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Abstract
Faced with ongoing depletion of near-surface ore deposits, geologists are increasingly required to explore for 
deep deposits or those lying beneath surface cover. The result is increased drilling costs and a need to maximize 
the value of the drill hole samples collected. Laser ablation-inductively coupled plasma-mass spectrometry 
(LA-ICP-MS) analysis of pyrite is one tool that is showing promise in deep exploration. Since the trace element 
content of pyrite approximates the composition of the fluid from which it precipitated and the crystallization 
mechanism, the trace element characteristics can be used to predict the type of deposit with which a pyritic 
sample is associated. This possibility, however, is complicated by overlapping trace element abundances for 
many deposit types. The solution lies with simultaneous comparison of multiple trace elements through rigor-
ous statistical analysis. Specifically, we used LA-ICP-MS pyrite trace element data and Random Forests, an 
ensemble machine learning supervised classifier, to distinguish barren sedimentary pyrite and five ore deposit 
categories: iron oxide copper-gold (IOCG), orogenic Au, porphyry Cu, sedimentary exhalative (SEDEX), and 
volcanic-hosted massive sulfide (VHMS) deposits. The preferred classifier utilizes in situ Co, Ni, Cu, Zn, As, 
Mo, Ag, Sb, Te, Tl, and Pb measurements to train the Random Forests. Testing of the Random Forests classifier 
using additional data from the same deposits and sedimentary basins (test data set) yielded an overall accuracy 
of 91.4% (94.9% for IOCG, 78.8% for orogenic Au, 81.1% for porphyry Cu, 93.6% for SEDEX, 97.2% for sedi-
mentary pyrite, 91.8% for VHMS). Similarly, testing of the Random Forests classifier using data from deposits 
and sedimentary basins that did not have analyses in the training data set yielded an overall accuracy of 88.0% 
(81.4% for orogenic Au, 95.5% for SEDEX, 90.0% for sedimentary pyrite, 73.9% for VHMS; insufficient data 
was available to perform a blind test on porphyry Cu and IOCG). The performance of the classifier was further 
improved by instituting criteria (at least 40% of total votes from the Random Forests needed for a conclusive 
identification) to remove uncertain or inconclusive classifications, increasing the classifier’s accuracy to 94.5% 
for the test data (94.6% for IOCG, 85.8% for orogenic Au, 87.8% for porphyry Cu, 95.4% for SEDEX, 98.5% 
for sedimentary pyrite, 94.6% for VHMS) and 93.9% for the blind test data (85.5% for orogenic Au, 96.9% for 
SEDEX, 96.7% for sedimentary pyrite, 84.6% for VHMS).

The Random Forests classification models for pyrite trace element data can be used as a predictive model-
ing tool in greenfield terrains by providing an accurate indication of ore deposit type. This advance will assist 
mineral explorers by allowing early implementation of predictive ore deposit models when prospecting for ore 
deposits. Furthermore, the ability of the classifier to accurately identify pyrite of sedimentary origin will allow 
researchers interested in paleoenvironmental conditions of ancient oceans to effectively screen prospective 
samples that are affected by a hydrothermal overprint.

Introduction
The correct classification of ore deposits in the early stage of 
an exploration project can greatly enhance the efficiency of 
exploration, as it allows for the early application of predic-
tive geologic models. This improvement is especially impor-
tant when exploring beneath cover due to the increased costs 
of drilling deep drill holes and when the surface geology or 

geochemistry fails to reveal details about the deposit at depth. 
For example, minor disseminated pyrite in a sericite alteration 
zone intersected in a drill hole under cover could be related 
to a porphyry Cu outer halo, a volcanic-hosted massive sulfide 
(VHMS) system footwall alteration zone, a high-sulfidation 
epithermal Au zone, or barren pyrite unrelated to an ore sys-
tem. Each of these mineralization types demands a different 
approach to exploration. Knowing which type is present can 
save exploration time and money.
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Laser ablation-inductively coupled plasma-mass spectrom-
etry (LA-ICP-MS) allows for the determination of the trace 
element content of individual minerals. These data are use-
ful because different ore deposit types have different fluid 
sources, metal sources, and depositional mechanisms, all of 
which can significantly affect the trace element content of 
the minerals that precipitate from them (Gregory et al., 2014; 
Tardani et al., 2017). Furthermore, these trace elements can 
be preserved in their mineral hosts during successive hydro-
thermal and metamorphic events. In this study we focus on 
pyrite because it is present in many different types of ore 
deposits, its trace element content can be preserved up to 
midgreenschist facies (Large et al., 2009), and there are large 
data sets available that provide (background) trace element 
contents of pyrite formed in sedimentary environments with-
out hydrothermal inputs (Large et al., 2014, 2015a; Gregory 
et al., 2015a). To achieve our objective, LA-ICP-MS analyses 
of pyrite from a series of different deposit types (iron oxide 
copper-gold [IOCG], orogenic Au, porphyry Cu, sedimentary 
exhalative [SEDEX], VHMS deposits, and barren sedimen-
tary pyrite) were used to train a Random Forests classifier to 
predict deposit type using pyrite LA-ICP-MS analyses. The 
utility extends to the paleoceanography community, because 
the presence or absence of hydrothermal overprints/contri-
butions are often unclear (Gregory et al., 2017), thus erod-
ing confidence in reconstructions of ancient conditions in the 
oceans. 

Random Forests, a supervised classification algorithm, 
has proven to be an ideal choice for accurately predicting 
categories from multivariate input features across a wide 
range of data sets (Fernández-Delgado et al., 2014), but it 
has only rarely been applied to economic geology problems. 
While notable exceptions exist, such as identifying zones of 
hydrothermal alteration and host-rock types (Cracknell et al., 
2014) and modeling of mineral prospectivity (e.g., Rodriguez-
Galiano et al., 2014; Carranza and Laborte, 2015), many other 
opportunities remain untested. Additionally, only one previ-
ous study (O’Brien et al., 2015) used Random Forests analy-
sis of the trace element contents of individual mineral phases 
(i.e., gahnite), despite the large amount of multielement geo-
chemistry data generated in recent years by LA-ICP-MS. In 
this contribution we provide a proof of concept—that is, we 
show how the Random Forests method can be used to classify 
ore deposit type both as an exploration tool and as a means 
of identifying samples most representative of primary marine 
conditions uncompromised by secondary overprints.

Supervised classification

The concept of supervised classification can be thought of 
as linking input features to target classes via a discrimination 
function y = f(x). Input features x are represented as m vec-
tors of the form {x1,…,xm}, and y is a finite set of c class labels 
{y1,…,yc}. Given N instances of x and y, supervised classifi-
cation attempts to train a classification model f ' based on a 
limited number of training samples (Gahegan, 2000; Hastie et 
al., 2009; Kovacevic et al., 2009).

In general, there are three stages to supervised classifi-
cation: (1) data preprocessing, (2) classifier training, and 
(3) prediction evaluation (Cracknell and Reading, 2014). 
Data preprocessing involves compiling, correcting, and 

transforming inputs to a representative set of features con-
taining information relevant to the classification problem 
(Guyon, 2008; Hastie et al., 2009). Classifier training usually 
requires the adjustment and selection of one or more param-
eters, specific to a given supervised classifier, that optimize 
performance on a given set of input features and target classes 
(Guyon, 2009). The selection of relevant features necessarily 
reduces the dimensionality of the input data, thus speeding 
up processing time while also facilitating interpretations of 
the relationships between categories and features (Cracknell 
et al., 2014). Prediction evaluation is vital for assessing the 
validity of classification outcomes and is typically carried out 
using a test data set not previously seen by the classifier. An 
assessment of test data and blind test classifications through a 
confusion matrix and standard classification metrics—such as 
overall accuracy, recall, and precision—provides an unbiased 
indication of the performance of trained classifiers (Congal-
ton and Green, 1998).

Random Forests

Random Forests (Breiman, 2001) is an ensemble supervised 
classifier that generates predictions based on a majority vote 
cast by multiple randomized decision trees, known as a forest. 
Randomness is introduced by randomly subsetting a number 
of input features to split at each node of a decision tree and 
by bagging (bootstrap aggregation). Bagging (Breiman, 1996) 
generates training data for a single decision tree by sampling, 
with replacement, a number of samples equal to the number 
of instances in the training data. The Gini index is used by 
Random Forests to determine a best split threshold at each 
node of a decision tree. The Gini index is defined as

 Gini(t) = S j
c=1 gc (1 – gc), (1)

where gc is the probability or the relative frequency of class c 
at node j and is given by

                          nc gc = —, (2)                          n

where nc is the number of samples belonging to the class c, 
and n is the total number of samples within a particular node. 
For each candidate split, the threshold  that defines maximum 
reduction in class heterogeneity of the resulting child nodes is 
selected (Breiman, 1984; Waske et al., 2009).

In addition to a label indicating a predicted class for a given 
sample, Random Forests produces class membership prob-
abilities. These occur in the form of a vector p comprising 
probabilities for individual predictions representing the pro-
portion of decision trees that predict candidate classes.

Data and Methods
Data preprocessing was primarily executed in standard 
spreadsheet software (Microsoft Excel), with Random Forests 
classifier training and prediction evaluation conducted in the 
open source data mining software platform Orange version 
3.18 (Demsar et al., 2013).

