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Abstract
Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant
information. The resulting extreme sensitivity and discrimination has proven useful to humans,
who have therefore co-opted some animals’ sense of smell. One aim of machine olfaction
research is to replace the use of animal noses and one avenue of such research aims to
incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory
receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that
they would not normally encounter. We collected a large number of in vivo recordings from
individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36
chemicals related to wine (‘wine set’) and an ecologically irrelevant set of 35 chemicals related
to chemical hazards (‘industrial set’), each chemical at a single concentration. Resampled
response sets were used to classify the chemicals against all others within each set, using a
standard linear support vector machine classifier and a wrapper approach. Drosophila receptors
appear highly capable of distinguishing chemicals that they have not evolved to process. In
contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best
recognition accuracy if the outputs of all 20 receptor types were used.

S Online supplementary data available from stacks.iop.org/BB/9/046007/mmedia
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industrial chemicals, wine volatiles
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Introduction

Animals detect volatiles in the environment with species-
specific sets of olfactory receptor proteins. These olfactory

systems have evolved to confer adaptive advantages in
numerous different ecological niches, some of them involving
chemosensory specialization, others optimized to work across
a broad range of possible chemical stimuli. For a long time,
humans have co-opted animal olfactory systems for their own
purposes. We assume that humans first exploited the dog’s
sense of smell to assist in hunting, which largely involves the
dog’s natural behaviours. More recently, however, humans’
use of animal olfaction has expanded to a wider range of
species and a number of tasks that require detection or

Bioinspiration & Biomimetics

Bioinspir. Biomim. 9 (2014) 046007 (13pp) doi:10.1088/1748-3182/9/4/046007

4 These authors contributed equally to this work.

Content from this work may be used under the terms of the
Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1748-3182/14/046007+13$33.00 © 2014 IOP Publishing Ltd Printed in the UK1

mailto:t.nowotny@sussex.ac.uk
http://stacks.iop.org/BB/9/046007/mmedia
http://dx.doi.org/10.1088/1748-3182/9/4/046007
http://creativecommons.org/licenses/by/3.0


discrimination of odourants possibly unrelated to the envir-
onment in which those species have evolved (Leitch
et al 2013). The question therefore arises, how effective are
animal olfactory systems in parsing a set of odourants that the
animal did not evolve to detect? The answer to this question is
also relevant to the field of machine olfaction, because the
types of chemosensors used in this field tend to be generic,
rather than being heavily selected for any specific task.

Machine olfaction seeks to mimic the ability of animal
olfactory systems to classify complex mixtures of volatiles
into meaningful categories. Both artificial noses and biolo-
gical noses contain a set of sensors (sensor types) that
transduce certain features of molecules into electrical signals.
In electronic noses (e-noses) transduction can be electrical,
vibrational, gravimetric or optical. In biological noses, the
sensors are receptor neurons containing receptor molecules
that, in binding chemicals, change the membrane potential of
the receptor neuron. In both cases, each sensor type is able to
detect a range of different molecules, albeit with different
sensitivities and, usually, there is considerable overlap
between the ‘receptive fields’ of individual sensor (receptor)
types. In e-noses, the signals from the sensors are fed into a
data analysis system that can distinguish the input volatiles
and classify them into meaningful categories as, presumably,
occurs in an animal’s brain. In contrast to methods of che-
mical analysis, e-noses are designed to reproduce the speed
and efficiency of biological noses, while ideally remaining
small, lightweight devices. Modern e-noses have had some
limited uses in the food, cosmetic and pharmaceutical
industries as well as in environmental control and clinical
diagnostics.

One important distinction between most olfactory sys-
tems and artificial noses is that the latter often employ a more
limited number of sensors. Current commercially available e-
noses typically use between 2 and 18 different sensors, mostly
of the metal oxide (MOS) type (Stitzel et al 2011). By con-
trast olfactory systems in insects have between 50 and 300
receptors while some mammalian systems can have more than
a thousand (Zhang and Firestein 2002). The number of sen-
sors in e-noses is primarily limited by the costs of building
large, diverse chemical sensor arrays. More fundamentally,
however, we would like to know whether it would be better to
construct different artificial noses, each with a small number
of sensors tuned to a specific task or, as is more the case in
natural noses, one device with a large number of different
sensors that can classify a wide range of volatiles.

The olfactory receptors (ORs) of the fruit fly Drosophila
melanogaster form one of the best-characterized sets of ani-
mal ORs. Recently, it has been shown that, while the recep-
tors have evolved to provide information about chemicals that
are behaviourally relevant to the fly, they can also recognize
several, from a set of odourants that includes toxic industrial
chemicals, explosive-associated chemicals and other regu-
lated or hazardous substances (‘industrial set’), which the fly
would not normally encounter (Marshall et al 2010). This
allows us to compare the performance of specified sets of
Drosophila receptors in classifying chemicals from the
‘industrial set’ with their performance against a second set of

chemicals, functionally related to the fly’s diet of fermenting
fruit, from the headspace of wine. We hope to understand the
relative classification performance in these two situations.
Furthermore we are able to investigate how varying the
number of sensors and their identities affects classification
performance in these two different scenarios, i.e. to fully
classify two very distinct and unrelated sets of volatiles. We
aimed to determine, and compare, the optimal set of sensors
for each of these two classification tasks, a process that is
called feature selection in the machine learning literature (see
Marco and Gutierrez-Galvez 2012) for a recent review of
common approaches in the e-nose domain). In doing so, we
were also able to compare and contrast these findings with the
principles of optimal feature selection as they apply to elec-
tronic nose sensors (Nowotny et al 2013).

