
1 
 

Market moods and network dynamics of stock return: 

The bipolar behavior 
 

We show that a simple mood-separable preference in a network study of stock returns 

captures a variety of stylized facts regarding stocks’ provisional (ab)normal behavior. 

These behaviors are articulated in a multi-state complete Euclidean network model 

that specifies the existence, direction and magnitude of a self-organized dynamics for 

each individual stock during abnormal market moods. In the empirical setting, we apply 

suggested model along with two established visual approaches (MDS and AHC) for 

benchmark purposes. Results reveal different levels of erratic return dynamics for each 

stock and the entire market in different abnormal market moods. We model and 

interpret these self-organized dynamics as evidence of stocks’ and market’s bipolar 

behavior. 
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1. Introduction  

In recent years, the research of complex systems has gradually expanded from mathematics, physics and biology to sociology, 

economics and finance. The intuition behind this extension is the emersion of modern socioeconomics systems which are highly 

interdependent with an intricate financial structure. Recent studies conducted by econophysicists have reported that the complex 

dynamics of stock returns contain many applications of complex system analysis (Huang, Yao, Zhuang, & Yuan, 2017; Lillo, Farmer, 

& Mantegna, 2003; Mantegna & Stanley, 2000; McCauley, 2006; Muñoz Torrecillas, Yalamova, & McKelvey, 2016; Pan & Sinha, 

2007; Yang & Yang, 2008). For instance, it is shown that the return behavior has sudden trend changes for a large number of 

stocks or, in an unsynchronized fashion,  effecting only a few stocks at the same time (see (Hirshleifer & Shumway, 2003; Olson, 

2006)).  

According to these studies, the picture of stock market as a group of interacting traders that are regularly adapting to new 

information, and reflecting them in stock prices, seems to be a very abstract picture of how real stock markets operate. This 

notion is somehow justified in the past literature where trying to construct robust theoretical frameworks for financial markets 
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behavior has been extremely controversial and challenging issue (Lo, 2004; Small, 2005). On the other hand, explanations of these 

complexities from decision science and market mass psychology accuse traders’ emotional eccentricities, where these can be 

shaped by many controlling stimuli such as the power of mass psychology, risk tolerance and misguided thinking (Hilton, 2001; 

Mantegna & Stanley, 2000; Nofsinger, 2016; Sornette, 2003). In this view, the time evolution of stock return, and the complexity 

behind it, is closely connected with the fundamental nature of human beings (Lo, 2004; Vieito, da Rocha, & Rocha, 2015). From 

the methodological perspective, many studies have considered modeling the correlation networks between stock returns 

(Kristoufek & Vosvrda, 2013; Mantegna & Stanley, 2000). An alternative approach focuses on the stocks’ complex network 

structure via the hierarchical linkages among stocks (BAYDİLLİ, BAYIR, & TÜRKER, 2017; Boginski, Butenko, & Pardalos, 2006; 

Esmalifalak, Ajirlou, Behrouz, & Esmalifalak, 2015; Kantar, Deviren, & Keskin, 2011; Mantegna, 1999; Ulusoy et al., 2012). These 

networks and the extracted information are analyzed and compared, using clusters, cliques and connectivity.  

Despite the demonstrated efficacy of these approaches especially in dealing with the static network structures, they do not 

provide a systematic approach that reports aggregate behavior under changing market condition. In this study, we suggest a state-

dependent network study which highlights the synergies created from the application of complex network theory to the stock 

market behavioral analysis. In the methodological context, we introduce a complete Euclidean network (CEN) model that relies on 

the application of a spatial measure (Euclidian distance metric) instead of the correlation measure for scaling (dis)similarities. For 

testing the validity of numerical results, we will look at the visual reports of the agglomerative hierarchical clustering (AHC) and 

multidimensional scaling (MDS)1. In the CEN model, we capture change in the market mood dependent return patterns as 

evidence of Stocks Bipolar Behavior SBB. Using this elementary definition of bipolar behavior, the primary focus of Sec. 2 is to 

specify the theoretical background that accounts for the existence of the bipolar behavior in stock market literature.  

The outline of the paper is as follows. The next section briefly reviews prior studies regarding the mass psychology of stock market 

and the practices of traders over time. In section three, we present the research methodology and model. The first phase of the 

model concerns market moods and second phase presents prior methods that apply a spatially weighted metric in stock market 

analysis. The third part of section three focused on the network dynamics of stock returns. Section four discusses the empirical 

application of the proposed model to the finance sector of New York Stock Exchange (NYSE). Finally, section five concludes. 