LA-ICP-MS data sources and preprocessing 

This project arose from two major programs of pyrite analy-
sis funded by the Geological Survey of Western Australia 
(Belousov et al., 2016) and the Geological Survey of South 
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Australia (D. Gregory, unpub. report, 2015), where pyrite 
from a large number of ore deposits in both states was ana-
lyzed. Additional data from various ore deposits have been 
analyzed subsequently, leading to the current database of 
3,579 pyrite analyses (Figs. 1, 2). LA-ICP-MS data has been 
provided from a number of different sources, including pub-
lished peer reviewed manuscripts (Maslennikov et al., 2009, 
2017; Large et al., 2014, 2015b; Revan et al., 2014; Gregory et 
al., 2015a, b, 2016, 2017; Gadd et al., 2016), project reports (G. 
Davidson, unpub. report, 2005; D. Gregory, unpub. report, 
2015), Ph.D. theses (Maier, 2011), and new, previously unre-
ported data from the Chalkidiki porphyry Cu district, Greece, 
and the Lady Loretta SEDEX deposit, Australia. 

All pyrite analyses except those taken from Gadd et al. 
(2016) were conducted at the LA-ICP-MS facility located at 
the University of Tasmania, Australia; however, spot size and 
the number of standards varied. Detailed analytical proce-
dures are available in the references in Table 1. All samples 
(except for the Gadd et al., 2016, data, which lacked Te and 
Au) were analyzed for Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, 
Au, Tl, and Pb, and these are the elements emphasized here. 
When analyses were below detection limits, either half the 
detection limit was used or the value was inserted from the 
referred literature source. Because Gadd et al. (2016) did 
not report Te or Au, we used average values for these ele-
ments from the Lady Loretta SEDEX deposit. These data 
were assumed to be reasonable estimates, as these elements 
are commonly below detection in SEDEX deposits. Analyses 
were conducted on 2.5-cm-diameter polished laser mounts. 

Beam size varied from 10 to 100 µm, depending on the size of 
pyrite analyzed and the goals of the relevant study. For each 
analysis, background was measured for 30 s prior to a 40- to 
60-s laser ablation period. The analyses were conducting in 
a pure He atmosphere, and Ar was added to the gas stream 
prior to injection into the ICP-MS to improve aerosol trans-
port. No correction was applied for doubly charged species, 
because these species were kept at low levels (below 0.2%). 
Standards were analyzed at the start and end of each sample 
change and approximately every 25 analyses in between. The 
standard STDGL2b2 (Danyushevsky et al., 2011) was used 
to analyze the elements of interest (except those taken from 
Gadd et al., 2016).

The locations, pertinent references, and number of analyses 
used for Random Forests training, testing, and blind testing 
are given in Table 1. To limit the influence of trace elements 
from microinclusions of other minerals that might be included 
during the ablation of pyrite, the data was screened to ensure 
that no analyses had higher than 1% Zn, 2% As, 1% Cu, 1% 
Ni, and 2% Co. Also, for analyses on which matrix corrections 
were preformed, samples with higher than 20% matrix were 
removed. This combination of newly acquired and compiled 
data yielded a total of 3,579 analyses from 70 different depos-
its and sedimentary units. Of these, 2,898 analyses from 43 
individual deposits/sedimentary formations were used to train 
and initially test the Random Forests classifier to identify five 
distinct ore deposit types: IOCG, orogenic Au, porphyry Cu, 
SEDEX, and VHMS. In addition to these mineral deposit 
types, barren sedimentary pyrite was included as a class in 
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Fig. 1.  Sample location map for the entire data set.
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the training data in an attempt to avoid misclassification of 
nonmineralized pyrite as from an ore deposit.

The remaining 681 analyses from 27 different deposits/sed-
imentary formations were used as blind tests of the trained 
classifier. These data are referred to as blind because analyses 
from these deposits/sedimentary formations were not present 
in the training or test data sets.

Data distributions

The geometric mean, multiplicative standard deviation, 
median, and median absolute deviation (MAD) values of ele-
ment concentrations for the different ore deposit types from 
the training and total data sets are provided in  Tables 2 and 
3. The geometric mean and the median are both presented, 
because they provide robust summaries of the data, depend-
ing on their distributions. Where data are log-normally dis-
tributed, the geometric mean and multiplicative standard 
deviation provide a more useful summary. However, when 
data are not log-normally distributed, the median and MAD 
are more appropriate (Reimann and Filzmoser, 2000). 

With the exception of the VHMS and IOCG deposits, the 
training data set used equal numbers of analyses from each 
deposit. Therefore, the training data set is less biased by 
the number of analyses preformed on the different deposits 
(i.e., the classifier will skew toward picking the deposit that 
has more data points in the training set). VHMS and IOCG 

deposits did not have sufficient analyses from a variety of 
deposits to have equal numbers of analyses from each deposit 
in the training data set. Additionally, of the reported statistics, 
we assert that the medians of trace element content for the 
different ore deposit types from the training data set should 
be used rather than total data set statistics for comparisons 
in future studies. This is because the training set geometric 
mean and median attempt to represent equal contributions 
from the different deposits instead of being overly representa-
tive of one deposit from which we have more data.

Random Forests training and evaluation

To train and test the Random Forests classifier, we used a total 
of 3,579 analyses of pyrite that passed the screening process: 
159 IOCG, 436 orogenic Au, 416 porphyry Cu, 863 SEDEX, 
1,223 sedimentary pyrite, and 482 VHMS. The pyrite trace 
element data were then split into three groups for classifier 
training, testing, and blind testing. The 681 analyses used for 
the blind test were removed (Table 1): orogenic Au (118 from 
four deposits), SEDEX (66 from three deposits), sedimentary 
pyrite (451 from 17 formations/basins), and VHMS (46 from 
three deposits). From the remaining data, a total of 120 analy-
ses from each ore deposit type were used to train Random 
Forests. To avoid bias toward classes with more analyses, an 
equal number of analyses from each deposit were randomly 
selected, except for VHMS and IOCG deposits, because some 

")

")

#*

#*

#*

#*

#*#*
#*

#*

#*

#*

#*

#*

#*

#*

GF

"

"

!(

!(
!(

!(

!(

!(

!(

!(

!(

GFGFGF
#*

#*

#*

#*

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

GF

Wiluna

Youanmi

Wallaby

Hill 50

DeGrussa

Curnamona

Gordon Group

Yeneena Basin

Railway Shale

Que River Shale
Cowrie Siltstone

Velkerri

Dead Bullock

Johnson Cairn

Lower Keppel Creek\

Amadeus Basin

HYC

Mars

Cadia

Minjar

Darlot

Victory

Fortnum

Manxman

Scuddles
Punt Hill

Paddington

Lancefield

Perth Basin

Lady Loretta

Golden MileGolden Grove

East Repulse

Canning Basin

Canarvon Basin Hamersley Basin

Woody Island Siltstone

Late Jurassic NW Shelf
Barney Creek

Salmon RIver Siltstone

Granny Smith

Sunrise Dam
SongvangNathans Labouchre

Meekathara

Jaguar

")

#*

GF

"

!(

GF

SEDEX
VHMS

Porphyry
IOCG
Orogenic gold

Sedimentary pyrite

150ºE120ºE

15ºS

30ºS

Fig. 2.  Sample location map for samples from Australia.

on 23 August 2019

hwerkman
Sticky Note
None set by hwerkman

hwerkman
Sticky Note
MigrationNone set by hwerkman

hwerkman
Sticky Note
Unmarked set by hwerkman



 ORE DEPOSIT AND PYRITE CLASSIFICATION BY TRACE ELEMENT AND STATISTICAL ANALYSIS  775

Table 1.  Sample Location and Number of Samples Used for Random Forests Test, Training, and Blind Test Data Sets

  Number  Number Number of
  of training of test blind test
Location Deposit type analyses analyses analyses Reference

