | 0.052 | 37.87            | 24.45                          | 0.46       | 0.005     | 12.12 | 0.003 | 99.04 |
|        | 2298   | 0.03             | 24.47 | 0.011             | 0.063 | 37.46            | 23.91                          | 0.24       | 0.019     | 12.28 | 0.003 | 98.49 |
|        | 2388   | 0.09             | 23.90 | 0.009             | 0.080 | 37.45            | 23.70                          | 0.21       | 0.015     | 13.34 | 0.003 | 98.80 |
|        | 2690   | 0.05             | 23.79 | 0.003             | 0.028 | 37.84            | 25.62                          | 0.48       | 0.027     | 10.81 | 0.001 | 98.65 |
| WELL   | Depth  |                  |       |                   | Ca    | tions per 1      | 2.5 Anhydr                     | ous Oxygen | S         |       |       |       |
| WELL   | Deptii | Ti               | Ca    | Na                | Mg    | Si               | Al                             | Mn         | Cr        | Fe    |       | Fe    |
| PAL18D | 1850   | 0.003            | 2.118 | 0.001             | 0.005 | 3.093            | 2.049                          | 0.007      | 0.001     | 1.101 | 0.    | 349   |
|        | 2425   | 0.010            | 2.063 | 0.001             | 0.006 | 3.032            | 2.399                          | 0.020      | 0.001     | 0.724 | 0.    | 232   |
| PAL30D | 1700   | 0.008            | 2.081 | 0.001             | 0.003 | 3.047            | 2.335                          | 0.014      | 0.001     | 0.788 | 0.1   | 252   |
|        | 1900   | 0.004            | 2.068 | 0.001             | 0.007 | 3.053            | 2.301                          | 0.029      | 0.001     | 0.829 | 0.1   | 265   |
|        | 2395   | 0.001            | 2.052 | 0.003             | 0.068 | 3.096            | 2.140                          | 0.011      | 0.001     | 0.962 | 0.    | 310   |
| RS1D   | 2185   | 0.003            | 2.034 | 0.001             | 0.039 | 3.024            | 2.427                          | 0.006      | 0.001     | 0.724 | 0.1   | 230   |
|        | 2359   | 0.000            | 2.044 | 0.024             | 0.011 | 3.090            | 2.213                          | 0.008      | 0.001     | 0.921 | 0.1   | 294   |
|        | 2413   | 0.003            | 2.006 | 0.001             | 0.007 | 3.042            | 2.467                          | 0.007      | 0.001     | 0.687 | 0.1   | 218   |
| PAL8RD | 2097   | 0.003            | 2.062 | 0.010             | 0.009 | 3.049            | 2.335                          | 0.020      | 0.002     | 0.795 | 0.1   | 254   |
|        | 2199   | 0.007            | 2.063 | 0.002             | 0.006 | 3.047            | 2.315                          | 0.031      | 0.000     | 0.815 | 0.1   | 260   |
|        | 2298   | 0.002            | 2.129 | 0.002             | 0.008 | 3.041            | 2.283                          | 0.016      | 0.001     | 0.833 | 0.1   | 267   |
|        | 2388   | 0.005            | 2.080 | 0.001             | 0.010 | 3.041            | 2.264                          | 0.015      | 0.001     | 0.905 | 0.1   | 286   |
|        | 2690   | 0.003            | 2.043 | 0.001             | 0.003 | 3.032            | 2.415                          | 0.033      | 0.002     | 0.724 | 0.1   | 231   |

Table 2. Representative data from electron microprobe analysis of epidotes.

Sample depths are in meters, measured depth (mMD). Total Fe expressed as FeO.

## **AUTHOR DECLARATION**

We wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest and to significant financial contributions to this work.

First author Julius Dimabayao was funded to conduct research presented in this manuscript as part of his MSc at the University of Auckland on the Bacon-Manito Geothermal Field (Bacman) by Energy Development Corporation (EDC) and is an employee of the EDC. Interpretations were developed independent of EDC input as independent research at the University of Auckland and therefore we do not feel there is a significant conflict of interest here.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept email from (Michael.rowe@auckland.ac.nz).

Signed by all authors as follows:

Dr. Michael Rowe (on behalf of co-authors)

Michael Howe

June 30, 2018

## SUPPLEMENTARY SUPPLEMENTAL TABLES

Supplementary Supplemental Table 1: Full dataset of electron microprobe analysis of epidotes from four Bacman wells.