We complement our previously published data set for
volatiles with applications in law enforcement, emergency
response, and security (Marshall et al 2010) with a novel set
of Drosophila receptor responses to volatiles that are gener-
ated during wine fermentation. For both, data were obtained
from in vivo recordings of individual Drosophila olfactory
receptor neurons (ORN) in response to the chemicals in the
two sets at a fixed concentration for each of the chemicals.
There were 36 chemicals related to wine headspace (‘wine
set’) and 35 chemicals related to security applications
(‘industrial set’). Both data sets are available at the CSIRO
data access portal (DOI:10.4225/08/54252553F0775).

Materials and methods

Experimental data: recordings from Drosophila olfactory
receptors

The physiological response to volatile stimuli was recorded
from Drosophila ORNs using the same method as in Marshall
et al (2010), similar to the one used previously (de Bruyne
et al 1999, 2010, Hallem and Carlson 2006). A glass capillary
electrode was inserted into the base of a single olfactory
sensillum on the antenna or maxillary palp of a male fly
(figure 1(A)) while a reference electrode was inserted into the
eye. Signals were amplified 1000x via a 10x active probe fed
into an AD converter with digital amplification. Action
potentials, recorded from two or four neurons in a single
sensillum, were sorted into neuronal types, according to their
different spike amplitudes, and counted separately. There are
28 types of olfactory neurons housed in basiconic sensilla
and, in this study, recordings were made from 20 of those
neuronal types, equivalent to 20 different sensors. The
recorded signals comprise a train of action potentials (spikes).
Many of the neuronal types have a characteristic resting or
basal spike frequency. Odour stimulation may therefore
increase or decrease the spiking rate, with a dynamic range
≈30–300 Hz. The response for each ORN was calculated as
the firing rate (spikes/s) during the period of stimulation
(500 ms) minus the spontaneous activity prior to stimulation.
A negative firing rate therefore indicates reduced activity
(inhibition). Repetitions were always from different sensilla,
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either on the same or on different flies. The primary data for
each ORN-odour combination was based on recordings from
at least three different flies.

Chemical stimulation

As olfactory stimuli we used a set of 36 aroma compounds
relevant to the wine industry. All compounds were dissolved
at 1% (v/v) in various solvents. A complete list of the che-
micals, and solvents used and a list of odour descriptors are
given in supplementary table 1. Volatiles were injected (10%
v/v) from the headspace of 5 mL disposable syringes, con-
taining 10 μl of the 1% dilution of the odour on filter paper,
into a constant stream of clean humidified air flowing over the
preparation. These procedures were the same as those used for
the set of 35 chemicals in the industrial set that were tested
previously in Marshall et al (2010). For stimulation with

wine, we put 10 μl of undiluted Cabernet–Sauvignon wine
onto the filter paper.

Derived data sets

The electrophysiological recordings of Drosophila sensilla are
technically demanding and the number of different receptor
types and tested chemicals was large (1420 Combinations).
Consequently, the number of samples for each chemical and
receptor type in the experimental data was relatively low and
inconsistent across receptor-chemical pairs (n= 4–13, median
6). We, therefore, created derived (‘synthetic’) datasets from
the original ORN responses to address the feature selection
problem, i.e., to identify the optimal subset of receptor types
for classifying our two data sets. To generate the synthetic
data we took the following approach: For each ORN class and
volatile, we calculated the mean response and its standard
deviation. We then generated the synthetic data by randomly
sampling 20 virtual ORN responses from a Gaussian dis-
tribution with the same mean and standard deviation as
experimentally observed. This way, we created 20 indepen-
dent virtual responses of all ‘sensors’ to all volatiles, which
were assembled into response vectors.

The recordings from Drosophila sensilla are quite vari-
able across trials and particularly across recordings from
different sensilla and across different animals. We expect the
performance of Drosophila ORs in classifying the two sets of
chemicals, to be quite sensitive to the observed variability
only part of which is due to variability in the ligand binding
and signalling properties of the OR. Other sources of variance
include differences in the physiology of ORNs and geometry
of the recording method, e.g. how exactly the sensillum was
impaled. We therefore performed a sensitivity analysis to
determine how tightly the classification performance depends
on the level of noise. To do this, we compared the classifi-
cation results when the observed standard deviations, used to
define the resampled receptor responses, were reduced or
increased by constant factors across all odour-chemical pairs.