2. Theoretical background 

The primary tenets of capital markets theory, largely developed over the past 60 years, rests on a few key concepts, primarily 

efficient markets and investor rationality (Fama, 1970). The basis of these concepts is that the rational investors use the market 

for their own interests and unwittingly cause prices to reflect current information and analysis. From this perspective, the time 

evolutions of stock returns are well described as a random process (Fama, 1995). In capital markets theory, this random change 

implies that no one should be able to forecast a stock's return unless they incorporate measures of its riskiness, such as its beta. 

According to this view, the belief that herd behavior reflects the irrational response of investors rather than the outcome of 

rational decision making implies that prices may be driven away from their equilibrium values. Under this premise, investors are 

exposed to the unpredictable whims of herds and may be forced to transact at inefficient prices. 

Large numbers of studies conducted by experimental economists and market psychologists have documented departures from 

efficient markets (Byun, Lim, & Yun, 2016; Lawrence, McCabe, & Prakash, 2007; Urquhart & Hudson, 2013; Urquhart & McGroarty, 

2014): Variables with no apparent connection to risk are able to forecast stock returns, both in time series and cross-section 

analyses (Byun et al., 2016; Campbell & Thompson, 2008; Cenesizoglu & Timmermann, 2008; Guo & Savickas, 2006; Lunde & 

Timmermann, 2012). Many of these studies have been replicated in a variety of samples and are generally considered to be 

established facts (Lo, 2004)). However, it has not yet been determined whether cross-correlation behavior between stock price 

fluctuations has a similar universal nature (Pan & Sinha, 2007).  

                                                            
1 Applied methods are the most common techniques for statistical data analysis and the primary task of exploratory data mining. They can contribute to the 
definition of a formal classification scheme or taxonomy by revealing associations and structure in data that were not previously evident. These methods avoid 
imposing any specific restrictions over the tested items. In fact, the only required data is a measure for determining associations.  
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Preeminent scholars such as Herbert Simon, Daniel Kahneman, Richard Thaler, and Amos Tversky were among the first to study 

how individuals are systematically and predictably limited and occasionally “irrational” in their individual judgment and decisions 

(Lo, 2004). A growing body of evidence generated by decision science scholars demonstrates that investors’ systematic judgment 

errors induced by their biological motivates result in stocks’ divergence from randomness. According to this view, investors’ 

motivational state may be shaped by many controlling stimuli such as the power of mass psychology, risk tolerance and misguided 

thinking (Engelberg & Parsons, 2016; Nofsinger, 2016; Siganos, Vagenas-Nanos, & Verwijmeren, 2017). In another word, it is 

believed that the physiological variables associated with the autonomic nervous system are highly correlated with market events, 

even for highly experienced traders. In the market ecology, such a correlation generates a complex mechanism of transmission of 

thoughts or behavior that leads to systemic instabilities. 

2.1. Stock market bipolar behavior 

In this section, we provide a detailed description of SBB and its implication in the behavioral economics and finance literature.  

Formerly known as, manic depression, bipolar disorder is a medical malfunctioning of brain mechanisms that manage individuals’ 

moods. This condition causes serious shifts in mood, energy, thinking, and behavior that range from the highs of mania at one 

extreme (pole) to the lows of depression. As with many other mental illnesses, bipolar disorder has its own psychological 

features(Engelberg & Parsons, 2016) and symptoms that are well described in many neuroscience and psychology textbooks (i.e., 

see (Belmaker, 2004)).  

Initial implicit beliefs regarding the existence of market bipolar disorder may be found in the writings of John Maynard Keynes, 

who is one of the founding fathers of modern macroeconomics. Keynes gained deep insight into human psychology and how 

psychology affects macroeconomics through consumption, investment, employment, government and the interest rate. In 

(Keynes, 1937, 2006), Keynes reported the erratic nature of mass psychology and purported that investors cannot afford to 

disregard it. From this point of view, irrationalities should be studied by considering how people aggregate in the complex, long-

lasting, repetitive, and subtle environment of the market. In (Keynes, 2006) Keynes divided time into normal and abnormal 

episodes and states, “In abnormal times in particular, when the hypothesis of an indefinite continuance of the existing state of 

affairs is less plausible than usual, the market will be subject to waves of optimistic and pessimistic sentiment”. Keynes claimed 

that the waves of optimism and pessimism make it difficult for investors to accommodate these opposite and extreme moods 

(Cheung, 2010). Addressing these difficulties, he advocated for government policy intervention to reduce the adverse effects of 

economic booms and recessions. 