Manxman, Australia IOCG 95 31  D. Gregory, unpub. report, 2015
Punt Hill, Australia IOCG 25 8  D. Gregory, unpub. report, 2015
Darlot, Australia Orogenic gold 8 5  Belousov et al., 2016
East Repulse, Australia Orogenic gold 8 37  Gregory et al., 2016
Fortnum, Australia Orogenic gold 8 22  Belousov et al., 2016
Golden Mile, Australia Orogenic gold 8 35  Belousov et al., 2016
Granny Smith, Australia Orogenic gold 8 4  Belousov et al., 2016
Lancefield, Australia Orogenic gold 8 2  Belousov et al., 2016
Mars, Australia Orogenic gold 8 9  Belousov et al., 2016
Meekathara, Micky Doolan, Australia Orogenic gold 8 2  Belousov et al., 2016
Meekathara, Prohibition, Australia Orogenic gold 8 2  Belousov et al., 2016
Minjar, Australia Orogenic gold 8 2  Belousov et al., 2016
Nathans Labouchre, Australia Orogenic gold 8 3  Belousov et al., 2016
Paddington, Western Australia Orogenic gold 8 2  Belousov et al., 2016
Songvang, Australia Orogenic gold 8 5  Belousov et al., 2016
Sunrise Dam, Australia Orogenic gold 8 4  Belousov et al., 2016
Victory, Australia Orogenic gold 8 64  Gregory et al., 2016
Cadia, Australia Porphyry 60 40    
Chalkidiki, Greece Porphyry 60 256  
Don, Canada SEDEX 24 97  Gadd et al., 2016
HYC, Australia SEDEX 24 316  Maier, 2011
Lady Loretta, Australia SEDEX 24 25  
Pelly North, Canada SEDEX 24 76  Gadd et al., 2016
XY deposit, Canada SEDEX 24 163  Gadd et al., 2016
Aralka Armadeus basin, Australia Sedimentary pyrite 10 12  Large et al., 2014; Gregory et al., 2015a
Barney Creek Formation, Australia Sedimentary pyrite 10 5  Large et al., 2014; Gregory et al., 2015a
Canning basin, Australia Sedimentary pyrite 10 197  Large et al., 2014; Gregory et al., 2015a
Carbondale, USA Sedimentary pyrite 10 19  Large et al., 2014; Gregory et al., 2015a
NW Shelf, Late Jurassic, Australia Sedimentary pyrite 10 5  Large et al., 2014; Gregory et al., 2015a
Hamersley basin, Australia Sedimentary pyrite 10 125  Large et al., 2014; Gregory et al., 2015a, b 
Perth basin, Australia Sedimentary pyrite 10 23  Large et al., 2014; Gregory et al., 2015a
Woody Island siltstone, Australia Sedimentary pyrite 10 12  Large et al., 2014; Gregory et al., 2015a
Canarvon basin, Australia Sedimentary pyrite 10 8  Large et al., 2014; Gregory et al., 2015a
Salmon River siltstone, Australia Sedimentary pyrite 10 6  Large et al., 2014; Gregory et al., 2015a
Satkinskaya Suite, Russia Sedimentary pyrite 10 19  Large et al., 2014; Gregory et al., 2015a
Selwyn basin, Canada Sedimentary pyrite 10 221  Large et al., 2014; Gregory et al., 2015a
Kutlular, Turkey VHMS 15 6  Revan et al., 2014
Kyzilkaya, Turkey VHMS 13   Revan et al., 2014
Lahanos, Turkey VHMS 15   Revan et al., 2014
Jaguar, Australia VHMS 10   Belousov et al., 2016
Golden Grove, Australia VHMS 12   Belousov et al., 2016
Scuddles, Australia VHMS 9   Belousov et al., 2016
Yaman-Kasy deposit, Russia VHMS 46 310  Maslennikov et al., 2009, 2017
Hill 50, Australia Orogenic gold   22 Belousov et al., 2016
Wallaby, Australia Orogenic gold   23 Belousov et al., 2016
Wiluna, Australia Orogenic gold   62 Belousov et al., 2016
Youanmi, Australia Orogenic gold   11 Belousov et al., 2016
Anniversary deposit central, Canada SEDEX   44 Gadd et al., 2016
Anniversary deposit east, Canada SEDEX   15 Gadd et al., 2016
OP, Canada SEDEX   7 Gadd et al., 2016
Alum shale, Sweden Sedimentary pyrite   28 Large et al., 2014; Gregory et al., 2015a 
Cowrie siltstone, Australia Sedimentary pyrite   28 Large et al., 2014; Gregory et al., 2015a 
Curnamona, Australia Sedimentary pyrite   37 Large et al., 2014; Gregory et al., 2015a 
Dead Bullock Formation, Australia Sedimentary pyrite   25 Large et al., 2014; Gregory et al., 2015a 
Doushantuo Formation, China Sedimentary pyrite   106 Gregory et al., 2017
Gordon Group, Australia Sedimentary pyrite   13 Large et al., 2014; Gregory et al., 2015a
Jet Rock Formation, UK Sedimentary pyrite   28 Large et al., 2014; Gregory et al., 2015a
Johnson Cairn Formation, Australia Sedimentary pyrite   17 Large et al., 2014; Gregory et al., 2015a
Liuchapo Formation, China Sedimentary pyrite   10 Gregory et al., 2017
Lower Keppel Creek Formation, Australia Sedimentary pyrite   48 Large et al., 2014; Gregory et al., 2015a
Oxford J3, Russia Sedimentary pyrite   29 Large et al., 2014; Gregory et al., 2015a
Armadeus basin, Australia Sedimentary pyrite   9 Large et al., 2014; Gregory et al., 2015a
Posidonia shale, Germany Sedimentary pyrite   20 Large et al., 2014; Gregory et al., 2015a
Que River shale, Australia Sedimentary pyrite   14 Large et al., 2014; Gregory et al., 2015a
Railway shale, Australia Sedimentary pyrite   15 Large et al., 2014; Gregory et al., 2015a
Valkyrie Formation, Australia Sedimentary pyrite   9  Large et al., 2014; Gregory et al., 2015a
Yeneena basin, Australia Sedimentary pyrite   15 Large et al., 2014; Gregory et al., 2015a
Chaely deposit, Turkey VHMS   4 Revan et al., 2014
DeGrussa, Australia VHMS   32 Belousov et al., 2016
Kilik, Ural, Turkey VHMS   10 Revan et al., 2014
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deposits lacked a sufficient number of analyses to have equal 
numbers of analyses (Table 1). The remaining data (2,178 
analyses) were used as the initial test of the classifier. A total 
of 500 trees were used, and splitting was halted if there were 
five or fewer instances in the resulting child node. 

The mean decrease in Gini index, a measure of the contri-
bution of a given variable to correctly classify training data, 
was used to determine the relevance of different elements 
during Random Forests classifier training (Fig. 3). This 
measure of variable importance compares the average total 
decrease in node impurity (based on the Gini index) when 
splitting on a given variable, weighted by the proportion of 
samples in that node. Nickel, As, and Co generated the low-
est mean decrease in Gini index values (0.069, 0.069, and 
0.062, respectively). To assess if any or all of these elements 
could be excluded from classifier training, different combi-
nations of these elements were removed from the training 
data. Random Forests classifiers were also trained with dif-
ferent combinations of these elements removed (Co, Ni, As, 
Co-Ni, Co-As, Ni-As, and Co-Ni-As). The classifier was also 
tested with Te and Au removed, because these elements have 
significant numbers of analyses below detection limits, which 
could bias classifier training, due to detection limit correla-
tions with the analyses of individual deposits. In the end the 
Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, Tl, and Pb were chosen 
as the preferred input variables.

Random Forests generates class predictions based on a 
majority of votes cast by all decision trees. Associated class 
membership probabilities provide an opportunity to evalu-
ate the confidence of individual classifications (Cracknell and 
Reading, 2013). To assess the effectiveness of the trained 
classifier with respect to ambiguous classifications, a range of 
class membership probability thresholds for the winning class 
were tested: >33, >40, and >50% of votes. Higher probabil-
ity thresholds remove increasingly uncertain predictions (this 
is a requirement of votes needed for a single analysis to be 
classified conclusively). Additionally, rather than requiring a 
50% or greater proportion of analyses from a given deposit to 
consider a deposit correctly identified, we require that ≥65% 
of analyses must be classified as the deposit for a conclusive 
identification (this is a requirement for number of analyses 
from a deposit to be correctly identified). When the number 
of analyses is ≤35% of the target deposit type definition, it is 
termed incorrect, and between 65% and 35% is inconclusive.

Results

Ore deposit type classification

Mineralization type classification outcomes for the test data 
are summarized in Table 4. The Random Forests classifier 
was run 10 times with different random selections of training 
data to assess the effectiveness of the classifier with different 

Table 2.  Summary of Statistics for Data Set Used in Training the Random Forests

  Co Ni Cu Zn As Mo Ag Sb Te Au Tl Pb
Deposit Statistic (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

IOCG n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 1,735.3 67.94 3.08 0.50 2.15 0.03 0.04 0.04 1.48 0.01 0.01 1.35
 MAD 1,680.3 67.58 3.00 0.26 2.11 0.03 0.03 0.03 0.65 0.00 0.01 1.34
 GM 740.26 54.77 2.75 0.74 3.94 0.05 0.06 0.07 2.18 0.01 0.03 0.76
 MSD 12.88 14.89 20.16 3.72 28.14 14.54 11.44 14.78 3.04 5.36 25.85 46.18

Orogenic Au n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 208.25 92.61 5.37 0.94 163.53 0.02 0.25 2.89 1.13 0.16 0.01 15.18
 MAD 205.61 89.38 5.10 0.83 162.43 0.01 0.24 2.88 1.07 0.16 0.01 14.62
 GM 69.00 99.22 8.15 1.92 183.38 0.04 0.29 1.67 1.22 0.25 0.02 7.86
 MSD 16.99 10.07 17.74 15.61 20.41 9.03 17.04 31.31 12.09 20.15 10.96 17.03

Porphyry n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 590.40 514.04 4.01 1.39 53.36 0.17 0.14 0.16 2.10 0.03 0.01 1.10
 MAD 537.86 445.61 3.61 1.01 46.13 0.16 0.13 0.14 1.83 0.03 0.01 1.07
 GM 452.13 336.52 6.51 2.05 59.76 0.14 0.18 0.25 2.02 0.05 0.02 1.33
 MSD 7.69 6.82 16.65 6.76 8.14 9.08 9.88 8.57 8.06 8.59 8.27 11.90

SEDEX n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 80.00 421.71 495.49 95.95 769.63 23.38 23.88 67.85 0.27 0.02 24.56 963.86
 MAD 61.84 404.66 410.26 74.14 593.03 20.88 17.25 48.94 0.00 0.00 23.56 622.56
 GM 54.39 256.92 427.17 131.75 623.05 22.94 16.06 61.86 0.28 0.02 21.47 846.17
 MSD 4.92 8.30 4.39 4.71 3.86 6.42 3.84 3.90 2.02 1.33 9.72 3.44

Sedimentary n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 62.49 215.88 182.24 23.45 639.42 28.38 2.21 16.13 0.21 0.01 5.45 217.16
 MAD 52.55 128.25 131.85 20.84 486.89 24.11 2.06 13.82 0.10 0.01 4.78 149.69
 GM 52.03 262.26 179.83 23.42 536.71 22.16 2.41 20.20 0.38 0.02 5.82 192.64
 MSD 6.19 3.31 4.04 6.41 4.17 5.28 6.42 5.03 5.35 4.19 5.33 3.38