| WELL   | Donth |                  |       |                   |       | Weig             | ht Percent                     | (%)   |                                |       |       |       | WELL   | Donth |                  |       |                   |       | Weig             | ht Percent                     | (%)   |                                |       |       |       |
|--------|-------|------------------|-------|-------------------|-------|------------------|--------------------------------|-------|--------------------------------|-------|-------|-------|--------|-------|------------------|-------|-------------------|-------|------------------|--------------------------------|-------|--------------------------------|-------|-------|-------|
| WELL   | Depth | TiO <sub>2</sub> | CaO   | Na <sub>2</sub> O | MgO   | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | MnO   | Cr <sub>2</sub> O <sub>3</sub> | FeO   | Cl    | Total | WELL   | Depth | TiO <sub>2</sub> | CaO   | Na <sub>2</sub> O | MgO   | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | MnO   | Cr <sub>2</sub> O <sub>3</sub> | FeO   | Cl    | Total |
| PAL18D | 1850  | 0.002            | 24.27 | 0.000             | 0.044 | 37.83            | 22.46                          | 0.096 | 0.000                          | 13.90 | 0.003 | 98.60 | RS1D   | 2185  | 0.082            | 24.10 | 0.006             | 0.014 | 38.53            | 27.23                          | 0.052 | 0.031                          | 9.04  | 0.005 | 99.10 |
|        | 1850  | 0.102            | 23.64 | 0.007             | 0.063 | 37.15            | 20.04                          | 0.117 | 0.000                          | 17.38 | 0.003 | 98.50 |        | 2185  | 0.028            | 24.47 | 0.000             | 0.075 | 37.78            | 26.32                          | 0.120 | 0.009                          | 9.70  | 0.011 | 98.51 |
|        | 1850  | 0.058            | 22.82 | 0.004             | 0.020 | 35.61            | 12.68                          | 0.133 | 0.000                          | 25.42 | 0.000 | 96.75 |        | 2185  | 0.045            | 24.73 | 0.017             | 0.035 | 38.35            | 27.63                          | 0.047 | 0.003                          | 8.12  | 0.008 | 98.98 |
|        | 1850  | 0.025            | 24.44 | 0.008             | 0.053 | 38.12            | 24.94                          | 0.094 | 0.009                          | 11.82 | 0.005 | 99.51 |        | 2185  | 0.055            | 24.03 | 0.000             | 0.039 | 37.73            | 24.67                          | 0.075 | 0.003                          | 11.92 | 0.004 | 98.52 |
|        | 1850  | 0.020            | 24.16 | 0.000             | 0.031 | 38.01            | 23.75                          | 0.118 | 0.027                          | 12.56 | 0.000 | 98.68 |        | 2185  | 0.000            | 24.01 | 0.003             | 0.033 | 37.65            | 23.06                          | 0.073 | 0.018                          | 13.84 | 0.005 | 98.68 |
|        | 1850  | 0.001            | 24.12 | 0.000             | 0.032 | 38.06            | 23.56                          | 0.139 | 0.030                          | 12.82 | 0.003 | 98.76 |        | 2185  | 0.131            | 24.30 | 0.000             | 0.031 | 38.18            | 26.81                          | 0.028 | 0.043                          | 9.14  | 0.003 | 98.66 |
|        | 1850  | 0.143            | 24.05 | 0.016             | 0.027 | 37.28            | 20.15                          | 0.052 | 0.000                          | 17.68 | 0.001 | 99.40 |        | 2185  | 0.031            | 20.19 | 0.033             | 2.052 | 35.92            | 24.48                          | 0.207 | 0.000                          | 13.97 | 0.020 | 96.91 |
|        | 2425  | 0.299            | 24.28 | 0.014             | 0.079 | 38.18            | 24.10                          | 0.000 | 0.000                          | 12.74 | 0.003 | 99.70 |        | 2359  | 0.000            | 21.45 | 1.014             | 0.114 | 40.48            | 24.25                          | 0.059 | 0.000                          | 11.18 | 0.010 | 98.55 |
|        | 2425  | 0.050            | 24.34 | 0.008             | 0.037 | 38.11            | 26.14                          | 0.335 | 0.000                          | 10.78 | 0.004 | 99.80 |        | 2359  | 0.000            | 23.71 | 0.003             | 0.048 | 36.73            | 20.48                          | 0.101 | 0.000                          | 16.40 | 0.014 | 97.48 |
|        | 2425  | 0.531            | 24.46 | 0.000             | 0.074 | 38.02            | 24.03                          | 0.151 | 0.046                          | 12.01 | 0.003 | 99.33 |        | 2359  | 0.000            | 23.55 | 0.007             | 0.048 | 37.20            | 23.17                          | 0.322 | 0.000                          | 13.64 | 0.006 | 97.94 |
|        | 2425  | 0.009            | 23.79 | 0.008             | 0.033 | 38.25            | 26.30                          | 0.607 | 0.000                          | 10.46 | 0.006 | 99.47 |        | 2359  | 0.020            | 24.05 | 0.000             | 0.041 | 38.51            | 26.98                          | 0.099 | 0.027                          | 8.96  | 0.007 | 98.69 |
|        | 2425  | 0.001            | 24.03 | 0.023             | 0.042 | 38.30            | 26.08                          | 0.387 | 0.000                          | 10.51 | 0.003 | 99.38 |        | 2359  | 0.007            | 23.80 | 0.000             | 0.154 | 37.66            | 23.64                          | 0.078 | 0.000                          | 13.09 | 0.005 | 98.43 |
|        | 2425  | 0.266            | 24.33 | 0.000             | 0.050 | 37.91            | 25.32                          | 0.285 | 0.018                          | 11.14 | 0.000 | 99.31 |        | 2359  | 0.000            | 23.88 | 0.022             | 0.171 | 37.28            | 21.49                          | 0.000 | 0.000                          | 15.25 | 0.000 | 98.08 |
|        | 2425  | 0.075            | 24.32 | 0.000             | 0.054 | 38.22            | 27.58                          | 0.281 | 0.000                          | 8.65  | 0.001 | 99.18 |        | 2359  | 0.002            | 23.02 | 0.029             | 0.055 | 36.84            | 21.13                          | 0.110 | 0.042                          | 15.90 | 0.136 | 97.24 |
| PAL30D | 1700  | 0.000            | 24.00 | 0.000             | 0.033 | 37.70            | 23.02                          | 0.148 | 0.018                          | 14.27 | 0.000 | 99.19 |        | 2413  | 0.045            | 23.64 | 0.016             | 0.065 | 38.10            | 25.99                          | 0.130 | 0.040                          | 10.41 | 0.006 | 98.44 |
|        | 1700  | 0.075            | 24.23 | 0.000             | 0.020 | 38.07            | 26.29                          | 0.205 | 0.009                          | 10.23 | 0.000 | 99.13 |        | 2413  | 0.024            | 23.00 | 0.005             | 0.055 | 37.83            | 26.14                          | 0.092 | 0.000                          | 10.23 | 0.004 | 97.38 |