Later, in 1949, Benjamin Graham, the father of value investing and author of “The Intelligent Investor”, explicitly argued that the 

stock market (which he coined “Mr. Market”) suffers from bipolar disorder (Graham & Zweig, 2003). In chapter 8, Graham asks the 

reader to imagine that he is one of two owners of a business, along with a partner called “Mr. Market”. The partner frequently 

offers to sell his share of the business or to buy the reader's share. As the partner’s estimate of the business value ranges from 

very pessimistic to wildly optimistic, which we label as bipolar behavior. Since the publication of this scenario by Graham, his view 

of “Mr. Market” has been cited numerous times to explain stock market fluctuations based on investors sentiment; (Baker & 

Wurgler, 2006; Barberis, Shleifer, & Vishny, 1998; Cheung, 2010; Greenwald, Kahn, Sonkin, & Van Biema, 2004; Otuteye & 

Siddiquee, 2015).   

Despite the theoretical literature on the existence of the bipolar disorder at the market level, a rigorous quantitative framework 

has yet to be fully articulated. Current knowledge is more about a market’s bipolar behavior showing extreme moods as poles of 

disorder distant from normal behavior. In our research detecting the poles of abnormal mood is only the first phase of diagnosing 

‘stocks’ and market’s bipolar disorder’. In the second step, we model the complex multi-state (normal, mania, depression and 

chaos2) network structure and trace SBB from the self-organized dynamics of stock returns in response to the market changes. In 

                                                            
2 Chaos mood is an important but somewhat missing concept in market state literature. The concept of market stress does not necessarily imply that the market as 

a whole should show either large negative or positive returns. Indeed, it can contain both large negative and positive returns at a certain point of time. In this case, 
the accumulated absolute return of each stock for time t would be high but there would not be an imaginable direction for that. Defining market extreme mood as 
only arising when large positive or negative returns excludes this important market mood from market behavior analysis. 
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the next section, we provide the precise mathematical process of deriving SBB in the body of suggested CEN model. Meanwhile, 

we establish the link between our knowledge of SBB in the finance literature with its network implications.  

3. Methodology and model 

According to (Baele, Ferrando, Hördahl, Krylova, & Monnet, 2004), the financial behavior of stock markets may be assessed based 

on 1) price, 2) news and 3) quantity measures. In this study, we focus on, the price-based indicator of stocks’ collective behavior. 

Our methodology articulates the emergence and dynamical process of stock return network which is embedded in the spatial 

properties of the ‘m’ dimensional Euclidean space. We present a three-phase study scheme that initiates a market mood 

segmentation process (time specification). In the second phase, we show how we can portrait the spatial properties of the stock 

aggregate (space specification) in a two-dimensional graph. To this end, we use two established approaches (MDS and AHC) that 

basically translating (ℝm) into (ℝ2) spaces. Although such a translation contains errors (especially in visualizing bilateral distances), 

their application is very helpful in conceptualizing the basic model (CEN) embedded in (ℝm). In the empirical setting, we use these 

methods as an estimated visual proxy along with the numerical outputs of the CEN model. Finally, in the third phase, we present 

the suggested multi-state CEN structure and its dynamics in (ℝm) as the main purpose of this paper. 

3.1. Detecting market moods 

In the first phase of our methodology, we detect market moods by scaling the main data matrix into different market mood data 

sets. We let R = ( rt,i)  ∈  𝕄m,n determine our data matrix with T = {1,…m} rows and V = {1,…n } columns. For t ∈ T and i ∈ V, 

rt,i denote the logarithmic return of stock ′𝑖′ in a time interval 𝚫t and  𝕄m,n denote the space of all m × n matrices. Matrix R can 

be shown with the column vectors R = [r1⃑⃑  ⃑ …… rn⃑⃑  ⃑] and row vectors R = [r1⃑⃑  ⃑ …… rm⃑⃑ ⃑⃑  ]or in an extended format as follows: 

R = [

 r1,1 ⋯  r1,n

⋮ ⋱ ⋮
 rm,1 ⋯  rm,n

] 

In order to perform a market mood segmentation scheme, we first apply Eq. (1) to scale market time into normal and abnormal 

episodes using  εt  which is the sum of the absolute return values of n stocks in time  t ∈ T as follows:   

 ε𝑡  = ∑ 

𝑛

𝑖=1

| rt,i| =  ‖rt⃑⃑ ‖1                          (1) 

Mathematically, εt corresponds to the one-norm of the row vector  rt⃑⃑ ∈ R. We apply Eq. (1) for all t = {1,…m} and sort them in 

ascending order. The resulting m × 1 vector εt has a first element ε1 corresponding to the time that market has the lowest 

aggregate return from ′n′ stocks (regardless of the sign of return) and εm will correspond to the time that the entire market has 

the highest positive or negative return compared with other days. Plotting  εt  for a large ′t′ sample shows that almost 90% of the 

εt falls within (mean  −
+  standar deviation) interval on the left side of the curve with a very low ascending slope (i.e. see Fig. 2). 