Computed classifications

To assess the ability of a given set of olfactory receptor types
to distinguish (classify) all individual chemicals in a given
group of substances, we performed ten-fold cross-validation
using a linear support vector machine (SVM) classifier
(Cortes and Vapnik 1995, Chang and Lin 2011). In brief, to
classify all chemicals in one of our two sets means to predict
which chemical was present based on the readings of a set of
chosen receptors. A linear SVM is a machine learning method
to make such predictions. As with most machine learning
methods, an SVM is first trained on a, typically large, set of
examples and ‘learns’ from the examples how to distinguish
the different classes. The trained SVM can then be used on
novel examples from a second, ‘test’, set to predict the class
(identity) of each input. When there is no natural separation
into a training and test set, cross-validation may be used to
assess how well the overall system performs. In cross-vali-
dation the available data set is split randomly into two parts,
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Figure 1. Drosophila olfactory receptor neurons (ORN) respond to
the headspace of wine. (A) Diagram indicating the names of ORN
classes, the receptors they express and their distribution in basiconic
sensilla and antennae or maxillary palps e.g. ab1, antennal basiconic
sensillum type 1. (B) Schematic of a fly’s head. (C) Example of a
1.5 s recording from an ab2 sensillum showing increased action
potential frequencies in response to a 500 ms stimulation with
volatiles from a small (10 μl) sample of Cabernet–Sauvignon wine.
Indicated are large (neuron A) and small (neuron B) spikes fired
before during and after stimulation (horizontal bar). (D) Average
response for each ORN class to Cabernet–Sauvignon wine (n = 8,
error bars are SEM).
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e.g. 90% training and 10% testing examples (so-called ten-
fold cross-validation). Then the classifier is trained on the
training examples and tested on the testing set. The success
rate, i.e., the fraction of correctly predicted examples, is
recorded and another split is performed, typically until every
example has been in a test set exactly once. Here we repeated
the entire procedure 10 times to average out any fluctuations
stemming from the different possible 90− 10 random splits.
Accordingly we report the average performance of 100
trained classifiers whenever we indicate cross-validation
performance of classification in the results.

The learning procedure of linear SVMs is based on
identifying hyper-planes in the high-dimensional space of
input data that separate the examples of different classes in
the training data set. In doing so, there is a trade-off between
generally separating examples well and separating every
single example correctly/well. This trade-off influences the
ability of the SVM to generalize to novel examples. It is
regulated by the choice of a meta-parameter, usually denoted
C. Here we worked with C= 1024 throughout the numerical
experiments. This value was chosen by manual inspection of
classification performance in an initial exploration with a set
of candidate values on logarithmic steps from 1 to 65 536.

Analysis

Hellinger distance. The Hellinger distance is a normalized
distance between probability distributions (or normalized
histograms) that takes values between 0 (identical probability
distributions) and 1 (maximal difference, e.g. obtained when
the probability distributions have no overlap). It is defined as

∑= −
=

( )H p q p q( , )
1

2
,

i

k

i i
1

2

where p and q denote the considered probability distributions
and k is the total number of potential values of p and q.

Results

Experimental data: recordings from Drosophila olfactory
receptors

We selected a set of 20 Drosophila ORNs housed in basi-
conic sensilla on either the antenna or maxillary palp to
record from (figures 1(A), (B)). These neurons typically fire
action potentials spontaneously but increase or decrease their
firing rate upon stimulation. Even though wine is not a
natural stimulant, it mimics many of the characteristics of
natural fermentation of fruit and flies are well known to be
attracted to it. We first confirmed that several of the ORNs
in our set do indeed respond to stimulation with the mixture
of volatiles present in the headspace of a small quantity of
Cabernet–Sauvignon wine (figures 1(C), (D)). Next we
challenged these same neurons with a set of 36 compounds
that have been documented to be important for the human
sensory appeal of wine. These include contributors to the

general vinous odour, major impact compounds responsible
for specific notes as well as important taints and off-flavours
(supplementary table 1). Because the Drosophila olfactory
system is adapted to detect volatiles from fermenting fruits
we expected many of these compounds to induce robust

Figure 2. Responses of ORN classes to two disparate sets of
volatiles. (A) Bubble plot of responses to a set of aroma chemicals
from the wine industry, details are presented in supplementary table
1. Bubble area represents mean change in firing rate during
stimulation (spikes/s). Actual values and SEM are in supplementary
table 2. (B) Bubble plot of the same set of ORN classes to a set of
volatiles related to security risks. Data are from Marshall
et al (2009).
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responses from at least one of the ORNs. Figure 2(A) and
supplementary table 2 show that this was indeed the case as
the majority of these compounds (29/36) induced excitatory
responses above 15 spikes/s for one or several ORNs.
Moreover, all except one of the 20 neuronal classes
responded to at least one of the volatiles. The neuron that
did not respond to any of the volatiles was ab1C, which is
an ORN specialized for detecting carbon dioxide. Robust
responses (over 50 spikes/s) were seen for 21 compounds
and very high responses were seen to several fruity esters,
furaneol, E2-hexenal and methionol as well as to the taints
ethyl acetate, 2,3-butanedione, 4-ethylphenol, 4-ethylguaia-
col and geosmin. Strong inhibition was observed in specific
ORNs to linalool, (−)-fenchone and whiskey lactone.