VHMS n 120 120 120 120 120 120 120 120 120 120 120 120
 Median 21.34 5.86 1,002.6 180.02 660.48 0.98 22.00 24.96 5.17 0.41 2.16 320.41
 MAD 21.33 4.96 786.00 178.33 616.23 0.96 21.12 24.21 5.07 0.39 2.16 306.95
 GM 8.23 3.89 654.64 140.00 570.45 0.89 14.90 21.27 5.36 0.56 1.21 202.38
 MSD 47.82 7.57 7.89 15.10 10.42 18.21 11.04 13.23 22.60 8.78 30.39 12.93

GM = geometric mean, MAD = median absolute deviation, MSD = multiplicative standard deviation
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Table 3.  Summary of Statistics for Entire Data Set

  Co Ni Cu Zn As Mo Ag Sb Te Au Tl Pb
Deposit Statistic (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

IOCG n 159 159 159 159 159 159 159 159 159 159 159 159
 Median 1,739.9 62.20 2.89 0.50 2.51 0.03 0.03 0.04 1.55 0.01 0.01 1.27
 MAD 1,694.4 61.48 2.83 0.24 2.47 0.03 0.03 0.03 0.68 0.00 0.01 1.27
 GM 786.16 49.89 2.50 0.69 4.39 0.05 0.05 0.07 2.24 0.01 0.03 0.75
 MSD 12.03 14.67 19.07 3.59 28.07 14.77 10.39 16.03 3.04 5.29 24.15 49.42

Orogenic Au n 436 436 436 436 436 436 436 436 436 436 436 436
 Median 104.88 106.72 5.42 0.92 106.01 0.02 0.23 1.59 1.16 0.22 0.01 9.99
 MAD 100.50 96.99 5.38 0.89 105.85 0.02 0.22 1.59 1.10 0.22 0.01 9.95
 GM 82.36 108.05 5.25 1.46 106.62 0.03 0.19 0.95 1.06 0.23 0.02 3.80
 MSD 9.22 6.24 24.73 15.64 38.35 13.32 18.33 38.62 11.36 29.98 11.91 24.20

Porphyry n 416 416 416 416 416 416 416 416 416 416 416 416
 Median 452.81 256.89 3.37 1.65 64.62 0.31 0.17 0.16 1.57 0.05 0.01 0.96
 MAD 410.08 238.39 2.87 1.22 58.34 0.29 0.15 0.14 1.34 0.05 0.01 0.92
 GM 264.53 176.06 5.77 2.11 83.17 0.24 0.18 0.24 1.57 0.05 0.02 1.21
 MSD 9.93 8.74 15.23 5.73 8.32 7.42 7.54 9.13 6.82 6.41 5.37 14.36

SEDEX n 863 863 863 863 863 863 863 863 863 863 863 863
 Median 77.91 409.00 394.48 82.21 898.62 22.57 11.03 57.63 0.27 0.02 20.24 716.55
 MAD 65.44 371.44 308.78 61.03 644.74 18.35 8.38 45.11 0.00 0.00 19.02 506.11
 GM 72.82 347.80 428.97 95.10 765.34 20.57 11.47 52.44 0.31 0.02 20.86 675.64
 MSD 5.24 5.88 4.07 4.75 3.55 5.55 3.92 3.95 2.13 1.60 9.90 3.56

Sedimentary n 1,223 1,223 1,223 1,223 1,223 1,223 1,223 1,223 1,223 1,223 1,223 1,223
 Median 99.48 401.88 199.31 27.72 429.01 19.99 2.01 23.25 0.48 0.03 3.51 181.79
 MAD 90.02 293.91 154.39 24.93 343.69 18.37 1.89 19.55 0.35 0.02 2.60 140.74
 GM 77.28 354.70 165.28 28.06 383.47 18.16 1.87 24.92 0.70 0.10 3.94 143.34
 MSD 6.68 3.75 4.81 7.08 4.63 7.11 8.88 5.77 5.58 4.48 4.54 4.71

VHMS n 482 482 482 482 482 482 482 482 482 482 482 482
 Median 5.37 3.00 1,011.7 322 987.27 1.83 24.64 35 24.08 1.19 3.49 448.06
 MAD 5.33 2.94 841.51 314.29 734.17 1.79 23.37 33.98 23.94 1.12 3.47 433.85
 GM 4.35 1.69 605.88 190.88 771.80 1.05 18.03 30.08 18.33 0.94 1.21 245.20
 MSD 31.01 12.60 7.93 11.93 7.06 15.33 12.46 12.56 22.03 10.11 23.55 11.85

GM = geometric mean, MAD = median absolute deviation, MSD = multiplicative standard deviation

Fig. 3.  Gini decrease for elements used in the ore deposit type Random Forests classifier.
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778 GREGORY ET AL.

random seeds of data (App. 1). Random Forests correctly 
identified the ore deposit type from pyrite trace element 
analyses with an overall accuracy of 91.0 ± 0.8%. Recall statis-
tics for individual ore deposit types range from 76.9 ± 5.4 to 
95.0 ± 0.8%. IOCG, orogenic Au, and porphyry Cu test data 
samples were predicted with recalls of 86.9 ± 5.0, 76.9 ± 5.4, 
and 84.2 ± 2.4%, respectively. SEDEX, sedimentary pyrite, 
and VHMS test data were predicted with noticeably better 
recalls of 95.0 ± 0.8, 92.8 ± 2.1, and 94.4 ± 1.8% respectively. 
These results show that the different random selections for 
the training data produce similar results. As such the same 
training data set (the one that produced the results in Table 4) 
was used for the following experiments. 

Table 5 indicates that by removing a small percentage 
(7.8%) of Random Forests predictions with class membership 
probabilities of less than 40%, ambiguous classifications can 
be eliminated. This correction results in an increase in over-
all accuracy of 3.1% to a total of 94.5%. Similarly, the range 
of class recalls for individual ore deposit types increased by 
between –0.3 and 7.0%, with, IOCG, orogenic Au, porphyry 

Cu, SEDEX, sedimentary pyrite, and VHMS deposits having 
adjusted individual recalls of 94.6, 85.8, 87.8, 95.4, 98.5, and 
94.6%, respectively. 

Blind test results indicate the Random Forests classifier 
generated predictions with an overall accuracy of 88% with 
class-dependent recalls between 73.9 and 95.5% (Table 6). 
The orogenic Au, SEDEX, sedimentary pyrite, and VHMS 
samples were classified with proportions of correct classifica-
tion of 81.4, 95.5, 90.0, and 73.9%, respectively. More accu-
rate results were again obtained when excluding predictions 
with maximum class membership probabilities of less than 
40% (Table 7). Increases in recall ranged from 1.4 to 10.7%, 
resulting in class recalls for orogenic Au of 85.5%, SEDEX 
of 96.9%, sedimentary pyrite of 96.7%, and VHMS of 84.6%. 

Different class membership thresholds were trialed (33, 40, 
and 50%). The 40% threshold was chosen because it led to an 
increase in recall rates of 3.1% (importantly, this includes an 
increase in orogenic Au recall of 7.0% and porphyry Cu recall 
of 6.7%) while preserving approximately 92.2% of the number 
of original analyses in the test data. The 33% threshold only 

Table 4.  Confusion Matrix for Random Forests Classification of Test Data

Predicted

  IOCG Orogenic Au Porphyry SEDEX Sedimentary VHMS Sum % correct

 IOCG 37  1  1  39 94.9
 Orogenic Au 9 156 26  1 6 198 78.8
 Porphyry 11 30 240  6 9 296 81.1
 SEDEX  4 7 634 29 3 677 93.6
 Sedimentary  3 6 5 634 4 652 97.2
 VHMS 2 11 2 4 7 290 316 91.8
 Sum 59 204 282 643 678 312 2,178
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Table 5.  Confusion Matrix for Random Forests Classification of Test Data when Samples with Less Than 40% of the Votes Are Removed

Predicted

  IOCG Orogenic Au Porphyry SEDEX Sedimentary VHMS Sum % correct

 IOCG 35  1  1  37 94.6
 Orogenic Au 7 145 16   1 169 85.8
 Porphyry 5 18 216  4 3 246 87.8
 SEDEX   3 623 25 2 653 95.4
 Sedimentary   1 4 598 4 607 98.5
 VHMS 1 7 1 4 3 279 295 94.6
 Sum 48 170 238 631 631 289 2,007
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Table 6.  Confusion Matrix for Random Forests Classification of Blind Test Data

Predicted

  IOCG Orogenic Au Porphyry SEDEX Sedimentary VHMS Sum % correct

 IOCG        NA
 Orogenic Au 3 96 12   7 118 81.4
 Porphyry        NA
 SEDEX  1  63 2  66 95.5
 Sedimentary 14 4 14 9 406 4 451 90.0
 VHMS 3 4 1 2 2 34 46 73.9
 Sum 20 105 27 74 410 45 681
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increased the recall rates by 1.1%, and the 50% threshold only 
had an increase in recall rates of 5.2% and required removal 
of 18.3% of the data. The results of these experiments are in 
Appendix 2.