|        | 1700  | 0.020            | 24.27 | 0.007             | 0.013 | 37.77            | 25.27                          | 0.217 | 0.000                          | 11.31 | 0.000 | 98.88 |        | 2413  | 0.045            | 22.99 | 0.012             | 0.054 | 38.08            | 27.66                          | 0.026 | 0.000                          | 8.09  | 0.002 | 96.97 |
|        | 1700  | 0.160            | 24.47 | 0.000             | 0.026 | 37.09            | 21.50                          | 0.016 | 0.018                          | 15.31 | 0.015 | 98.61 |        | 2413  | 0.075            | 22.64 | 0.000             | 0.054 | 37.17            | 25.12                          | 0.134 | 0.000                          | 11.12 | 0.004 | 96.32 |
|        | 1700  | 0.076            | 24.49 | 0.007             | 0.016 | 38.82            | 27.84                          | 0.114 | 0.052                          | 8.09  | 0.000 | 99.50 |        | 2413  | 0.128            | 23.75 | 0.011             | 0.063 | 37.43            | 25.94                          | 0.071 | 0.012                          | 9.77  | 0.004 | 97.17 |
|        | 1700  | 0.023            | 24.76 | 0.018             | 0.007 | 38.88            | 29.38                          | 0.019 | 0.009                          | 6.27  | 0.002 | 99.37 |        | 2413  | 0.010            | 23.37 | 0.013             | 0.039 | 37.76            | 25.23                          | 0.172 | 0.067                          | 11.52 | 0.000 | 98.18 |
|        | 1700  | 0.000            | 23.32 | 0.003             | 0.019 | 37.58            | 23.99                          | 0.666 | 0.000                          | 13.27 | 0.001 | 98.85 | PAL8RD | 2097  | 0.014            | 23.94 | 0.000             | 0.025 | 37.91            | 25.59                          | 0.446 | 0.000                          | 11.15 | 0.005 | 99.07 |
|        | 1700  | 0.093            | 24.09 | 0.000             | 0.029 | 37.84            | 23.32                          | 0.172 | 0.030                          | 12.79 | 0.005 | 98.36 |        | 2097  | 0.059            | 24.33 | 0.019             | 0.021 | 37.83            | 23.71                          | 0.066 | 0.012                          | 13.20 | 0.010 | 99.25 |
|        | 1700  | 0.013            | 24.41 | 0.000             | 0.014 | 38.51            | 26.01                          | 0.239 | 0.015                          | 10.10 | 0.000 | 99.31 |        | 2097  | 0.028            | 23.89 | 0.018             | 0.107 | 37.87            | 24.97                          | 0.592 | 0.067                          | 11.67 | 0.001 | 99.21 |
|        | 1700  | 0.846            | 23.94 | 0.000             | 0.066 | 37.25            | 20.59                          | 0.230 | 0.000                          | 15.75 | 0.003 | 98.67 |        | 2097  | 0.069            | 24.15 | 0.000             | 0.095 | 38.12            | 24.03                          | 0.436 | 0.027                          | 12.14 | 0.004 | 99.06 |
|        | 1900  | 0.000            | 23.82 | 0.000             | 0.058 | 37.42            | 22.61                          | 0.587 | 0.021                          | 14.30 | 0.003 | 98.81 |        | 2097  | 0.018            | 24.17 | 0.000             | 0.058 | 37.53            | 23.25                          | 0.188 | 0.024                          | 13.80 | 0.000 | 99.04 |
|        | 1900  | 0.102            | 23.47 | 0.000             | 0.046 | 37.62            | 24.41                          | 0.703 | 0.030                          | 12.22 | 0.006 | 98.60 |        | 2097  | 0.107            | 24.73 | 0.004             | 0.055 | 38.30            | 26.77                          | 0.038 | 0.000                          | 9.66  | 0.002 | 99.67 |
|        | 1900  | 0.000            | 23.88 | 0.004             | 0.075 | 37.87            | 24.92                          | 0.285 | 0.036                          | 12.01 | 0.004 | 99.09 |        | 2097  | 0.028            | 22.94 | 0.427             | 0.157 | 38.84            | 25.07                          | 0.304 | 0.045                          | 11.55 | 0.010 | 99.37 |
|        | 1900  | 0.130            | 22.82 | 0.001             | 0.029 | 37.90            | 25.74                          | 1.429 | 0.000                          | 10.27 | 0.000 | 98.32 |        | 2199  | 0.101            | 23.99 | 0.007             | 0.032 | 37.80            | 24.44                          | 0.511 | 0.000                          | 11.97 | 0.007 | 98.86 |
|        | 1900  | 0.137            | 24.19 | 0.000             | 0.016 | 37.98            | 25.30                          | 0.196 | 0.000                          | 10.90 | 0.005 | 98.72 |        | 2199  | 0.085            | 23.83 | 0.000             | 0.016 | 38.13            | 25.06                          | 0.462 | 0.000                          | 12.20 | 0.004 | 99.78 |
|        | 1900  | 0.001            | 24.07 | 0.012             | 0.078 | 37.54            | 23.19                          | 0.237 | 0.027                          | 13.39 | 0.013 | 98.56 |        | 2199  | 0.139            | 24.08 | 0.013             | 0.056 | 38.01            | 23.51                          | 0.268 | 0.000                          | 13.15 | 0.001 | 99.23 |
|        | 1900  | 0.014            | 24.03 | 0.000             | 0.092 | 37.79            | 23.17                          | 0.219 | 0.024                          | 13.46 | 0.013 | 98.82 |        | 2199  | 0.025            | 23.84 | 0.033             | 0.047 | 37.99            | 25.38                          | 0.354 | 0.000                          | 11.23 | 0.009 | 98.90 |
|        | 1900  | 0.174            | 24.32 | 0.003             | 0.017 | 38.10            | 25.23                          | 0.127 | 0.003                          | 10.76 | 0.004 | 98.74 |        | 2199  | 0.364            | 23.93 | 0.012             | 0.107 | 37.25            | 21.35                          | 0.155 | 0.012                          | 15.46 | 0.000 | 98.64 |
|        | 1900  | 0.001            | 24.14 | 0.016             | 0.067 | 37.69            | 23.97                          | 0.186 | 0.009                          | 11.87 | 0.018 | 97.96 |        | 2199  | 0.124            | 23.80 | 0.011             | 0.087 | 37.87            | 26.26                          | 1.057 | 0.021                          | 9.55  | 0.002 | 98.79 |
|        | 1900  | 0.146            | 23.83 | 0.000             | 0.083 | 37.35            | 23.13                          | 0.214 | 0.036                          | 13.42 | 0.004 | 98.20 |        | 2199  | 0.030            | 24.05 | 0.003             | 0.019 | 38.05            | 25.19                          | 0.427 | 0.000                          | 11.29 | 0.000 | 99.06 |
|        | 2395  | 0.000            | 22.12 | 0.022             | 2.888 | 38.44            | 18.95                          | 0.207 | 0.033                          | 14.72 | 0.020 | 97.40 |        | 2298  | 0.034            | 23.68 | 0.010             | 0.072 | 37.70            | 22.76                          | 0.118 | 0.000                          | 12.40 | 0.000 | 96.77 |
|        | 2395  | 0.000            | 23.55 | 0.001             | 0.417 | 38.36            | 22.38                          | 0.063 | 0.003                          | 14.01 | 0.010 | 98.80 |        | 2298  | 0.015            | 24.22 | 0.017             | 0.043 | 38.13            | 25.45                          | 0.351 | 0.033                          | 11.20 | 0.001 | 99.46 |