Next we compared this response pattern to that observed
across the same array of ORNs but to a much less natural set
of volatiles (figure 2(B)). This set of mostly synthetic che-
micals was assembled on the basis of representing a range of
toxicity or security risks. We will refer to this set of odourants
as the industrial set. At first sight it is obvious that the wine
set evokes many more strong responses from the Drosophila
receptors than the industrial set. For the latter, high responses
(over 50 spikes/s) are only observed to a few of the com-
pounds (9/35) though a few others evoke strong inhibitions
(6/35). Nevertheless, at a threshold of 15 spikes/s many more
are detected (21/35).

Testing the utility of Drosophila receptors for classification of
odours

We then took the two sets of experimental data and asked
how the selected ORNs would perform as sensors in a
hypothetical artificial nose when tasked with classifying the
chemicals in each of the two sets. Furthermore, we investi-
gated how many and which of the ORNs should best be used
for discriminating between the two different sets. In machine
learning this problem is known as the feature selection pro-
blem, with the ORNs being the features.

To help us answer these questions we generated larger
synthetic data sets, based on the experimental data (see
methods), containing 20 simulated measurements for each of
the 20 ORN × 71 chemical combinations, to enable a machine
learning approach.

Computed classification performance for two odour sets is very
similar

With these data we first addressed two related questions.
Firstly, how many sensors should be grouped in an artificial
nose to optimally recognize the odours within each of the two
sets? Secondly, which specific sensors should be part of a
nose of a given size. To address these questions we used a so-
called wrapper-approach (Kohavi and John 1997), in which
we generated all possible choices of groups of sensors. Each
of these choices was used as the input space to a linear SVM
and we inspected the classification performance in ten-fold
cross-validation (see methods). Figure 3 (coloured bars in the
centre) illustrates the overall results of this investigation. For

both odour sets the best classification performance increases
monotonically with the number of different sensors used. This
seems intuitively obvious but is not necessarily always true;
see (Nowotny et al 2013) for a counter-example from the
domain of electronic noses. The best performance is reached
when using all 20 available Drosophila receptor types but
maximum performance, i.e. 100% with all volatiles recog-
nized correctly at all times, was not observed even with the
full set of sensors. However, performance increased quite
rapidly with the number of sensors added to the nose so that
90% of the best observed performance (red line in
figures 3(B), (C) is already achieved with 10 receptors for the
industrial set and 11 receptors for the wine set.

It is possible that the reported best performance of certain
groups of receptors was subject to a selection bias due to
biased sampling of our synthetic data or bias in the selection
of training and testing sets, for the replicated ten-fold cross-
validations. To test for such bias we took the 50 best per-
forming combinations of receptors for each nose size and
independently performed ten more ten-fold cross-validations
with them (figures 3(B), (C), green bars). If there had been
chance bias in the selection of training and test sets, it would
be unlikely to re-occur in exactly the same way and the
observed performance in the second run should be markedly
lower. However, the performance in the repeated cross-vali-
dation turned out to be very similar to the original values
(wine set: difference of best −1.04 × 10−4 +/− 0.004, not
significantly different from 0 (t-test, P = 0.91), difference of
average top-50: −9.55 × 10−4 +/− 5.29 × 10−4, which is sig-
nificantly different from 0 (t-test, P= 1.5 × 10−7); Industrial
set: difference of best: −6.43 +/− 0.0033, not significantly
different from 0 (t-test, P = 0.39), difference of average top-
50: −0.001 +/− 0.001, significantly different from 0 (t-test,
P = 2.9 × 10−4) suggesting that although there was a statisti-
cally significant selection bias for the average performance of
the top-50 groups, it was of small overall magnitude for both
of the two chemical sets.

To control for selection bias stemming from the parti-
cular generated synthetic data sets (see methods) we also
repeated the analysis for the 50 best choices of receptor
groups on an independently generated synthetic data set
which had identical means and standard deviations to the
original set (figure 3(B), C blue bars). The slight decrease in
performance on average (compared to red bars) indicates a
slight dependence of the choice of optimal sensor group on
the particular synthetic data set used. (Differences between
rerun and original run: Wine set: difference of best −0.0013
+/− 0.0134, not significantly different from 0 (t-test,
P = 0.68), difference of average top-50: −0.013 +/− 0.0075,
which is significantly different from 0 (t-test, P= 2.9×10−7;
Industrial set: difference of best −0.0177 +/− 0.011, sig-
nificantly different from 0 (t-test, P = 8.0 × 10−7), difference of
average top-50: −0.029 +/− 0.012, significantly different from
0 (t-test, P = 2.4 × 10−9)). We note that the bias seems to be
significantly larger for the industrial set than for the wine set,
both for the for the best (ANOVA, P= 0.0001) and for the
average top-50 (ANOVA, P= 1.5 × 10−5) performance dif-
ference between original and new synthetic data sets.
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However, compared to the overall variation between sensor
groups of different size and between individual groupings of
the same size, this bias is small.