We consider these dates as the normal times and the remaining (at the end tail of curve with a high ascending slope) as the 

abnormal times. Substitute method can be a binary clustering algorithm like K-means that divides ε𝑡 into two blocks of normal and 

abnormal times.  

However, it is not necessary to use a statistical or clustering measure when using large samples since an error in the cut-off point 

would affect only a few marginal dates moving from one group to another. These marginal dates have similar features from both 

spaces and their inclusion would not affect the overall feature of each market mood. Our segmentation scheme will divide the 

data matrix R into normal Rñ = (rt,i
ñ ) ∈ 𝕄mñ,nñ  and abnormal Ra = (rt,i

a ) ∈ 𝕄ma,na data sets where Rñ, Ra ⊂ R and m = mñ +

ma. In the next step, we apply the second criteria ∂t and scale Ra into three different episodes (mania ′ᶆ′, chaos ′ç′ and 

depression ′ḑ′). We let a = {ᶆ, ç, ḑ} ⊂ θ and θ = {ñ,ᶆ, ç, ḑ} denote all market moods. In Eq. (2) we formulize ∂t as the sum of the 

return values from ′na′ stocks at time t ∈ Ta as follows: 
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∂t = ∑rt,i
a  

na

i=1

                   (2)  

Applying Eq. (2) for each t = {1…ma} abnormal times and sorting them in ascending order gives us the ∂t as a ma × 1 vector. We 

plot 𝜕t (i.e. see Fig. 2 (b)) and classify abnormal times into different sub categories: 1) times with high negative aggregate return 

move in the left side of the 𝜕t curve as noted by a high upward slope concave to vector ‘t’ (depression mood), 2) times with high 

chaos aggregate returns as noted by a low upward slope in the middle of the curve (chaos mood) and finally 3) times with high 

positive aggregate returns  as noted by a high upward slope in the last part of the figure, convex to vector ‘t’ (mania mood). With 

this classification scheme, we divide the abnormal data matrix Ra into mania Rᶆ, chaos Rc and depression Rḑ data matrices. At 

the end of this phase, we have the set of data matrixes with each element corresponding to each market mood and Rθ =

{Rñ, Rᶆ, Rç, Rḑ} or in an extended format as follows:   

Rθ = [

r1,1
θ ⋯  r1,nθ

⋮ ⋱ ⋮

r
mθ,1
θ ⋯ r

mθ,nθ
θ

] 

In the next phase, we use these data sets and present the spatial representation of stock return using AHC and MDS methods.  

3.2. Network configuration in the two dimensional spaces  

In this section, we briefly present the application of MDS and AHC methods for estimating the two-dimensional representation of 

stock returns from ′m′dimensional space. These methods served as a ‘two dimensional’ proxy of the basic CEN model in Rm. 

Generally speaking, MDS techniques develop spatial representations of psychological stimuli or other complex objects based on 

judgments (e.g., preference, (dis)similarity)(D. Carroll & M. Wish, 1975; J. D. CARROLL & M. WISH, 1975). Using this method, the 

objects are represented as points in a map such that a small distance between two points corresponds to the increased similarity 

between two objects and a large distance corresponds to reduced similarity (see, e.g., Fig. 3). Researchers define MDS using three 

processes: 1) selecting the objects that will be analyzed, 2) deciding whether similarities or preferences are to be analyzed and, 

finally, 3) determining whether the analysis will be performed at the group or individual level. In this study, we aim to analyze 

stocks’ (dis)similarity (time-varying synchronization in stock returns) at both the group and individual levels. 

In most multidimensional scaling approaches, a measure of (dis)similarity between two objects selected from the same feature 

space is essential. We use the most popular metric for continuous features, the Euclidean distance, to formalize the spatial 

representation of return co-movement between i, j ∈ V pair stocks. Conceptually, the Euclidean distance is the length of the 

shortest line that connects i and j stocks with converting their multidimensional space into pairwise distances. Mathematically, it 

is the function  d:  ℝm × ℝm → ℝ   that assigns to any two vectors ri⃑⃑ , rj⃑⃑ ∈ R  and determines the standard distance between 

them. Eq. (3) shows the Euclidean distance between stock i and stock ′j′ in ′m′ dimensional space as follows: 

d(i, j ) =  ‖ri⃑⃑ − rj⃑⃑ ‖2
= (∑(rt,i − rt,j)