Stable Isotope Systematics of Fluids and Epidotes in Bacon-Manito Geothermal Field, Philippines: Indicators of Fluid Origin and Evolution

| PAL30D   | 2395 | 0.007 | 24.32 | 0.000 | 0.016 | 38.09 | 24.79 | 0.122 | 0.015 | 12.15 | 0.003 | 99.52 | PAL8RD   | 2298 | 0.020 | 26.43 | 0.016 | 0.111 | 35.41 | 24.27 | 0.184 | 0.058 | 10.05 | 0.014 | 96.56 |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (cont'd) | 2395 | 0.103 | 23.69 | 0.001 | 0.051 | 37.55 | 22.12 | 0.188 | 0.000 | 14.97 | 0.006 | 98.67 | (cont'd) | 2298 | 0.005 | 24.10 | 0.000 | 0.081 | 37.71 | 22.59 | 0.359 | 0.000 | 14.55 | 0.000 | 99.39 |
|          | 2395 | 0.008 | 24.25 | 0.001 | 0.020 | 37.84 | 24.66 | 0.104 | 0.000 | 11.49 | 0.000 | 98.37 |          | 2298 | 0.022 | 24.14 | 0.015 | 0.027 | 37.99 | 23.88 | 0.360 | 0.015 | 13.39 | 0.001 | 99.83 |
|          | 2395 | 0.011 | 21.94 | 0.002 | 1.202 | 37.75 | 21.09 | 0.228 | 0.018 | 15.04 | 0.122 | 97.37 |          | 2298 | 0.085 | 24.26 | 0.008 | 0.041 | 37.83 | 24.52 | 0.071 | 0.006 | 12.10 | 0.002 | 98.93 |
|          | 2395 | 0.003 | 23.87 | 0.000 | 0.059 | 37.48 | 21.21 | 0.108 | 0.042 | 16.05 | 0.000 | 98.82 |          | 2388 | 0.099 | 23.84 | 0.000 | 0.062 | 37.25 | 20.46 | 0.109 | 0.006 | 16.79 | 0.000 | 98.61 |
|          | 2395 | 0.000 | 23.28 | 0.000 | 0.072 | 37.71 | 22.60 | 0.479 | 0.036 | 14.61 | 0.006 | 98.78 |          | 2388 | 0.027 | 24.12 | 0.014 | 0.131 | 37.99 | 24.58 | 0.218 | 0.015 | 11.38 | 0.003 | 98.48 |
|          | 2395 | 0.000 | 23.66 | 0.003 | 0.022 | 36.84 | 19.36 | 0.014 | 0.000 | 18.58 | 0.005 | 98.47 |          | 2388 | 0.008 | 23.45 | 0.030 | 0.106 | 37.69 | 24.13 | 0.493 | 0.033 | 12.60 | 0.002 | 98.55 |
|          | 2395 | 0.017 | 23.45 | 0.031 | 1.329 | 38.97 | 24.55 | 0.101 | 0.000 | 10.27 | 0.006 | 98.72 |          | 2388 | 0.036 | 24.27 | 0.014 | 0.042 | 38.09 | 26.16 | 0.100 | 0.000 | 10.21 | 0.003 | 98.92 |
|          | 2395 | 0.010 | 24.00 | 0.173 | 0.038 | 38.28 | 23.43 | 0.099 | 0.000 | 13.32 | 0.004 | 99.36 |          | 2388 | 0.093 | 24.48 | 0.001 | 0.051 | 38.00 | 25.25 | 0.119 | 0.012 | 11.20 | 0.004 | 99.21 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2388 | 0.069 | 24.08 | 0.000 | 0.024 | 37.73 | 24.04 | 0.147 | 0.034 | 12.39 | 0.007 | 98.53 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2388 | 0.291 | 23.06 | 0.004 | 0.146 | 35.38 | 21.26 | 0.304 | 0.006 | 18.82 | 0.003 | 99.27 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.039 | 23.40 | 0.013 | 0.044 | 37.83 | 26.18 | 0.965 | 0.000 | 9.70  | 0.002 | 98.17 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.035 | 22.92 | 0.005 | 0.047 | 37.60 | 26.25 | 0.850 | 0.030 | 10.11 | 0.001 | 97.85 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.021 | 24.18 | 0.000 | 0.005 | 38.05 | 25.02 | 0.239 | 0.058 | 11.59 | 0.000 | 99.16 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.142 | 24.41 | 0.000 | 0.030 | 37.96 | 25.75 | 0.183 | 0.000 | 10.75 | 0.000 | 99.21 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.049 | 24.05 | 0.002 | 0.015 | 37.81 | 24.89 | 0.218 | 0.052 | 11.68 | 0.000 | 98.77 |
|          |      |       |       |       |       |       |       |       |       |       |       |       |          | 2690 | 0.021 | 23.80 | 0.000 | 0.029 | 37.77 | 25.62 | 0.429 | 0.021 | 11.04 | 0.002 | 98.73 |

Sample depths are in meters, measured depth (mMD). n.d. - not detected. Total Fe expressed as FeO.