A series of Random Forest classifications were rerun with 
different combinations of Te, Co, As, and Ni removed from 
the data. This exercise was included because Te has several 
analyses below detection limits and the data set from Gadd 
et al. (2016) did not include Te. The value of Co, As, and Ni 
was tested because these had the lowest mean decreases in 
the Gini index (Fig. 3). While the removal of one of these 
elements did not cause large changes in the ability of the Ran-
dom Forests classifier to predict deposit type in general, it 
did significantly affect the ability to classify individual deposit 
types; thus, all these elements were included in the preferred 
classifier. 

It has been proposed that pyrite trace element content is 
reset when trace elements are forced out of the pyrite lat-
tice at metamorphic grades higher than midgreenschist facies 
(Large et al., 2009; Thomas et al., 2011). To test this asser-
tion, we put LA-ICP-MS pyrite trace element data (n = 93) 
from orogenic gold deposits that have been metamorphosed 
to greater than midgreenschist facies through the classifier 
(Belousov et al., 2016). This returned only 67.7% correct 
identifications, 11.1% less than the lower metamorphic-grade 
orogenic gold deposits. Similarly, when inconclusive (less 
than 40% of votes) analyses are removed, this only increases 
to 70.9% correct identifications, 14.9% less than the lower 
metamorphic-grade orogenic gold deposits (Table 8).

One of the drawbacks to using Random Forests is that it will 
always give an answer, even if the actual class of an unknown 
pyrite sample is not within the training data set. To test how 

the classifier will react to pyrite that does not fit the types we 
have included in the training data, we attempted to classify 
the data presented by Gregory et al. (2016) from the St. Ives 
Au district, which includes four different types of pyrite not 
included in the training data (note that the orogenic Au pyrite 
from this study has been included in the training and test data 
sets of the classifier). Gregory et al. (2016) presented LA-ICP-
MS analyses of sedimentary pyrite (py1 and py2; n = 143), 
nonmineralization-related hydrothermal pyrite (py3, py4, 
and py5; n = 37, 8, and 17, respectively), orogenic Au pyrite 
(py6; n = 117), and greenstone-related pyrite (py7; n = 20). 
Of these, sedimentary pyrite and orogenic Au pyrite had 97.5 
and 84.9% of the analyses correctly identified. Similarly, these 
classifications only had 16 and 9% of the analyses removed as 
inconclusive (received less than 40% of the votes). Py5 had 
76% of its analyses removed as inconclusive, and Py3 and Py7 
both had only 62.5% of their analyses chosen as the one that 
had the highest percentage classification. Py4 only had 38% of 
the analyses removed as inconclusive, and 80% of the analyses 
were identified as orogenic Au. These results are summarized 
in Table 9.

Discussion

Conventional X-Y element scatter plots

Conventional element scatter plots of pyrite chemistry have 
been used with some degree of success to differentiate pyrite 
from different ore types. However, X-Y scatter plots are less 
useful when discriminating pyrite from more than two other 
deposit types. Examples are given in Figure 4 for the pyrite 
training data set from this study. In general terms, pyrite in the 
ore zones from medium- to low-temperature hydrothermal 
deposit types (VHMS and SEDEX) tend to contain higher 
concentrations of most trace elements compared to pyrite 
from higher-temperature hydrothermal deposit types (por-
phyry Cu, IOCG, and orogenic Au). This relationship is illus-
trated in Figure 4A through C and F (Zn-Cu, Mo-As, Ag-Pb, 
and Tl-Sb scatter plots). Sedimentary pyrite also contains high 
concentrations of most trace elements and plots in the same 
vicinity as data for SEDEX and VHMS deposits. Porphyry 
Cu, IOCG, and orogenic Au pyrites by comparison generally 
contain lower levels of Zn, Cu, Mo, Ag, Pb, Tl, and Sb. Com-
monly, the data for different deposit types exhibit strong over-
laps such that it is virtually impossible to distinguish ore type 
based on simple trace element scatter plots (e.g., Fig. 4D).

By simultaneously using several different elements, Ran-
dom Forests allows us to go beyond what is possible with 

Table 8.  Confusion Matrix for Random Forests Classification of  
High Metamorphic-Grade Pyrite

  %  Number Number
Deposit Deposit type correct correct incorrect

Big Bell Orogenic gold 80.0  8  2
Chalice Orogenic gold 90.0  9  1
Hunt Orogenic gold 84.6 11  2
Junction Orogenic gold  0.0   7
Kanowna Belle Orogenic gold 84.6 11  2
Maybell Orogenic gold 62.5  5  3
Porphyry Orogenic gold 55.0 11  9
Redeemer Orogenic gold 37.5  3  5
Total  65.2 58 31

Table 7.  Confusion Matrix for Random Forests Classification of Blind Test Data when Samples with Less Than 40% of the Votes Are Removed

Predicted

  IOCG Orogenic Au Porphyry SEDEX Sedimentary VHMS Sum % correct

 IOCG       0 NA
 Orogenic Au 2 94 8   6 110 85.5
 Porphyry       0 NA
 SEDEX    62 2  64 96.9
 Sedimentary 1  5 6 378 1 391 96.7
 VHMS 1 3 1 1  33 39 84.6
 Sum 4 97 14 69 380 40 604
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780 GREGORY ET AL.

traditional X-Y plots, but visualization of the distinctions can 
be challenging. By assessing the overall element concentra-
tions of classified ore deposit types, however, some of the 
Random Forests decision boundaries can be depicted. For 
this discussion, we use training data median values, as they 
are less affected by imbalances in the number of samples 
from each deposit type compared to complete or test data 
sets, and they provide a reasonable estimate of the central 
tendency of populations that are not normally distributed. 
Copper and Zn can be used to separate SEDEX (medians of 
495.49 ppm for Cu and 95.95 ppm for Zn) and VHMS (medi-
ans of 1,002.64 ppm for Cu and 180.02 ppm for Zn) deposits 
from the other deposit types, as they are one to two orders of 
magnitude more enriched in these elements (Fig. 4). Con-
versely, distinctly low As values (median 2.15 ppm) can be 
used to separate IOCG and, to a lesser extent, porphyry Cu 
mineralization (median 53.36 ppm). Enrichments in molyb-
denum are known to occur in a number of sedimentary set-
tings, particularly when euxinic conditions are present (Lyons 
et al., 2003; Tribovillard et al., 2006; Scott et al., 2008; Lyons 
et al., 2009). Therefore, it follows that high Mo can be used 
to identify SEDEX and sedimentary pyrite (medians of 23.38 
and 28.38  ppm Mo, respectively), both of which formed in 
marine settings. Similarly, VHMS deposits have low but above 
detection Mo (median of 0.98 ppm), presumably due to the 
association of VHMS deposits with seawater and deposition at 
or near the sea floor. SEDEX (medians of 23.88 ppm for Ag 
and 963.86 ppm for Pb) and VHMS (medians of 22.00 ppm 
for Ag and 320.41 ppm for Pb) pyrite is enriched in silver and 
Pb. 

Interestingly, Co and Ni in sulfide minerals, which have 
long been used to determine pyrite source (Loftus-Hills and 
Solomon, 1967), were among the lowest ranked elements in 
terms of mean decrease in Gini index (Fig. 3). Nevertheless, 
porphyry Cu-related pyrite is enriched in Ni compared to 
the other deposit types (median of 590.40 ppm), and IOCG 
is very enriched in Co (median of 1,735.28 ppm). Even Au, 
which was left out of the favored Random Forests classifier 
due to concerns about the number of analyses that were below 
detection limits, is potentially significant for identifying oro-
genic Au (median 0.16 ppm) and VHMS (median 0.41 ppm) 
deposit types. However, the strength of the Random Forests 
method lies with its ability to combine all observations rapidly.

Ore deposit type predictions 

The results of Random Forests predictions for test (91.4% 
correct predictions) and blind test (88%) data (Tables 4, 6) 

prove the efficacy of Random Forests analyses of pyrite data-
bases to predict ore deposit type. The classification can be 
further refined by removing the analyses that did not meet 
the threshold of obtaining 40% or more of the votes from the 
Random Forests. This adjustment increased the accuracy of 
experiments with Au removed to 94.5% with 7.8% of data 
removed for the test data and to 93.9% with 11.3% of data 
removed for the blind test data (Tables 5, 7). 

The very high proportion of correct predictions (98.5% for 
test data and 96.7% for blind test data) for sedimentary pyrite 
is particularly important. Specifically, those data represent the 
only nonmineralized pyrite samples investigated in this study, 
suggesting that Random Forests classification is able to accu-
rately discriminate pyrite formed from mineralized systems 
from that formed at low temperature in the water column 
and in shallow marine sediments. There is often disagree-
ment in the paleoceanographic community in discussions 
about whether hydrothermal overprints or ocean conditions 
are responsible for metal enrichments in the rock record. 
The Random Forests classifier developed here may facilitate 
the identification of hydrothermal overprints on sedimentary 
pyrite in future studies.

As there is a disparate number of analyses from different 
deposit types, it is possible that the classifier is only working 
well for the deposits that have larger amounts of data. To test 
whether this is the case, we checked the individual results of 
the classifier (with a >40% vote threshold) for each deposit 
from the test and blind test data set (Tables 10, 11). Of these, 
all but one of the deposits were conclusively (greater than 
65%) correctly identified. The deposit that was inconclusive, 
the Youanmi orogenic Au deposit, still had 60% of the votes 
and only had 10 analyses to classify, so it may be that the pyrite 
trace element content was not accurately represented by the 
sample. This demonstrates that the Random Forests classifier 
can identify analyses from the deposits used in developing the 
classifier.