Another aspect of the data displayed in figure 3 is the
individual distributions of performance for each given size of
the group of sensors used. The performance distributions
exhibit much larger spread for small to medium group sizes
than for larger group sizes, where the spread approaches zero.
This indicates that the composition of the chosen group of
sensors is crucial when only a few sensors are used, as one
would expect, and becomes less important if a larger number
of sensors is employed.

When comparing the performance of combinations of
Drosophila sensors on the two different chemical sets, it is
most striking that in spite of clear differences in the

distribution of response magnitudes across ORNs and vola-
tiles (figure 2) performance in classifying the odourants using
these responses is quite comparable between the wine and
industrial sets. Given this overall similarity we note that
performance is slightly better on the industrial set than on the
wine set when the nose is composed of single sensors, or
small groups (<8). Conversely, the larger groups (9>) and the
full set of 20 ORs perform slightly better on the wine set
which is arguably more relevant to Drosophila behaviourally.
One possible interpretation of this observation is that the
industrial set may be more chemically diverse in terms of
structures and physicochemical properties, like vapour pres-
sure, and therefore easier to classify but the more complete
sets of Drosophila ORNs may be better adapted to distinguish
odours of the wine set.

Figure 3. Classification performance of different groups of sensors for the two volatile sets (wine and industrial). (A) and (D): distribution of
performance for all possible sensor group compositions for each given sensor group size (y axis). Labels in the middle indicate group size,
total number of different groupings of this size and the number of groups in the ‘top50’ selection (see main text). (B) and (C): bar graphs of
the best performance (dark red) and the average performance of the top50 selection (light red). Furthermore, the best performance of ‘top50’
members upon rerun of cross-validation (dark green) and the average performance of the ‘top50’ members in the rerun (light green). Finally,
the best performance of ‘top50’ members in a rerun on a new synthetic data set (dark blue) and the average performance of ‘top50’ members
in this rerun (light blue). The vertical red line marks 90% of the maximal performance observed overall.
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Prevalence of ORN classes in the optimal sensor groupings
differ for the two sets

Having addressed the questions of how groupings of sensors
perform when used to recognize the chemicals in the two
odour sets and how this performance depends on the group’s
size, we turn to a third question. Which individual sensors, on
their own, are particularly successful in classifying each of the
two sets or as part of an artificial nose of increasingly larger
groupings of sensors? Put differently, if a nose contains only
one sensor, which one will perform best? If it contains two,
which sensors are best to combine? Furthermore, and parti-
cularly with groups of medium size, the optimal set of sensors
for any group size need not contain the sensors that were part
of the most successful group of fewer sensors.

Figure 4 shows that the ab8A receptor is one of the two
most frequently chosen sensors in the most successful clas-
sifications of both wine and risk volatiles by single sensor
noses (figure 4, panel 1). However, for the wine set receptor
ab1A is overall the best sensor on its own (albeit at a poor
performance of 11.4%) followed by ab8A (10.3% perfor-
mance), while for the industrial set the best single OR is ab8A
(14.7% performance) followed by pb1A (14.6% performance)

as second best. For comparison, the chance levels for classi-
fication, i.e. the percentage of correct predictions expected if
guessing any odour with equal probability of 1/36 or 1/35
respectively, are 2.8% for the wine set and 2.9% for the
industrial set. The performance numbers for the single OR
indicate that Drosophila ORs perform slightly better for the
industrial set than for the wine set in this somewhat artificial
challenge. A related but somewhat different question is which
of the receptors is the most important if considering using all
of them. One way of assessing this is to sequentially remove
each OR from the full set of 20 considered here, to determine
which one’s removal leads to the largest decrease in classi-
fication performance. Inspecting the performance of the
groups of 19 ORs reveals that the worst performing group for
the wine set is the one missing receptor pb1B (75.5% com-
pared to 81.7% with all 20 ORs) and, for the industrial set, the
one missing receptor pb1A (73.9% compared to 78.5% with
all 20 ORs).