2

t

)

1
2

          (3) 

Applying Eq. (3) over ‘n’ stocks in a data matrix gives n(n − 1)/2  possible pairwise distances which can be shown with a spatially 

weighted distance matrix D = ( di,j)  ∈  𝕄n,n. We apply Eq. (3) over each data set corresponding to each market mood and 

determine each distance matrix. We let Dθ = {Dñ, Dᶆ, Dç, Dḑ} define our distance matrices and show it in extended format as 

follows: 

Dθ = [

d1,1
θ ⋯  d1,nθ

⋮ ⋱ ⋮

d
nθ,1
θ ⋯ d

nθ,nθ
θ

] 
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Having Dθ, we can map out the original high dimensional space to a lower space, but do so in an attempt to preserve pairwise 

distances. In practice, given a distance matrix D, MDS attempts to find ′n′ data points in low dimensions with coordinates 

corresponding to d′i,j that minimizes the following function: 

     min∑∑ (di,j −  d′i,j)

ji 

                             (4) 

In the next step, we apply AHC which is an additional step over distance matrices to determine stock-cluster of stocks associations 

in and ordered and more understandable platform.   

3.2.1. Agglomerative hierarchical cluster analysis 

Given a set of data R, the typical goal of partitional clustering is to form a k-block set partition k of the data. In this study, we use 

AHC, a widely used method of building a cluster hierarchy, to study (dis)similarities among stocks collective behavior. Technically, 

AHC initializes a cluster system as a set of single clusters (agglomerative case) or a single cluster of all objects (divisive case). It 

proceeds iteratively, merging or splitting the most similar cluster(s) until the stop criterion is achieved. To merge or split clusters of 

objects, rather than individual objects, the distance between individual objects must be generalized to the distance between 

clusters. Such a derived proximity measure is known as a linkage metric. Major inter-cluster linkage metrics include single link, 

average link, and complete link. In this study, we use the average link metric. Mathematically the average linkage function is given 

by the following expression:  

d((δ)i,j) =
1

  n(δ)i 
×   n(δ)j 

∑ 

  ni 

i=1

∑ d(i, j);

  n(δ)j 

j=1

           (5) 

where: 

 

d(i, j) is the distance between objects  i ∈ (δ)i and  j ∈ (δ)j;  

(δ)
i
  and (δ)

j
 are two sets of objects (clusters); and 

n(δ)i 
 and n(δ)j 

are the numbers of objects for subsets (δ)
i
  and (δ)

j
 respectively. 

 

Using the average linkage metric d((δ)i,j), we build a cluster hierarchy or Dendrogram. In this manner, we identify (dis)similar 

stocks from the (right) left of the dendrogram with (long) short vertical lines and trace 1) n(n − 1)/2  bilateral (stock-stock) and 

2)∑
n!

n!

n

K=2
  multilateral (stock-cluster) (dis)similarity among the aggregation of ‘n’ stocks. The ultimate number of imaginable 

(dis)similarity Ψn (both stock-stock and stock-cluster distances) can be determined by Eq. (6) as follows:  

 Ψn =   n(n − 1)/2  + ∑
n!

K!

n−1

K=2

       where n > 2       (6) 

3.3. The multi-state complete Euclidean network model 

In this section, we present the multi-state CEN model of stock return using the graph theory which is the natural framework for 

the accurate mathematical handling of complex networks. By definition, a graph is a pair G = (V, E)  of sets satisfying E ⊆ [V]2; 

thus the elements of E are 2-element subsets of V. To avoid notational ambiguities, we assume that V ∩ E = ∅. The elements of V 

are the nodes (vertices) of the graph G and the elements of E are its edges (lines), where the edges connect pairs of nodes  (i, j) ∈

E (with i, j ∈ V). By this definition, the stocks graph Gn,k  can be characterized by the number of nodes ‘n’ denoting the stocks 

traded in the market and K = n(n − 1)/2  edges denoting possible pairwise (dis)similarity in the movement of stock return.  
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Connecting all firms to each other constitutes a complete Euclidean network3 where the loci of nodes are given in the Euclidean 

′m′ dimensional space. In such a complete network structure, each node (stock) has a degree  n − 1 and the n × n symmetric 

distance matrix ′L′ describes the graph with elements 𝑙𝑖,𝑗 equal to the weights of existing edges calculated in ′m′ dimensional 

space (Eq. (7)). Similar to other Euclidean networks, the proposed financial network satisfies two important properties that do not 

necessarily hold for general edge weighted network. First, the distances satisfy the triangle inequality: The distance from ′i′ to ′j′ is 

never greater than the distance from ′i ‘to ′x′ plus the distance from ′x ‘to′ j′. Second, vertex positions give a lower bound on path 

length: No path from ′i′ to ′j′ will be shorter than the distance from ′i′ to ′j′. 