Effects of metamorphic grade on classifier predictions

To test and assess how high-grade metamorphic overprint 
will affect the ability of Random Forests to identify ore 
deposit type, we used analyses from Belousov et al. (2016) 
that were from upper greenschist or higher-grade metamor-
phic facies. These data resulted in a total decrease of over 
10% effectiveness of the classifier (Table 8) and importantly 
resulted in 50% of the deposits being inconclusively or mis-
classified (Table 8) using the initial results or 37.5% after 
inconclusive analyses (analyses that received less than 40% of 

Table 9.  Confusion Matrix for Random Forests Classification of St. Ives Pyrite Data Set, Including Non-Ore-Related Hydrothermal Pyrite

    % most common  Most common
Pyrite type % inconclusive Inconclusive analyses Conclusive analyses classification classification

Sedimentary 16 23 120 97.5 Sedimentary
Py3 14 5 32 62.5 Orogenic Au
Py4 38 3 5 80.0 Orogenic Au
Py5 76 13 4 100.0 Porphyry
Orogenic Au 9 11 106 84.9 Orogenic Au
Py7 20 2 8 62.5 Porphyry
Total 17 57 275
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Fig. 4.  Scatter plots of trace elements in pyrite used in training data set for the ore deposit type Random Forests classifier: A) 
Zn versus Cu, B) Mo versus As, C) Ag versus Pb, D) Te versus Au, E) Co versus Ni, and F) Tl versus Sb.
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782 GREGORY ET AL.

the votes) were removed. This suggests that pyrite trace ele-
ment content can give spurious results in high metamorphic-
grade settings. The exact reason for this variation in trace 
element content is beyond the scope of this study; however, 
it is interesting to note that the Ni median is higher in the 
high metamorphic-grade orogenic gold deposits (258 ppm) 
and lower in the Sb (0.49 ppm; Table 12) more similar to 
high-temperature pyrite varieties such as porphyry deposits 
(Table 2; Franchini et al., 2015). This may reflect pyrite dis-
solution and reprecipitation or recrystallization of the pyrite 
at high temperatures imparting a chemistry more indicative 
of magmatic processes.

Identification of pyrite that has a source  
not included in the classifier

One of the limitations of using Random Forests to predict 
unknowns in a geologic setting is that it will always give an 
answer that corresponds with the input designations of the 
training data set. Because there is a wide variety of differ-
ent deposits and pyrite sources not associated with economic 
mineral deposits, there is a risk that the classifier will assess 
everything as coming from a mineralized deposit. To check 
how a classifier will respond to barren, nonsedimentary 

pyrite, we used pyrite data from sedimentary pyrite, orogenic 
gold-related pyrite, and four pyrite generations unrelated to 
the mineralization from the St. Ives Au district (Gregory 
et al., 2016). The sedimentary and orogenic Au pyrite was 
conclusively, correctly identified (note that the orogenic Au 
pyrite was included in the training data set earlier), while 
three of the nonmineralized pyrites returned inconclusive 
results (Table 9). The fourth was incorrectly conclusively 
identified as orogenic Au. This shows that most barren pyrite 
can be identified correctly by calculating the proportion of 
analyses that are inconclusive and by establishing criteria 
for how many inconclusive identifications are present in a 
given sample or set of samples. At the same time, it serves as 
a reminder that this classifier still needs a large number of 
analyses from many of the deposit types listed, deposit types 
currently not represented in the classifier, and other types of 
nonmineralized pyrite before it can be confidently utilized in 
the mineral exploration industry. Furthermore, it also shows 
that the classifier has the potential to be used as one of sev-
eral tools when making decisions regarding priority of drill 
targets but not as a replacement for traditional tools, such 
as petrography, when determining the paragenesis of an ore 
deposit.

Table 10.  Test Results of Individual Ore Deposits

Deposit Deposit type % correct Number correct Number incorrect

Manxman IOCG 100.0 29 0
Punt Hill IOCG 75.0 6 2
Darlot Orogenic Au 100.0 4 0
East Repulse Orogenic Au 77.4 24 7
Fortnum Orogenic Au 75.0 15 5
Golden Mile Orogenic Au 82.6 19 4
Granny Smith Orogenic Au 75.0 3 1
Lancefield Orogenic Au 100.0 1 0
Mars Orogenic Au 77.8 7 2
Meekatharra, Prohibition Orogenic Au 100.0 2 0
Meekatharra, Micky Doolan  Orogenic Au 100.0 2 0
Minjar Orogenic Au 100.0 2 0
Nathans Labouchere Orogenic Au 100.0 3 0
Paddington Orogenic Au 100.0 2 0
Songvang Orogenic Au 100.0 5 0
Sunrise Dam Orogenic Au 100.0 2 0
Victory Orogenic Au 91.5 54 5
Chalkidiki Porphyry 80.0 28 7
Cadia Porphyry 89.1 188 23
Don SEDEX 100.0 93 0
HYC SEDEX 91.9 284 25
Lady Loretta SEDEX 100.0 25 0
Pelly North SEDEX 100.0 72 0
XY SEDEX 96.8 149 5
Armadeus basin Sedimentary pyrite 100.0 12 0
Barney Creek Formation, McArthur basin Sedimentary pyrite 100.0 4 0
Woody Island siltstone Sedimentary pyrite 91.7 11 1
Canning basin Sedimentary pyrite 98.3 174 3
Carbondale Sedimentary pyrite 100.0 18 0
Late Jurassic NW Shelf Sedimentary pyrite 100.0 5 0
Perth basin  Sedimentary pyrite 100.0 23 0
Satkinskaya Suite  Sedimentary pyrite 100.0 19 0
Hamersley basin Sedimentary pyrite 96.5 110 4
Selwyn basin Sedimentary pyrite 99.5 208 1
Salmon River siltstone Sedimentary pyrite 100.0 6 0
Canarvon basin  Sedimentary pyrite 100.0 8 0
Kutlular VHMS 80.0 4 1
Total  94.8 1,896 111
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Caveats and future work

The pyrite data investigated in this study were obtained from 
analyses collected over 10 years as part of a number of differ-
ent projects with contrasting objectives. In addition, the LA-
ICP-MS technology has continued to develop over this time, 
and detection limits for all trace elements vary significantly. 
This has resulted in a range of detection limits throughout 
the data, including SEDEX deposits with anomalously high 
limits for Se, Cd, Au, and Te (Maier, 2011). In the case of the 
data from Gadd et al. (2016), some of these elements were not 
analyzed (or reported). Cadmium and Se results were omitted 
from our training data for this reason but should be included 
in future analyses, as both these elements accumulate in 
pyrite and could be useful for discriminating ore deposit type. 

Similarly, the optimal Random Forests classifier was refined 
to not include Au. Tellurium, however, was not omitted 
from this classifier despite the lack of Te data from SEDEX 
deposits. The classifier has difficulty identifying orogenic Au 
mineralization because Te is commonly associated with Au 

mineralization (Belousov et al., 2016). Because the Random 
Forests classifier requires all trace elements in the table to 
contain nonmissing values, the averages from the single 
SEDEX deposit that had good-quality Te and Au data (Lady 
Loretta) were used for all the SEDEX analyses. This has 
probably overestimated the ability of the classifier to identify 
SEDEX analyses, because the same value for Te was used by 
all the SEDEX samples. However, because SEDEX pyrite 
also has distinctly higher Cu, Mo, Sb, Tl, and Pb concentra-
tions compared to most other deposits, it is thought that Te is 
not particularly important for SEDEX classification. Further-
more, concentrations of Te in SEDEX samples only differ sig-
nificantly from those in orogenic Au, porphyry Cu, and VHMS 
samples. To further test this reasoning, the favored classifier 
test data (omitting Au) was rerun to exclude Te. The results 
are summarized in Table 13. This experiment showed that, 
indeed, the SEDEX results were enhanced by substituted Te 
values; however, the SEDEX analyses without Te were still 
correctly identified most of the time with a recall of 74.2% 

Table 11.  Blind Test Results of Individual Ore Deposits

Deposit Deposit type % correct Number correct Number incorrect

Hill 50 Orogenic Au 66.7 12 6
Wallaby Orogenic Au 80.0 16 4
Wiluna Orogenic Au 96.8 60 2
Youanmi Orogenic Au 60.0 6 4
Anniversary Central SEDEX 95.2 40 2
Anniversary East SEDEX 100.0 15 0
SEDEX OP SEDEX 100.0 7 0
Curnamona Sedimentary 94.3 33 2
Alum shale  Sedimentary 100.0 22 0
Doushantuo Formation  Sedimentary 93.1 67 5
Jet Rock  Sedimentary 100.0 26 0
Armadeus basin Sedimentary 100.0 9 0
Posidonia  Sedimentary 100.0 20 0
Railway shale  Sedimentary 92.3 12 1
Liuchapo Formation Sedimentary 83.3 5 1
Gordon Group  Sedimentary 100.0 13 0
Que River shale  Sedimentary 100.0 9 0
Oxford J3  Sedimentary 100.0 29 0
Rocky Cape Group Cowrie Siltstone  Sedimentary 100.0 28 0
Valkyrie Formation, McArthur basin Sedimentary 100.0 9 0
Dead Bullock Formation  Sedimentary 100.0 25 0
Togari Group Sedimentary 95.8 46 2
Yeneena basin Sedimentary 100.0 8 0
Yerrida Group  Sedimentary 100.0 17 0
VHMS Chaely VHMS 75.0 3 1
VHMS DeGrussa VHMS 80.0 20 5
VHMS Kilik VHMS 100.0 10 0
Total  94.2 567 35

Table 12.  Median and MAD for High Metamorphic-Grade Pyrite (from Belousov et al., 2016)

Deposit Statistic Co (ppm) Ni (ppm) Cu (ppm) Zn (ppm) As (ppm) Mo (ppm)

High  Median 258.01 299.62 15.40 1.84 137.30 0.02
metamorphic-grade  MAD 217.57 173.76 15.07 1.69 136.23 0.01
Orogenic gold
  Ag (ppm) Sb (ppm) Te (ppm) Au (ppm) Tl (ppm) Pb (ppm)

 Median 1.65 0.49 6.49 0.34 0.03 12.26
 MAD 1.53 0.48 6.14 0.34 0.03  9.21

MAD = median absolute deviation
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correct (for test data). The classifier will be strengthened by 
addition of new SEDEX analyses with viable Te data, but until 
those data are available, the average Te concentration from 
Lady Loretta is used for SEDEX analyses with high detection 
limits or missing data. 