When comparing optimal choice of sensors, in particular
for lower numbers, i.e., 1–12 sensors, we notice that different
sensors are typically chosen for the two distinct odour sets.
The amount of overlap in usage (shown in purple, figure 4) is
generally smaller than the usage that is unique to either the

Figure 4. Comparison of the frequencies with which individual sensors appear in artificial noses of different sizes that lead to the best
classifications of the two different odour sets (10% of all choices or 50 choices total, whichever is smaller, but at least one choice. Note that
except for the single sensor case these are the top50 groups). The data was processed as in figure 3. The sensors were ordered on the
horizontal axis according to the observed frequency of usage in the noses containing 16 sensors as used for classifying the wine set. Red bars
correspond to the usage statistics for the industrial set and blue bars for the wine set. The purple colour marks their overlap. In each panel the
number of receptors are noted in the upper left corner and the Hellinger distance between the histograms for wine and industrial sets are noted
in the upper right corner.
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wine or industrial set. To quantify this observation we cal-
culated the Hellinger distance between the (normalized) his-
tograms of receptor (sensor) use for the wine and industrial
set for each of the receptor group sizes, i.e. each of the panels
in figure 4. The results are noted in the panels. The Hellinger
distance in principle varies from 0 (identical distributions) to
1 (maximally different distributions). Here, we observe zero
distance for the group with all 20 sensors because in both
cases all sensors are used, hence the distributions are iden-
tical. We observe maximal Hellinger distance for the group
with 5 sensors, d= 0.723. Overall the calculation of Hellinger
distance supports our impression, based on observing the
plots in figure 4, that it is large for sensor choices with a small
number of sensors and decreases to 0 for groups having most
sensors. This indicates that, in agreement with our intuition,
‘small noses’ with only a handful of receptors would be very
specialized, i.e. different for each specific application (spe-
cialist noses), and noses with many sensors would be similar
to each other and hence might be useful for a number of
different applications.

What role does the level of noise play?

In the case of Drosophila, multiple receptor neurons of the
same type converge on the same glomerulus, with a con-
vergence ratio of approximately 30:1 (Vosshall and
Stocker 2007). This likely implies a noise reduction step due
to averaging the noisy signals from individual receptor neu-
rons. If the noise is fully independent between ORNs, we can
expect a reduction of 1/√n, if n receptor neurons converge
onto one local neuron or one projection neuron. Figure 5
illustrates the effect of reducing the sensor noise on the
classification success. We reduced the standard deviation of
the sensor responses in our generated data sets systematically
from the full standard deviation, observed experimentally in
single ORNs, in steps of 0.1 to 10% of this original value. For
any number of sensors considered, the performance increases
dramatically with decreasing noise and if using six or more
receptor types, a reduction of the noise to 10% of its original
value (corresponding to a convergence ratio of 100:1) already
allows perfect performance of 100% recognition. For larger
numbers of receptor types (ten or more) a reduction of the
receptor noise to about 30% of its original value suffices to
achieve 100% classification. When increasing noise levels, on
the contrary, classification performance decreased mono-
tonously with the noise level. This confirms that sensor noise
is an important limiting factor for classification performance.

Which volatiles are easier to separate in each of the two sets
and does this explain which sensors are picked?

We analysed how often each of the chemicals was recognized
correctly and the frequency and nature of misclassifications.

Figure 6 illustrates the results for all feature set sizes
from 1 to 20 receptors. It is clear that some odourants are
usually recognized correctly by configurations that are not too
small i.e. having more than four receptors. Most prominently,
in the wine set, these are acetates, alkanoates and most

alcohols (large black circles in figure 6). Also, for most of
these well-classified chemicals, no other chemicals are con-
fused with them (small or non-existent dark grey circles in
figure 6). Other chemicals, however, are quite often recog-
nized as something else, even for large feature set sizes, for
example 4-mercapto-4-methylpentan-2-one, (+)-fenchone and
(−)-fenchone, to name a few prominent examples in the wine
set. This clear distinction demonstrates that there are objective
differences in the separability of odourants, independent of
the feature choices. The data for the industrial set show
similar effects. Supplementary figures S1 to S4 show a more
detailed analysis for the best feature sets. In these classifica-
tion matrices we can recognize the nature of some of the
typical errors in classification. For example, (±)-linalool and
(−)-linalool, are—maybe not too surprisingly—quite fre-
quently confused with each other but are rarely taken to be
anything else and rarely is any other chemical mistaken to be
one of them. A large group of odours, comprising approxi-
mately half of the chemicals, are misclassified as other odours
quite frequently and other odours are frequently misidentified
as being them. In this case the mistakes are spread among a
larger group of analytes in both directions. This relationship
between the two types of mistakes is, however, not necessa-
rily symmetric. E.g. (−)-fenchone is frequently recognized to
be γ-decalactone but γ-decalactone is rarely predicted to be
(−)-fenchone. However, while strict symmetry is not
observed, in most cases, when odour i is not misidentified as
odour j (1131 occurrences for group size 20) then odour j is
not misidentified as odour i (1100 occurrences for group size
20, i.e. in 97.3% of all cases, see supplementary figure S2).
Similarly, if they are confused with each other in one direc-
tion (129 cases for group size 20), then they also tend to be
confused the other way around (98 cases for group size 20,
i.e. in 76% of all cases).