|              |                   |     |       |    |                   |                       |                  |      | Ma | ajor elen      | nents |       |      |                  |                   |       |                       |                  |  |  |  |
|--------------|-------------------|-----|-------|----|-------------------|-----------------------|------------------|------|----|----------------|-------|-------|------|------------------|-------------------|-------|-----------------------|------------------|--|--|--|
| Depth<br>mMD | Al <sub>2</sub> C | )3  | CaO   | )  | Fe <sub>2</sub> C | <b>)</b> <sub>3</sub> | K <sub>2</sub> O | )    | M  | gO             | Ν     | InO   | Na   | $_{2}\mathbf{O}$ | P <sub>2</sub> O5 | Si    | <b>O</b> <sub>2</sub> | TiO <sub>2</sub> |  |  |  |
|              |                   |     |       |    |                   |                       |                  |      | W  | eight Pe       | rcent |       |      |                  |                   |       |                       |                  |  |  |  |
| 1998         | 18.9              | 96  | 7.81  |    | 9.24              | ł                     | 2.15             |      | 3. | 66             | C     | 0.16  | 3.0  | )5               | 0.49              | 53    | .02                   | 1.01             |  |  |  |
| 2097         | 19.6              | 52  | 8.68  |    | 8.85              | 5                     | 1.28             |      | 2. | 17             | C     | 0.17  | 3.8  | 35               | 0.46              | 53    | .61                   | 0.92             |  |  |  |
| 2199         | 20.3              | 3   | 8.85  |    | 7.85              | 5                     | 1.14             | 1.14 |    | 04             | C     | 0.16  | 4.2  | 24               | 0.47              | 53    | .56                   | 0.91             |  |  |  |
| 2298         | 19.2              | 28  | 9.10  |    | 8.80              | )                     | 1.16             | 1.16 |    | 72             | 0     | ).17  | 3.24 |                  | 0.44              | 53    | .79                   | 0.91             |  |  |  |
| 2388         | 19.4              | 5   | 9.99  |    | 9.65              | 5                     | 1.25             | 1.25 |    | 4.05           |       | 0.14  | 2.8  | 38               | 0.37              | 50.90 |                       | 0.97             |  |  |  |
| 2690         | 16.2              | 26  | 16.27 | 7  | 7.22              | 2                     | 1.53             | 1.53 |    | 2.05           |       | ).17  | 1.3  | 34               | 0.34              | 51    | .30                   | 0.67             |  |  |  |
|              |                   |     |       |    |                   |                       |                  |      | Tr | Frace elements |       |       |      |                  |                   |       |                       |                  |  |  |  |
| Depth<br>mMD | As                | Ba  | Ce    | Cr | Cs                | Cu                    | Ga               | La   | Nd | Pb             | Rb    | S     | Sc   | Sr               | Th                | V     | Y                     | Zn               |  |  |  |
| man          |                   |     |       |    |                   |                       |                  |      |    | ррт            |       |       |      |                  |                   |       |                       |                  |  |  |  |
| 1998         | 42                | 549 | 55    | 53 | 12                | 93                    | 20               | 41   | 26 | 7              | 47    | 1959  | 35   | 868              | 10                | 203   | 20                    | 89               |  |  |  |
| 2097         | 4                 | 446 | 54    | 40 | 9                 | 127                   | 20               | 33   | 18 | 9              | 18    | 1455  | 31   | 1058             | 9                 | 250   | 22                    | 90               |  |  |  |
| 2199         | 3                 | 412 | 37    | 30 | 5                 | 85                    | 20               | 34   | 14 | 7              | 17    | 1988  | 19   | 1150             | 8                 | 226   | 20                    | 88               |  |  |  |
| 2298         | 3                 | 445 | 39    | 47 | 16                | 256                   | 19               | 22   | 18 | 9              | 16    | 1207  | 16   | 1210             | 7                 | 264   | 20                    | 116              |  |  |  |
| 2388         | 25                | 533 | 52    | 56 | -                 | 116                   | 20               | 24   | 18 | 5              | 16    | 734   | 38   | 1223             | 11                | 310   | 17                    | 81               |  |  |  |
| 2690         | 1                 | 501 | 36    | 9  | -                 | 1277                  | 21               | 17   | -  | 2280           | 17    | 18803 | 21   | 1571             | 3                 | 230   | 18                    | 3531             |  |  |  |

Supplementary Supplemental Table 2: Normalized major and trace element concentrations obtained through X-ray fluorescence analysis of samples from well PAL8RD.