Tin and W may be useful discriminators, as has been shown 
for VHMS (high Sn) and orogenic Au deposits (high W; 
Belousov et al., 2016). These elements were not included in 
the classifier because of a general lack of data in some data 
sources. As W and Sn have been proven effective for discrimi-
nating between some deposit types, future pyrite analyses 
should include W and Sn to further assess their utility.

A further weakness of the current classifier is the variability 
in the number of deposits for which data are available and 
the amount of data from those sites. Data are available from 
two porphyry Cu districts and two IOCG deposits. This gap 
may mean that pyrite trace element concentrations for those 
deposit types are not fully representative of the ranges likely 
to be found in mineralized systems. Therefore, additional data 
from porphyry Cu and IOCG deposit types need to be col-
lected so the variability observed between different deposits 
of the same type can be better represented.

While an attempt was made to include as many differ-
ent deposits as possible, we concede that several important 
deposit types were missing, such as epithermal Au, Carlin-
type Au, and Ni/platinum group element deposits. Future 
iterations of this classification experiment should include 
these and other deposit types. Similarly, in its current state, 
the classifier only includes one type of barren pyrite—sedi-
mentary pyrite. Future work should include barren metamor-
phic and igneous pyrite.

Conclusions
The Random Forests classifier developed here, based on the 
concentrations of Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, Tl, and 
Pb in pyrite, was found to correctly classify both test data and 
blind test data. These results yielded an overall accuracy for 
the test and blind test data of 94.5 and 93.9%, respectively, 
when inconclusive analyses (less than 40% of votes) are not 
considered. We can conclude that Random Forests classifi-
ers developed from microanalyses of individual minerals are 
potentially useful for identifying ore deposit type and should 
be considered a viable geochemical exploration tool, although 
it should be stressed that this approach should be regarded as 
a preliminary positive result; before it can be widely applied 
in mineral exploration additional ore-related and non-ore-
related pyrite varieties need to be added to the classifier. 

Furthermore, we stress that this should be regarded as one 
of many tools rather than a single stand-alone classification 
method. Parties who are interested in using the classifier on 
their own data sets are encouraged to contact the lead author, 
who can arrange the processing of LA-ICP-MS pyrite data.

By testing how well the classifier can identify ore deposit type 
on pyrite that has passed through the midgreenschist facies 
metamorphic window, we have found that at least in some areas 
the trace element composition of pyrite has been significantly 
altered such that the classifier can no longer identify the origi-
nal pyrite type conclusively. This supports the assertion that 
pyrite chemistry can be altered at these metamorphic grades.

These results are also important for fields of geology not 
interested in ore deposits or exploration for ore deposits. 
The high degree of effectiveness of the classifier for identi-
fying sedimentary pyrite not associated with hydrothermal 
fluids has created an additional opportunity for recognizing 
hydrothermal overprints on sedimentary deposits included in 
paleo ceanographic studies.

Acknowledgments
We would like to acknowledge the Western Australia and 
South Australia geological surveys for their support of the ini-
tial studies that accumulated much of the initial data that this 
project arose from. We also thank the University of Western 
Australia Centre for Exploration Targeting (UWA CET) for 
providing a sample set from Western Australia orogenic gold 
deposits. Funding for the compilation of additional data and 
the refining of the classifier was provided by the National Sci-
ence Foundation Frontiers in Earth System Dynamics (NSF 
FESD) program and the National Aeronautics and Space 
Administration (NASA) Astrobiology Institute under coop-
erative agreement NNA15BB03A issued through the Science 
Mission Directorate. This study also benefited from data col-
lected as part of the Australian Mineral Industry Research 
Association (AMIRA) International project P1060, Enhanced 
Geochemical Targeting in Magmatic-Hydrothermal Systems. 
The authors gratefully acknowledge Alan Goode and Adele 
Seymon (AMIRA International) and all the industry sponsors 
of P1060 for their generous sponsorship of this research. We 
also thank Artur Deditius and Denis Fougerouse for valuable 
suggestions on the manuscript.

REFERENCES
Belousov, I., Large, R., Meffre, S., Danyushevsky, L., Steadman, J., and 

Beardsmore, T., 2016, Pyrite compositions from VHMS and orogenic Au 
deposits in the Yilgarn craton, Western Australia: Implications for gold and 
copper exploration: Ore Geology Reviews, v. 79, p. 474–499.

Table 13.  Confusion Matrix for Random Forests Classification of Test Data with No Te in Training Data Set

Predicted

  IOCG Orogenic Au Porphyry SEDEX Sedimentary VHMS Sum % correct

 IOCG 36 1 1 0 1 0 39 92.3
 Orogenic Au 19 147 23 3 2 4 198 74.2
 Porphyry 11 32 236 0 9 8 296 79.7
 SEDEX 7 6 11 502 128 23 677 74.2
 Sedimentary 12 6 5 71 554 4 652 85.0
 VHMS 5 9 2 3 3 294 316 93.0
 Sum 90 201 278 579 697 333 2,178

A
ct

ua
l

on 23 August 2019

hwerkman
Sticky Note
None set by hwerkman

hwerkman
Sticky Note
MigrationNone set by hwerkman

hwerkman
Sticky Note
Unmarked set by hwerkman



 ORE DEPOSIT AND PYRITE CLASSIFICATION BY TRACE ELEMENT AND STATISTICAL ANALYSIS  785

Breiman, L., 1984, Classification and regression trees: New York, Routledge, 
368 p.

——1996, Stacked regressions: Machine Learning, v. 24, p. 49–64.
——2001, Random Forests: Machine Learning, v. 45, p. 5–32.
Carranza, E.J.M., and Laborte, A.G., 2015, Data-driven predictive mapping 

of gold prospectivity, Baguio district, Philippines: Application of Random 
Forests algorithm: Ore Geology Reviews, v. 71, p. 777–787.

Congalton, R.G., and Green, K., 1998, Assessing the accuracy of remotely 
sensed data: Principles and practices, 1st ed.: Boca Raton, Florida, Lewis 
Publications, 179 p.

Cracknell, M.J., and Reading, A.M., 2013, The upside of uncertainty: Iden-
tification of lithology contact zones from airborne geophysics and satellite 
data using Random Forests and support vector machines: Geophysics, v. 78, 
p. WB113-WB126. 

——2014, Geological mapping using remote sensing data: A comparison of 
five machine learning algorithms, their response to variations in the spa-
tial distribution of training data, and the use of explicit spatial information: 
Computers and Geosciences, v. 63, p. 22–33.

Cracknell, M.J., Reading, A.M., and McNeill, A.W., 2014, Mapping geology 
and volcanic-hosted massive sulfide alteration in the Hellyer-Mt. Charter 
region, Tasmania, using Random ForestsTM and self-organising maps: Aus-
tralian Journal of Earth Sciences, v. 61, p. 287–304.

Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGold-
rick, P., and Shelley, M., 2011, Routine quantitative multi-element analysis 
of sulphide minerals by laser ablation ICP-MS: Standard development and 
consideration of matrix effects: Geochemistry: Exploration, Environment, 
Analysis, v. 11, no. 1, p. 51–60.

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., 
Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, 
L., Zagar, L., Zbontar, J., Zitnik, M., and Zupan, B., 2013, Orange: Data 
mining toolbox in Python: Journal of Machine Learning Research, v. 14, 
p. 2349−2353. 

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D., 2014, Do 
we need hundreds of classifiers to solve real world classification problems?: 
Journal of Machine Learning Research, v. 15, p. 3133–3181.

Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R., Mein-
ert, L., and Bouhier, V., 2015, Trace metals in pyrite and marcasite from 
the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, 
Argentina: Textural features and metal zoning at the porphyry to epithermal 
transition: Ore Geology Reviews, v. 66, p. 366–387.

Gadd, M.G., Layton-Matthews, D., Peter, J.M., and Paradis, S.J., 2016, The 
world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn basin, Yukon. 
Part I: Trace element compositions of pyrite record input of hydrothermal, 
diagenetic, and metamorphic fluids to mineralization: Mineralium Depos-
ita, v. 51, no. 3, p. 319–342.

Gahegan, M., 2000, On the application of inductive machine learning tools to 
geographical analysis: Geographical Analysis, v. 32, p. 113–139.

Gregory, D.D., Meffe, S., and Large, R.R., 2014, Comparison of metal 
enrichment in pyrite framboids from a metal-enriched and metal-poor 
estuary: American Mineralogist, v. 99, p. 633–644.

Gregory, D.D., Large, R.R., Halpin, J.A., Baturina, E.L., Lyons, T.W., Wu, 
S., Danyushevsky, L., Sack, P.J., Chappaz, A., Maslennikov, V.V., and Bull, 
S.W., 2015a, Trace element content of sedimentary pyrite in black shales: 
Economic Geology, v. 110, no. 6, p. 1389–1410.