Finally, we also investigated the question whether any
individual receptors were particularly useful for recognizing
specific odours. To quantify this we averaged the fraction of
correct recognitions of each individual odour across all trials
with feature sets that contained individual sensors. Figure 7
illustrates the results. Some odours, e.g. ethyl acetate, are
always well-recognized, independent of the presence of
individual receptors in the employed feature sets. Other
odours, e.g. 4-mercapto-4-methylpentan-2-one, are con-
sistently not well-recognized and the presence of none of the
individual sensors seems to make a difference for the better or
the worse. But there are also a few interesting cases, e.g.
(±)-geosmin (white arrowhead on figure 7), that are not well
recognized unless a particular receptor is employed (receptor
ab4B for (±)-geosmin). Unsurprisingly ab4B is the receptor
with the by far largest response to (±)-geosmin. The same
correspondence applies to 3-(methylthio)-1-propanol and the
ab5B receptor and to a lesser extent to 4-ethylphenol and 4-
ethylguaiacol and the pb1B receptor. These more obvious
examples seem to be predominantly found in the wine set,
implying that they may be the result of specific evolutionary
selection processes.

Despite these examples, it is worth noting that for most
odours it is not straightforward to predict the relevance of
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receptors for their recognition this way. This perhaps explains
why the Drosophila sensors do quite a reasonable job of
classifying the industrial set. It is also worth noting that this
analysis disregards false positives, i.e. it is not reflected in this
analysis whether other odours may wrongly be classified as
the odour under consideration in addition to the correct
classifications of the odour that we report in figure 7.

Discussion

Our computational analysis reveals that subsets of Drosophila
receptors appear surprisingly capable of distinguishing che-
micals that they have not evolved to process, making their use
in technical applications a realistic possibility.

Optimal e-nose size

We find that, in contrast to our recent work with metal oxide
sensors (Nowotny et al 2013), where medium-sized sensor
arrays performed best, chemical sensing with Drosophila
receptors appears to achieve the best recognition accuracy for
both the wine set (81.5%) and the industrial set (77.6%) if the
outputs of all 20 OR types are used. One possible reason for
this difference could lie in the fact that biological olfactory

receptors appear to be less correlated in their responses (both
in insects (Berna et al 2009) and mammals (Fonollosa
et al 2012)) than metal oxide sensors. However, 90% of the
performance (73.4% and 69.8% correct classification
respectively) of all 20 OR types can be achieved by an
appropriately chosen subset of as few as 10–11 receptor
types. This compares with the chance probabilities of cor-
rectly classifying any given sample, which are 2.8–2.9%. We
also found that, if such smaller subsets of sensors are used,
the best choices tend to be specific to the individual problem,
i.e. the optimal sensor choices for the wine set and industrial
set differed most for medium-sized e-noses. The membership
of the sets of most relevant receptors for discriminating within
wine and industrial sets therefore overlap but are not identical.

Interestingly, if only very few receptor types are utilized,
Drosophila ORs distinguish the industrial set chemicals sig-
nificantly better than those of the arguably behaviourally
more relevant wine set. If all 20 receptor types are included,
however, the situation is reversed and the wine set is classi-
fied better. This may follow from the principle that species
with larger numbers of receptor types may be capable of
higher levels of olfactory resolution among a common set of
odourants as much as broadened receptivity to novel odourant
classes.

Figure 5. The effect of reducing or increasing the variability (noise) of the receptor neurons on the average performance of the previously
identified top50 OR groups. The effects are similar for the wine (blue) and the industrial set (red). Reducing the noise dramatically improves
classification performance and a reduction by a factor 10 (corresponding to a convergence ratio of 100:1 for independent ORNs) suffices in
most cases (more than six receptors used) to achieve 100% classification performance. For small numbers of employed receptors, the
industrial set appears to be classified slightly better while for large numbers of receptors the wine odours appear to be recognized better for all
noise levels.
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Figure 6. Summary of classification errors for the wine set (a) and the industrial set (b). The three columns for each e-nose size (number of
used receptors) show how often each given odour was wrongly recognized to be a different chemical (light grey, left), how often another
odour was erroneously recognized to be this odour (dark grey, middle), and how often the odour was recognized correctly (black, right). The
area of the bullets is proportional to the fraction of occurrences of these events, normalized to the absolute maximum number with which they
could occur. The values displayed are for the best observed choice of receptors for each e-nose size.
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Noise

The data used in this work are from in vivo recordings of
Drosophila sensilla on the antennae and maxillary palp. The
recordings are influenced by several sources of noise and
variability: Odour concentrations in the delivery system may
vary slightly and some neurons may be affected by the
insertion of a saline-filled electrode in the vicinity. The
recordings from different sensilla within the same animal vary
due to electrode placement and the natural biological varia-
bility of the sensilla and the ORNs within them. And, finally,
the ORNs from different animals vary, genetically, devel-
opmentally and due to recent experience. We have here
lumped all variability and noise into the standard deviation of
the responses of different ORs and resampled Gaussian dis-
tributions with this standard deviation. We envisage that, in a
technical application using isolated ORs from Drosophila,
some of the variability and noise we encounter would be less
than our current conservatively large observations. In order to
estimate the sensitivity of the classification performance to
such diminishing variability, we retested our algorithms with
resampled data sets having reduced noise. These numerical
experiments elucidate the improvement in odour recognition
that could be achieved if the noise in all receptors were
reduced, e.g. by linear superposition of several olfactory
receptor neuron responses, as presumably occurs in the glo-
meruli of the antennal lobe. Our results indicate that a con-
vergence of 100:1 (i.e. ten-fold reduction of standard
deviation) would be sufficient to give perfect classification
performance for the tasks envisaged here. If similar reduc-
tions in noise could be achieved in a technical solution, we
would expect such an e-nose to be able to faultlessly recog-
nize the chemicals in either the wine set or the industrial set at
the fixed concentrations used here.