As like the procedure described in section 3.1, we can scale our data matrix into four featured data sets Rθ and apply Eq. (7) to 

calculate the set of edge length sets represented by Lθ = {Lñ, Lᶆ, Lç, Lḑ}.  

𝑙i,j
θ =  ‖

ri
θ⃑⃑  ⃑ − rj

θ⃑⃑  ⃑

mθ
‖

2

= (
∑ (rt,i

θ − rt,j
θ )

2
t

mθ
)

1
2

                (7) 

Having Lθ enables us to articulate the multi-state CEN model denoted by G
nθ,kθ
θ . In the Fig. 1, we simplify all the steps required to 

articulate the multi-state network structure and trace its state dependent dynamics. This process is defined in a way that one can 

easily trace the derivation of all equations with respect to each other.  

  
 Figure 1. CEN model   In this figure, we simplify all the steps and 

chain of equations required to articulate the multi-state 
CEN structure and its dynamics. This process starts from the 
data and leads to the SBB. 

 

3.3.1 The alpha measure and network dispersion 

There are several network measures describing the structure of complex networks but essentially they fall into two major 

categories: 1) measures that report the behavior of each node within aggregate (micro results) 2) measures that describe 

properties of the aggregate (macro results). In this section, we introduce the alpha measure which basically reports the spatial 

difference in the loci of each individual stock from the aggregate (micro-measure). In the network terminology, it corresponds to 

the closeness centrality measure of a CEN with the edges weighted by log return (dis)similarity. Mathematically, the alpha 

                                                            
3 The Euclidean networks are networks whose vertices are points in the plane and whose edge weights are defined by the geometric distances between the points. 
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measure is the average of all edge lengths that are connected to stock ′i′ in the ′θ′ market mood. Thus, a small alpha corresponds 

to a more central stock with more similar return pattern with the aggregate of ‘n’ stocks and vice versa.  

∝i
θ =

∑ 𝑙i,j
θ

j  

nθ − 1
      (8)             or in an extended format       ∝i

θ=

∑ (
∑ (rt,i

θ − rt,j
θ )

2
t

mθ )

1
2

 j

nθ − 1
             (8 − 1) 

Applying Eq. (8) over each edge length matrix will result in the set of closeness centrality sets ∝θ= {∝ñ, ∝ᶆ, ∝c, ∝d}. Having this 

measure we can understand the (dis)similarity in the return movement of each stock with market aggregate in different market 

moods. This stage of knowledge questions the scale of change in alpha measure by market transition from normal to abnormal 

moods. We answer to this question in Sec. 3.3.2. In the next step, we introduce the network dispersion measure L̅θ which reports 

to how extend return patterns of the network is (dis)similar as a whole. Unlike the alpha measure L̅θ is a measure of market mood 

(macro behavior). Mathematically, we can derive it from the average of all edge lengths in one network state as follows: 

L̅θ =
∑ ∑ 𝑙i,j 

θ
ji 

Kθ
  where for  Kθ =

nθ(nθ − 1)

2
  ⇒   L̅θ =

2∑ ∑ 𝑙i,j 
θ

ji 

nθ(nθ − 1)
                (9)        

(7), (9) ⇒   L̅θ =

2∑ ∑ (
∑ (rt,i

θ − rt,j
θ )

2
t

mθ )

1
2

 ji 

nθ(nθ − 1)
                 (9 − 1) 

Comparing the L̅θ among  different network states shows in which state network as a whole compacted or dispersed compared to 

other states. In the stock market context, this measure reports the degree of herding or dispersion of market during different 

market moods. 

3.3.2 Network dynamics of stock return: global and self-organized   

Assuming the given multi-state CEN structure, we can identify the scale and direction of change in the loci of each node that is 

observed by market transition from normal to abnormal moods. Such a dynamical process can be quantified with two different 

parameters. 1) The global dynamics which report the scale and direction of change in the alpha measure under a common scale 

factor denoted by g
ñ→a

 as follows:  

   g
ñ→a

=
L̅a

L̅ñ
   (10)       

In appendix A and B, we derive g
ñ→a

 with respect to both edge length and data elements as represented in Eq. (10-1) and (10-2) 

respectively: 

g
ñ→a

=
nñ(nñ − 1)∑ ∑ 𝑙i,j

a
ji 

na(na − 1)∑ ∑ 𝑙i,j
ñ

ji 

    (10 − 1)                            g
ñ→a

=

nñ(nñ − 1) (∑ ∑ (mñ ∑ (rt,i
a − rt,j 

a )
2

t )

1
2

ji 
)

na(na − 1)(∑ ∑ (ma ∑ (rt,i
ñ − rt,j 

ñ )
2

t )

1
2

ji 
)

                  (10 − 2)  

Under such transformation, the global dynamics of the network denoted by Δg
ñ→a

 would be equal to the average edge length of an 

abnormal state network L̅a minus its normal component L̅ñ.  