| Well   | Sampling<br>date | Enthalpy | Sampling<br>pressure | рН         | Li    | Na   | K    | Ca   | Mg    | Fe    | Cl    | SiO <sub>2</sub> | В     | SO4    | HCO <sub>3</sub> | NH <sub>3</sub> | $H_2S$ | CO <sub>2</sub><br>total | Cl <sub>res</sub> | T <sub>quartz</sub> * | Cl/B |
|--------|------------------|----------|----------------------|------------|-------|------|------|------|-------|-------|-------|------------------|-------|--------|------------------|-----------------|--------|--------------------------|-------------------|-----------------------|------|
| vv en  | yymmdd           | kJ/kg    | MPa<br>(absolute)    | at<br>25°C |       |      |      |      |       |       |       | mg/kg            |       |        |                  |                 |        |                          |                   | °C                    | CI/B |
| PAL3D  | 160202           | 1245     | 0.860                | 7.00       | 7.08  | 4631 | 807  | 259  | 0.42  | 0.16  | 8011  | 638              | 35.2  | 20.2   | 16.9             | 4.07            | 1.67   | 17.6                     | 6749              | 244                   | 71   |
| PAL4D  | 160215           | 1328     | 1.160                | 7.10       | 7.76  | 4727 | 843  | 259  | 0.46  | 0.11  | 8112  | 688              | 36.5  | 17.4   | -                | 4.49            | 2.92   | 0.2                      | 6924              | 249                   | 70   |
| PAL8D  | 160203           | 1440     | 0.990                | 6.60       | 8.76  | 5603 | 1033 | 242  | 0.40  | 0.12  | 9679  | 706              | 52.9  | 14.5   | 40.8             | 9.91            | 4.53   | 50.8                     | 8083              | 251                   | 57   |
| PAL9D  | 160202           | 1440     | 0.990                | 6.70       | 8.12  | 4521 | 870  | 206  | 0.51  | -     | 7893  | 691              | 32.9  | 22.2   | 13.4             | 5.69            | 1.78   | 17.5                     | 6624              | 250                   | 75   |
| PAL10D | 160215           | 2022     | 0.940                | 6.90       | 9.33  | 4979 | 1099 | 206  | 0.46  | 0.42  | 8754  | 738              | 46.6  | 35.9   | 82.0             | 26.50           | 7.63   | 77.3                     | 7199              | 255                   | 59   |
| PAL11D | 160209           | 2493     | 0.960                | 6.60       | 7.66  | 5447 | 856  | 474  | 0.92  | 0.21  | 9755  | 370              | 55.7  | 49.9   | 52.8             | 22.20           | 7.16   | 57.4                     | 9170              | 205                   | 55   |
| PAL12D | 160201           | 1300     | 1.930                | 7.10       | 8.45  | 5454 | 971  | 285  | 0.52  | 0.06  | 9421  | 668              | 48.0  | 18.3   | 32.2             | 6.98            | 2.62   | 30.8                     | 8569              | 247                   | 62   |
| PAL13D | 160217           | 1404     | 0.940                | 7.10       | 6.14  | 3955 | 665  | 254  | 0.48  | 0.05  | 7007  | 551              | 31.0  | 27.0   | 18.0             | 5.00            | 1.50   | 19.0                     | 6134              | 233                   | 71   |
| PAL14D | 160201           | 1292     | 1.000                | 7.10       | 7.52  | 5125 | 952  | 237  | 0.63  | 0.05  | 9211  | 697              | 50.2  | 31.3   | 21.7             | 6.07            | 2.11   | 21.5                     | 7722              | 250                   | 58   |
| PAL15D | 160123           | 1524     | 0.990                | 6.70       | 7.46  | 4641 | 885  | 236  | 0.39  | 0.13  | 7992  | 663              | 39.6  | 25.9   | -                | 14.60           | 2.61   | 5.3                      | 6769              | 247                   | 63   |
| PAL18D | 160205           | 1200     | 0.96                 | 6.70       | 8.28  | 5298 | 808  | 270  | 0.71  | 0.10  | 9521  | 617              | 53.5  | 29.0   | 48.1             | 9.14            | 2.64   | 52.0                     | 8163              | 241                   | 56   |
| PAL19  | 160210           | 1492     | 0.980                | 6.70       | 8.70  | 5810 | 1042 | 300  | 0.63  | -     | 9764  | 757              | 49.9  | 21.8   | 19.9             | 6.71            | 2.69   | 22.0                     | 8014              | 257                   | 61   |
| PAL20D | 160205           | 1708     | 1.090                | 6.50       | 13.80 | 6071 | 1441 | 272  | 0.29  | 0.06  | 11568 | 747              | 111.0 | 14.0   | 20.5             | 15.20           | 7.64   | 37.8                     | 9628              | 256                   | 33   |
| PAL21  | 160217           | 1093     | 0.910                | 6.20       | 6.64  | 4205 | 716  | 294  | 0.46  | 0.25  | 7760  | 602              | 34.0  | 20.9   | 27.0             | 3.44            | 1.64   | 41.2                     | 6653              | 239                   | 72   |
| PAL22D | 151028           | 1082     | 0.890                | 7.10       | 6.44  | 4072 | 665  | 258  | 0.32  | 0.13  | 7011  | 597              | 30.4  | 29.3   | 13.9             | 3.64            | 1.20   | 14.0                     | 6009              | 239                   | 72   |
| PAL23D | 160203           | 1171     | 0.920                | 6.60       | 9.61  | 5456 | 988  | 216  | 0.44  | 0.09  | 9578  | 736              | 53.6  | 16.0   | 30.9             | 5.26            | 2.62   | 34.7                     | 7866              | 255                   | 56   |