Concentrations and limited number of chemicals

Real world problems as they are experienced by animals or
presented to an electronic nose, usually require classification
of odours or mixtures of odours independent of their con-
centration, at least over quite a wide range of concentrations.
This is a level of complexity we did not attempt to replicate in
this study, largely because of the level of resources that would
be required to collect meaningful, replicated, data. In our
study each odourant is considered a unique entity and sti-
mulates each neuron independently. Varying an odourant’s
concentration (intensity) would vary the responses across the
array of sensors in a correlated way, adding an extra, quite
different, layer of complexity. Dose-response relationships of
Drosophila receptors are reliably sigmoid shaped with a
dynamic range of 2–3 decadic steps (de Bruyne et al 2001,
Mathew et al 2013). Variability for a particular neuronal class
is relatively small, typically less than one decadic step, which
is considerably lower than that observed in mice (Grossmaitre
et al 2006). Consequently, for odourants evoking responses
between 20–200 spikes/s at the concentrations we tested the
dose-reponse relationship is reasonably predictable. For
odourants outside this range it is harder to predict how far

concentrations have to be lowered or raised for the response
to fall within this dynamic range. Hallem and Carlson (2006)
showed how odourants at concentrations evoking saturated
response levels above 200 spikes/s, ‘drop out’ of the response
profile when they are diluted a further 2 or 4 decadic steps,
undoubtedly making classification harder. In addition, in real
world applications, odourants may be encountered against a
background of many more chemicals than we were able to
include in the two sets used here. The accuracies of classifi-
cation reported in this study should therefore not be construed
to be direct predictions of a hypothetical Drosophila OR
based e-nose in any particular practical application. Never-
theless even classifying 71 chemicals, each at a fixed con-
centration, is a challenging problem, particularly compared with
what is generally attempted in machine olfaction studies. Further
work is certainly needed to address the issue of feature selection
and classification when odour concentrations are varied.

General validity and relevance of the results

Although the odour stimuli used and the responses recorded
in this study are genuine, we do not claim that the resampled
responses are necessarily a faithful reflection of what the fly
experiences in vivo. Nevertheless, this study is probably the
first attempt to assemble a large matrix of odour-receptor
responses with sufficient replication to begin the task of
selecting informative features and comparing their classifi-
cation performance, quantitatively across odour sets and
qualitatively with engineered sensor arrays. The choice of a
SVM to perform classification was largely based on con-
siderations of convenience, as it is well-known in the field,
easily implemented in the wrapper approach and, importantly,
allows direct comparisons with earlier work on feature
selection and classification of volatile odours, using metal
oxide sensors (Nowotny et al 2013). To exclude any artefacts
originating from this particular choice, we have repeated our
classification assessments with two other common classifiers,
a centroid classifier and a k-nearest neighbours (kNN) clas-
sifier (figures S6–S10). While we can see minor differences,
typically in that centroid and kNN classifiers outperform on a
smaller number of features and SVM is slightly better for
large numbers of features, the differences are so small that
using a different classifier would not change the conclusions
we arrived at using the linear SVM classifiers above.

It is clear from our earlier work (Nowotny et al 2013) and
this current study that the concept of a bioelectronic nose
being used to classify a range of chemicals that have not
featured in the evolution of the sensors is reasonable.
Although, unlike in the case with metal oxide sensors
(Nowotny et al 2013), classification performance improves
monotonically with the number of ORN sensor types used,
quite good classifications can be achieved using small num-
bers of sensors. Related work with artificial neural networks
(Bachtiar et al 2013) predicting the chemical class of
odourants based on previously published Drosophila OR
response data (Hallem and Carlson 2006) found a similar
effect, where 15 out of 20 receptors appeared to be the
optimal number for classification. The fact that subsets of
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Figure 7. Average performance in recognizing individual odours, conditioned to whether individual sensors were present in the employed
feature sets. (A) Wine set, (B) industrial set. For each pair of odour plus sensor, the grey level indicates the percentage of correct recognitions
of the odour, averaged over all feature choices where the specified sensor was present.
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sensors can be selected to perform particular tasks is also
encouraging for attempts to actually build a bioelectronic
nose. However, despite the acceptable performance of the
Drosophila receptors in classifying industrial chemicals, the
finding that strong matching between an individual receptor
and a target chemical, e.g. ab4B and geosmin, is restricted to
the wine set, suggests that selective re-engineering of the
specificity of a small number of naturally evolved receptors
might yet still improve the performance of the whole.
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