Gregory, D.D., Large, R.R., Halpin, J.A., Steadman, J.A., Hickman, A.H., 
Ireland, T.R., and Holden, P., 2015b, The chemical conditions of the late 
Archean Hamersley basin inferred from whole rock and pyrite geochemis-
try with D33S and δ34S isotope analyses: Geochimica et Cosmochimica Acta, 
v. 149, p. 223–250.

Gregory, D.D., Large, R.R., Bath, A.B., Steadman, J.A., Wu, S., Danyush-
evsky, L., Bull, S.W., Holden, P., and Ireland, T.R., 2016, Trace element 
content of pyrite from the Kapai slate, St. Ives gold district, Western Aus-
tralia: Economic Geology, v. 111, no. 6, p. 1297–1320.

Gregory, D.D., Lyons, T.W., Large, R.R., Jiang, G., Stepanov, A.S., Diamond, 
C.W., Figueroa, M.C., and Olin, P., 2017, Whole rock and discrete pyrite 
geochemistry as complimentary tracers of ancient ocean chemistry: An 
example from the Neoproterozoic Doushantuo Formation, China: Geochi-
mica et Cosmochimica Acta, v. 216, p. 201–220.

Guyon, I., 2008, Practical feature selection: From correlation to causality, in 
Fogelman-Soulié, F., Perrotta, D., Piskorski, J., and Steinberger, R., eds., 
Mining massive data sets for security—advances in data mining, search, 
social networks and text mining, and their applications to security: NATO 

Science for Peace and Security Series—D: Information and Communica-
tion Security: Amsterdam, IOS Press, p. 27–43.

——2009, A practical guide to model selection: Machine Learning Summer 
School: Canberra, Australia, January 26-February 6, 2009, Proceedings, 
p. 37.

Hastie, T., Tibshirani, R., and Friedman, J.H., 2009, The elements of sta-
tistical learning: Data mining, inference and prediction, 2nd ed., Springer 
series in statistics: New York, Springer, 745 p.

Kovacevic, M., Bajat, B., Trivic, B., and Pavlovic, R., 2009, Geological units 
classification of multispectral images by using support vector machines: 
International Conference on Intelligent Networking and Collaborative Sys-
tems, Institute of Electrical and Electronics Engineers (IEEE), Barcelona, 
Spain, November 4–6, 2009, Conference Presentation, p. 267–272.

Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gil-
bert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., and Foster, 
J., 2009, Gold and trace element zonation in pyrite using a laser imaging 
technique: Implications for the timing of gold in orogenic and Carlin-type 
sediment-hosted deposits: Economic Geology, v. 104, no. 5, p. 635–668.

Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., 
Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., and Sack, P.J., 2014, 
Trace element content of sedimentary pyrite as a new proxy for deep-time 
ocean-atmosphere evolution: Earth and Planetary Science Letters, v. 389, 
p. 209–220.

Large, R.R., Gregory, D.D., Steadman, J.A., Tomkins, A.G., Lounejeva, E., 
Danyushevsky, L.V., Halpin, J.A., Maslennikov, V., Sack, P.J., and Mukher-
jee, I., 2015a, Gold in the oceans through time: Earth and Planetary Sci-
ence Letters, v. 428, p. 139–150.

Large, R.R., Halpin, J.A., Lounejeva, E., Danyushevsky, L.V., Maslennikov, 
V.V., Gregory, D., Sack, P.J., Haines, P.W., Long, J.A., and Makoundi, C., 
2015b, Cycles of nutrient trace elements in the Phanerozoic ocean: Gond-
wana Research, v. 28, p. 1282–1293.

Loftus-Hills, G., and Solomon, M., 1967, Cobalt, nickel and selenium in 
sulphides as indicators of ore genesis: Mineralium Deposita, v. 2, no. 3, 
p. 228–242.

Lyons, T.W., Werne, J.P., Hollander, D.J., and Murray, R.W., 2003, Contrast-
ing sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-
anoxic transition in the Cariaco basin, Venezuela: Chemical Geology, v. 195, 
no. 1–4, p. 131–157.

Lyons, T.W., Anbar, A.D., Severmann, S., Scott, C., and Gill, B.C., 2009, 
Tracking euxinia in the ancient ocean: A multiproxy perspective and Pro-
terozoic case study: Annual Review of Earth and Planetary Sciences, v. 37, 
p. 507–534.

Maier, R.C., 2011, Pyrite trace element haloes to northern Australian SEDEX 
deposits: Ph.D. thesis, Hobart, Australia, University of Tasmania, 217 p.

Maslennikov, V.V., Maslennikova, S.P., Large, R.R., and Danyushevsky, L.V., 
2009, Study of trace element zonation in vent chimneys from the Silurian 
Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Rus-
sia) using laser ablation-inductively coupled plasma mass spectrometry 
(LA-ICPMS): Economic Geology, v. 104, no. 8, p. 1111–1141.

Maslennikov, V.V., Maslennikova, S.P., Large, R.R., Danyushevsky, L.V., 
Herrington, R.J., Ayupova, N.R., Zaykov, V.V., Lein, A.Y., Tseluyko, A.S., 
Melekestseva, I.Y., and Tessalina, S.G., 2017, Chimneys in Paleozoic mas-
sive sulfide mounds of the Urals VMS deposits: Mineral and trace element 
comparison with modern black, grey, white and clear smokers: Ore Geology 
Reviews, v. 85, p. 64–106.

O’Brien, J.J., Spry, P.G., Nettleton, D., Xu, R., and Teale, G.S., 2015, Using 
Random Forests to distinguish gahnite compositions as an exploration 
guide to Broken Hill-type Pb-Zn-Ag deposits in the Broken Hill domain, 
Australia: Journal of Geochemical Exploration, v. 149, p. 74–86. 

Reimann, C., and Filzmoser, P., 2000, Normal and lognormal data distribu-
tion in geochemistry: Death of a myth. Consequences for the statistical 
treatment of geochemical and environmental data: Environmental Geology, 
v. 39, no. 9, p. 1001–1014.

Revan, M.K., Genç, Y., Maslennikov, V.V., Maslennikova, S.P., Large, R.R., 
and Danyushevsky, L.V., 2014, Mineralogy and trace-element geochemistry 
of sulfide minerals in hydrothermal chimneys from the Upper Cretaceous 
VMS deposits of the eastern Pontide orogenic belt (NE Turkey): Ore Geol-
ogy Reviews, v. 63, p. 129–149.

Rodriguez-Galiano, V.F., Chica-Olmo, M., and Chica-Rivas, M., 2014, Pre-
dictive modelling of gold potential with the integration of multisource 
information based on random forest: A case study on the Rodalquilar area, 
southern Spain:  International Journal of Geographical Information Sci-
ence, v. 28, no. 7, p. 1336–1354.

on 23 August 2019

hwerkman
Sticky Note
None set by hwerkman

hwerkman
Sticky Note
MigrationNone set by hwerkman

hwerkman
Sticky Note
Unmarked set by hwerkman



786 GREGORY ET AL.

Scott, C., Lyons, T., Bekker, A., Shen, Y., Poulton, S., Chu, X., and Anbar, A., 
2008, Tracing the stepwise oxygenation of the Proterozoic ocean: Nature, 
v. 452, no. 7186, p. 456–459.

Tardani, D., Reich, M., Deditius, A.P., Chryssoulis, S., Sánchez-Alfaro, P., 
Wrage, J., and Roberts, M.P., 2017, Copper-arsenic decoupling in an active 
geothermal system: A link between pyrite and fluid composition: Geochi-
mica et Cosmochimica Acta, v. 204, p. 179–204.

Thomas, H.V., Large, R.R., Bull, S.W., Maslennikov, V., Berry, R.F., Fraser, 
R., Froud, S., and Moye, R., 2011, Pyrite and pyrrhotite textures and com-
position in sediments, laminated quartz veins, and reefs at Bendigo gold 
mine, Australia: Insights for ore genesis: Economic Geology, v. 106, no. 1, 
p. 1–31.

Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., 2006, Trace metals 
as paleoredox and paleoproductivity proxies: An update: Chemical Geology, 
v. 232, no. 1, p. 12–32.

Waske, B., Benediktsson, J.A., Árnason, K., and Sveinsson, J.R., 2009, Map-
ping of hyperspectral AVIRIS data using machine-learning algorithms: 
Canadian Journal of Remote Sensing, v. 35, no. 1, p. 106–116.

Daniel Gregory is an assistant professor in eco-
nomic geology at the University of Toronto, Can-
ada. He worked as an exploration geologist in the 
Yukon Territory, Canada, before he moved to Aus-
tralia to complete his Ph.D. degree in economic 
geology and geochemistry at the Centre for Ore 
Deposit and Earth Sciences (CODES), Tasmania. 
Daniel held postdoc positions at CODES and the National Aeronautics and 
Space Administration (NASA) Astrobiology Institute at the University of 
California Riverside (UCR) investigating basin-scale whole-rock geochem-
istry and mineral chemistry using macro- and nanoanalytical techniques. He 
focuses on in situ trace element analyses to understand the fluids related to 
ore deposit formation. Dan is testing machine learning techniques to identify 
ore deposit style and vector toward economic mineralization.

on 23 August 2019

hwerkman
Sticky Note
None set by hwerkman

hwerkman
Sticky Note
MigrationNone set by hwerkman

hwerkman
Sticky Note
Unmarked set by hwerkman