 Δg
ñ→a

= L̅a − L̅ñ      (10 − 3) 
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In this paper, we do not explore the global dynamics in micro level. However, for further exploration, it is possible to calculate the 

global dynamics of edge length or alpha measure during different abnormal market moods.  

2) The second parameter SBB reflects the heterogeneous response of traders to the changing market condition. In order to 

calculate the SBB, first we need to exclude the effect of global dynamics from the alpha measure of each stock. We do this by 

multiplying the alpha measure of the abnormal states with the inverse of global dynamics scalar g
ñ→a

 as follows: 

∝i
a|ñ

= ( g
ñ→a

)
−1

∝i
a         (8 − 2)    or in an extended format as follows:        ∝i

a|ñ
=

na(∑ 𝑙i,j
a

j )(∑ ∑ 𝑙i,j
ñ

ji 
)

nñ(nñ − 1)(∑ ∑ 𝑙i,j
a

ji 
)
         (8 − 3)  

∝i
a|ñ

 =

na (∑ ∑ (∑ (rt,i
ñ − rt,j 

ñ )
2

t )

1
2

ji 
)(∑ (∑ (rt,i

a − rt,j 
a )

2
t )

1
2
 j )

nñ(nñ − 1) (∑ ∑ (mñ ∑ (rt,i
a − rt,j 

a )
2

t )

1
2
 ji 
)

           (8 − 4) 

The resulting transformed alpha measure ∝i
a|ñ

 must basically be equal to its normal component  ∝i
ñ. However, according to the 

theory discussed in section 2, investors can react in different ways to the changing market condition which in turn results in a 

heterogeneous (self-organized) dynamics of stock return different (higher or lower) than the global dynamics. In Eq. (11), we 

model such erratic dynamics for each individual stock during each abnormal market mood as evidence of SBB: 

Ωi
a = ∝i

a|ñ
−∝i

ñ        (11)        where     ∑Ωi
a

i

= 0     

As like extension described for the transformed alpha measure, SBB function can be derived based on the edge length or data 

elements. In appendix A and B, we derive these equations and report the results in Eq. (11 − 1) and Eq. (11 − 2) as follows:   

Ωi
a =

na(∑ 𝑙i,j
a

j )(∑ ∑ 𝑙i,j
ñ

ji 
) − nñ(∑ 𝑙i,j

ñ
j )(∑ ∑ 𝑙i,j

a
ji 

)

nñ(nñ − 1)(∑ ∑ 𝑙i,j
a

ji 
)

            (11 − 1)                                                                                                 

Ωi
a =

(na (∑ ∑ (∑ (rt,i
ñ − rt,j 

ñ )
2

t )

1
2

ji 
)(∑ (∑ (rt,i

a − rt,j 
a )

2
t )

1
2
 j )) − (nñ (∑ (∑ (rt,i

ñ − rt,j
ñ )

2
t )

1
2
 j )(∑ ∑ (∑ (rt,i

a − rt,j 
a )

2
t )

1
2
 ji 
))

nñ(nñ − 1)(∑ ∑ (mñ ∑ (rt,i
a − rt,j 

a )
2

t )

1
2
 ji 
) 

   

(11 − 2) 

The output of this model can take negative, positive or zero values so that the sum of SBB for all stocks in an abnormal market 

mood must be zero. Ideally, the SBB of each stock must be zero which describes a stock with the same aggregate behavior 

(regardless if it is an integrated or a segmented stock) before and after market change to abnormal moods. In the network 

context, zero SBB of a stock implies that its transformed closeness centrality (alpha measure) is state invariant. On the other hand, 

any observed self- organized dynamics (SBB) for each stock can be regarded as a heterogeneous response to the market change. 

In such case, the higher negative and positive SBB correspond to the stocks with considerable change in their network behavior 

during market transition to abnormal moods.  