| PAL25D | 160223           | 1084     | 0.980                | 6.50       | 7.36  | 4685 | 819  | 262  | 0.37  | 0.86  | 8272  | 625              | 35.9  | 25.6   | 22.4             | 3.64            | 2.49   | 29.5                     | 7088              | 242                   | 72   |
| PAL26D | 160219           | 1446     | 1.060                | 6.40       | 13.90 | 5608 | 1456 | 206  | 0.54  | 0.27  | 10344 | 1031             | 67.5  | 8.2    | 40.5             | 12.70           | 5.00   | 52.2                     | 7874              | 283                   | 48   |
| PAL27D | 160216           | 1481     | 1.230                | 6.90       | 9.33  | 4757 | 1059 | 178  | 0.41  | -     | 8476  | 786              | 44.3  | 16.1   | 108.0            | 28.30           | 12.00  | 99.1                     | 7056              | 260                   | 60   |
| PAL28D | 160222           | 1053     | 0.870                | 6.90       | 6.85  | 4635 | 791  | 272  | 0.24  | 0.10  | 8034  | 644              | 34.1  | 19.8   | 21.8             | 3.25            | 1.87   | 22.2                     | 6762              | 244                   | 74   |
| PAL30D | 160222           | 1241     | 1.07                 | 6.70       | 7.56  | 4329 | 855  | 202  | 0.26  | -     | 7666  | 755              | 30.5  | 17.9   | 22.6             | 4.09            | 2.02   | 25.3                     | 6352              | 257                   | 79   |
| OP3D   | 090218           | 1963     | 0.820                | 7.32       | 20.50 | 0    | 1727 | 234  | 0.00  | 0.00  | 11962 | 987              | 145.0 | 11.0   | 114.0            | 0.00            | 158.00 | 105.0                    | 8993              | 279                   | 26   |
| OP4D   | 090302           | 2124     | 0.845                | 6.43       | 15.70 | 6473 | 1698 | 224  | 0.13  | 0.03  | 12334 | 909              | 129.0 | 15.4   | 107.0            | 5.52            | 10.40  | 122.0                    | 9521              | 272                   | 30   |
| OP5DA  | 090414           | 1917     | 0.700                | 6.83       | 11.90 | 2905 | 740  | 127  | 0.00  | 0.00  | 5441  | 343              | 109.0 | 12.4   | 0.0              | 13.40           | 9.93   | 61.9                     | 5028              | 200                   | 16   |
| OP6D   | 091009           | 2279     | 0.700                | 6.86       | 0.10  | 27   | 5    | 8.32 | 0.08  | 0.12  | 3603  | 46               | 353.0 | 15.5   | 461.0            | 2.53            | 29.90  | 423.0                    | 4094              | 99                    | 3    |
| OP7D   | 090302           | 2081     | 0.755                | 7.99       | 13.60 | 5760 | 1396 | 257  | 0.10  | 0.42  | 10659 | 797              | 81.7  | 11.4   | 15.0             | 6.42            | 6.96   | 4.0                      | 8427              | 261                   | 41   |
| CN1    | 130702           | 1316     | 1.120                | 5.24       | 8.94  | 4655 | 748  | 145  | 3.50  | 3.63  | 8355  | 796              | 34.8  | 81.6   | 16.3             | 25.60           | 1.76   | 40.4                     | 6866              | 261                   | 75   |
| CN3D   | 160219           | 1905     | 0.700                | 5.60       | 1.69  | 1513 | 213  | 26   | 15.80 | 21.60 | 1822  | 439              | 13.6  | 1252.0 | -                | 189.00          | 0.80   | 3.2                      | 1618              | 217                   | 42   |
| CN4D   | 160122           | 1273     | 0.730                | 7.10       | 7.72  | 4442 | 808  | 227  | 0.47  | 0.15  | 7644  | 681              | 33.5  | 18.8   | 16.3             | 6.41            | 1.19   | 15.1                     | 6253              | 249                   | 72   |
| CN5D   | 160122           | 1290     | 0.800                | 6.90       | 8.31  | 4748 | 911  | 246  | 0.88  | 0.38  | 8641  | 686              | 37.7  | 20.2   | 3.2              | 7.66            | 1.41   | 4.6                      | 7117              | 249                   | 72   |
| RS1D   | 150604           | 2381     | 0.32                 | 6.18       | 6.75  | 2395 | 756  | 126  | 0.58  | 1.39  | 4468  | 685              | 233.0 | 60.6   | 310.0            | 88.60           | 196.00 | 232.0                    | 3410              | 249                   | 6    |
| TW1D   | 130521           | 1296     | 0.9                  | 7.52       | 9.34  | 4115 | 962  | 213  | 0.31  | 0.09  | 7612  | 709              | 30.1  | 17.2   | 21.3             | 7.42            | 2.06   | 38.6                     | 6292              | 252                   | 79   |
| TW2D   | 121003           | 1267     | 0.094                | 7.90       | 9.25  | 5099 | 1028 | 226  | 0.31  | 0.25  | 9107  | 790              | 42.6  | 20.8   | 16.7             | 8.85            | 1.74   | 28.7                     | 6181              | 260                   | 67   |
| TW4D   | 130521           | 1291     | 0.92                 | 6.90       | 9.01  | 3975 | 805  | 222  | 0.26  | 0.12  | 6948  | 662              | 32.0  | 23.9   | 40.5             | 9.49            | 2.80   | 57.3                     | 5844              | 246                   | 68   |

Supplementary Supplemental Table 3: Updated representative chemistry of well discharge fluids from Bacman wells.

\* Reservoir fluid temperatures were calculated using the quartz geothermometer (T<sub>quartz</sub>) considering maximum steam loss by Fournier (1977). Well code: PAL for wells found in Palayang Bayan sector; OP for wells in Botong sector; CN for wells in Cawayan sector; RS for the well in Rangas sector; and TW for wells in Tanawon sector.

Stable Isotope Systematics of Fluids and Epidotes in Bacon-Manito Geothermal Field, Philippines: Indicators of Fluid Origin and Evolution

| Well   | Sampling<br>date | Sampling<br>pressure | Enthalpy<br>(H) | T <sub>quartz</sub> * | H at<br>T <sub>quartz</sub> | Excess H<br>(H-H T <sub>quartz</sub> ) | δD<br>liquid | δD steam<br>condensate | δ <sup>18</sup> O<br>liquid | δ <sup>18</sup> O steam<br>condensate | Cl    | δD<br>TD | δ <sup>18</sup> O<br>TD | CI TD |                          | ntion factor<br>G <sub>quartz</sub>                | δD <sub>res</sub> | $\delta^{18}O_{res}$ | Cl <sub>res</sub> |
|--------|------------------|----------------------|-----------------|-----------------------|-----------------------------|----------------------------------------|--------------|------------------------|-----------------------------|---------------------------------------|-------|----------|-------------------------|-------|--------------------------|----------------------------------------------------|-------------------|----------------------|-------------------|
|        | yymmdd           | MPa<br>(absolute)    | kJ/kg           | °C                    | kJ/kg                       | kJ/kg                                  |              | 9                      | óo                          |                                       | mg/kg | 9        | <b>‰o</b>               | mg/kg | $10^3 ln \alpha D_{l-v}$ | 10 <sup>3</sup> lna <sup>18</sup> O <sub>1-v</sub> |                   | ‰                    | mg/kg             |
| CN1    | 121011           | 0.65                 | 1149            | 180                   | 763                         | 386                                    | -22.6        | -25.1                  | -3.75                       | -4.19                                 | 2110  | -23.2    | -3.85                   | 473   | 6.5                      | 2.78                                               | -21.9             | -3.32                | -                 |
| CN3D   | 150611           | 0.70                 | 2349            | 241                   | 1042                        | 1307                                   | -18.0        | -18.5                  | -1.22                       | -2.06                                 |       | -18.4    | -1.89                   |       | -1.1                     | 1.64                                               | -19.2             | -0.67                | -                 |
| CN4D   | 150611           | 0.78                 | 1273            | 261                   | 1140                        | 133                                    | -19.2        | -22.4                  | -1.50                       | -3.66                                 | 8373  | -20.1    | -2.09                   | 2271  | -2.4                     | 1.34                                               | -20.3             | -1.98                | 6645              |
| CN5D   | 150618           | 0.77                 | 1290            | 265                   | 1160                        | 130                                    | -18.0        | -22.0                  | -1.45                       | -3.69                                 | 8712  | -19.1    | -2.08                   | 2446  | -2.6                     | 1.28                                               | -19.3             | -1.98                | 6818              |
| OP3D   | 090218           | 0.82                 | 1963            | 303                   | 1362                        | 601                                    | -18.1        | -19.3                  | 4.14                        | 1.61                                  | 11962 | -18.9    | 2.61                    | 7246  | -3.6                     | 0.78                                               | -20.4             | 2.95                 | 8235              |
| OP4D   | 090219           | 0.83                 | 2124            | 300                   | 1345                        | 779                                    | -16.8        | -23.3                  | 2.68                        | -0.45                                 | 12055 | -21.2    | 0.54                    | 8246  | -3.6                     | 0.81                                               | -23.2             | 0.99                 | 8409              |
| PAL3D  | 150606           | 0.92                 | 1245            | 263                   | 1150                        | 95                                     | -19.1        | -22.9                  | -2.10                       | -4.43                                 | 7937  | -20.0    | -2.67                   | 1951  | -2.5                     | 1.31                                               | -20.2             | -2.60                | 6359              |
| PAL4D  | 150624           | 1.06                 | 1230            | 270                   | 1185                        | 45                                     | -19.3        | -23.5                  | -1.86                       | -4.34                                 | 8078  | -20.3    | -2.42                   | 1839  | -2.9                     | 1.21                                               | -20.3             | -2.39                | 6420              |
| PAL8D  | 150615           | 1.05                 | 1561            | 271                   | 1190                        | 371                                    | -17.5        | -21.0                  | 0.01                        | -2.41                                 | 9898  | -18.9    | -0.94                   | 3895  | -2.9                     | 1.20                                               | -19.5             | -0.66                | 7831              |
| PAL9D  | 150615           | 0.88                 | 1296            | 269                   | 1180                        | 116                                    | -18.9        | -21.9                  | -1.86                       | -3.99                                 | 8083  | -19.7    | -2.44                   | 2218  | -2.8                     | 1.23                                               | -19.9             | -2.36                | 6326              |
| PAL10D | 150610           | 0.92                 | 2029            | 276                   | 1216                        | 813                                    | -18.6        | -15.4                  | 0.42                        | -0.64                                 | 9327  | -16.6    | -0.25                   | 5902  | -3.1                     | 1.13                                               | -18.2             | 0.33                 | 7168              |
| PAL11D | 150909           | 0.91                 | 2675            | 223                   | 958                         | 1717                                   | -13.7        | -19.0                  | 0.12                        | -2.53                                 | 8831  | -18.7    | -2.40                   | 8406  | 0.6                      | 1.94                                               | -18.2             | -0.59                | 7904              |
| PAL12D | 150602           | 0.92                 | 1299            | 269                   | 1180                        | 119                                    | -21.8        | -17.0                  | -3.21                       | -0.56                                 | 9841  | -20.5    | -2.49                   | 2681  | -2.8                     | 1.23                                               | -20.7             | -2.40                | 7738              |
| PAL13D | 150609           | 0.96                 | 1409            | 258                   | 1125                        | 284                                    | -18.4        | -21.8                  | -1.37                       | -3.75                                 | 8181  | -19.5    | -2.14                   | 2649  | -2.3                     | 1.38                                               | -19.9             | -1.91                | 6683              |
| PAL14D | 150602           | 1.05                 | 1221            | 274                   | 1206                        | 15                                     | -17.9        | -20.7                  | -0.44                       | -2.72                                 | 9959  | -18.5    | -0.95                   | 2232  | -3.0                     | 1.16                                               | -18.6             | -0.94                | 7803              |
| PAL15D | 150609           | 0.95                 | 1522            | 264                   | 1155                        | 367                                    | -18.1        | -22.4                  | -0.76                       | -3.35                                 | 8177  | -19.7    | -1.75                   | 3113  | -2.6                     | 1.30                                               | -20.3             | -1.46                | 6549              |
| PAL18D | 150603           | 0.95                 | 1155            | 253                   | 1100                        | 55                                     | -17.9        | -22.3                  | -0.49                       | -3.02                                 | 8999  | -18.8    | -0.99                   | 1791  | -2.0                     | 1.46                                               | -18.9             | -0.95                | 7451              |
| PAL19  | 150603           | 0.96                 | 1526            | 274                   | 1206                        | 320                                    | -18.0        | -18.3                  | -1.32                       | -3.10                                 | 9687  | -18.1    | -2.00                   | 3697  | -3.0                     | 1.16                                               | -18.7             | -1.77                | 7527              |
| PAL20D | 150909           | 1.04                 | 1708            | 277                   | 1221                        | 487                                    | -18.5        | -22.3                  | 1.33                        | -1.23                                 | 11490 | -20.3    | 0.13                    | 5368  | -3.1                     | 1.11                                               | -21.3             | 0.48                 | 8908              |
| PAL22D | 150623           | 0.98                 | 1188            | 257                   | 1120                        | 68                                     | -19.1        | -23.0                  | -2.02                       | -4.52                                 | 7406  | -19.9    | -2.55                   | 1579  | -2.2                     | 1.40                                               | -20.0             | -2.50                | 6077              |
| PAL23D | 150606           | 0.85                 | 1095            | 273                   | 1201                        | -106                                   | -17.3        | -22.0                  | -0.43                       | -3.25                                 | 9930  | -18.1    | -0.93                   | 1766  | -3.0                     | 1.17                                               | -17.9             | -1.01                | 7650              |
| PAL25D | 150617           | 1.05                 | 1181            | 256                   | 1115                        | 66                                     | -18.9        | -21.8                  | -1.94                       | -4.05                                 | 7523  | -19.5    | -2.37                   | 1537  | -2.2                     | 1.41                                               | -19.5             | -2.32                | 6233              |
| PAL26D | 150610           | 1.03                 | 1450            | 309                   | 1397                        | 53                                     | -18.8        | -17.9                  | 0.37                        | -1.24                                 | 10287 | -18.5    | -0.18                   | 3490  | -3.6                     | 0.70                                               | -18.7             | -0.15                | 7071              |
| PAL27D | 150624           | 1.03                 | 1479            | 283                   | 1253                        | 226                                    | -18.7        | -22.2                  | -0.25                       | -2.90                                 | 8453  | -20.0    | -1.19                   | 2990  | -3.3                     | 1.03                                               | -20.5             | -1.03                | 6416              |
| PAL30D | 150615           | 1.03                 | 1241            | 276                   | 1216                        | 25                                     | -20.3        | -23.2                  | -1.89                       | -4.12                                 | 7649  | -21.0    | -2.41                   | 1799  | -3.1                     | 1.13                                               | -21.0             | -2.40                | 5945              |
| RS1D   | 150331           | 0.77                 | 2098            | 289                   | 1285                        | 813                                    | -17.8        | -23.4                  | 8.44                        | 5.83                                  | -     | -21.6    | 6.68                    | -     | -3.5                     | 0.95                                               | -23.5             | 7.20                 | -                 |

Supplementary Supplemental Table 4: Updated chemistry and isotopic analysis in total discharge (TD) and reservoir (res) conditions of discharge fluid and steam condensate samples from Bacman wells.

\* Reservoir fluid temperatures were calculated using the quartz geothermometer ( $T_{quartz}$ ) considering maximum steam loss by Fournier (1977). Fractionation factors between liquid (l) and steam (v) at  $T_{quartz}$  for both D/H and <sup>18</sup>O/<sup>16</sup>O were based on equations by Horita and Wesolowski (1994).