If the SBB of a stock is high and positive, it implies that the stock ′𝑖′ is generally integrated with the market, but change to a stock 

with segmented return behavior in abnormal states. We define and interpret this disorder as evidence of a divergent bipolar 

behavior. On the other hand, high negative SBB corresponds to the stocks where in usual times have returns which move 

differently from the market (a segmented pattern) and change nature to become integrated with aggregate market returns while 

transitioning to abnormal market moods. We define and interpret this acentric behavior as evidence of stock’s convergent bipolar 
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behavior. Finally, to calculate MBB of each abnormal market mood we average the absolute value of SBB in an abnormal state. We 

sum MBB of each state as the total MBB denoted by Ω as follows: 

Ωa =
1

na
∑ | Ωi

a|

𝑖

        (11 − 3)                  Ω =
1

na
∑|Ωi

a|

𝑎

=
1

nᶆ
∑ |Ωi

ᶆ
| +

𝑖

1

nç
∑ |Ωi

ç
|

𝑖

+
1

nḑ
∑ |Ωi

ḑ
|

𝑖

    (11 − 4) 

4. Empirical results 

We investigate the empirical application of the suggested CEN model over V = {1,…80} firms’ stock from finance industry sector 
of the NYSE. The dataset consists of firms whose stock was traded during the entire study period from Jan 4, 2000 to Mar 18, 
2016, excluding 344 days where at least one stock’s return is not in the range of -25% and 25%. Our sample consists of t =

{1,… .3735} daily close log return observations for each selected stock. R = ( rt,i) ∈ 𝕄3735,80 denotes the primary data matrix 

with rt,i coordinates. We show our data matrix with R = ri = [ r1 … . .  r80] column vectors and R = rt = [ r1 … . .  r3735] row 
vectors or in an extended format as follows:  

R = [

 r1,1 ⋯  r1,80

⋮ ⋱ ⋮
 r3735,1 ⋯  r3735,80

] 

We start our empirical analysis with suggested market mood specification procedure. We scale market time into normal and 
abnormal episodes by applying Eq. (1) for all t = {1,… .3735} days and derive the εt  as a m × 1 vector. Sorting  εt  in ascending 
and plot in Fig. 2 panel (a) shows that almost 90% of the times have a long low rising slope at the left part of the distribution and 
indicate the range of normal return moves. The right tail with a sharp increasing slope corresponds to around 10% of the days 
which correspond to abnormal days. We use the procedure discussed in section 3.1 to apply the cut-off point ɑ = 3398 and divide 
R into normal and abnormal matrices as follows:  
 

Rñ = (rt,i
ñ ) ∈ 𝕄3398,80 = [

 r1,1 ⋯  r1,80

⋮ ⋱ ⋮
 r3398,1 ⋯  r3398,80

]  and Ra = (rt,i
a ) ∈ 𝕄337,80 = [

 r1,1 ⋯  r1,80

⋮ ⋱ ⋮
 r337,1 ⋯  r337,80

] 

 

  
Figure 2. Market mood measures distribution Panel (a) indicates market days with normal and abnormal returns separated by ɑ = 3398. Panel 

(b) indicates 1) market days with extreme negative return in t < 137 with a high downward tail (depression mood), 2) market days with extreme 

chaos return where 137 < t < 187 (chaos mood) and 3) market days with extreme chaos return where t > 187 (mania mood). 

 
In the next step, we apply the second criteria ∂t, the market abnormal mood measure to scale Ra into the three different datasets 

Rᶆ, Rç, Rḑ ⊂ Ra representing mania, chaos and depression market moods respectively. We calculate ∂t  in all t =

{1,…337} abnormal days and visualize its ascending distribution in Fig. 2 panel (b). We apply ɑ1 = 137 cut point to split days with 

high negative return on the left side of the curve noted by a high upward slope concave to ′t′ vector. On the other hand, ɑ2 = 187  

splits the days with high positive return at the end of the curve convex to the vector ′t′. As a result, we obtain the depression and 

mania market mood data sets represented by Rḑ and Rᶆ respectively. Market days with extreme chaos mood can be noted by a 

low upward slope in the middle of the curve which corresponds to the remaining days given by Rç. We show Rḑ, Rçand Rᶆ  as 

follows: 

Rḑ = (rt,i
ḑ
) ∈ 𝕄137,80       R

ç = (rt,i
ç
) ∈ 𝕄50,80       R

ᶆ = (rt,i
ᶆ
) ∈ 𝕄150,80 
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4.1. Results from MDS and AHC 

In the second phase, we use each market mood datasets Rθ = { Rñ,  Rᶆ,  Rç,  Rḑ}  and ascertain the spatial weight of multilateral 

(dis)similarities from ‘stock-stock’ and ‘stock-cluster of stocks’ relations. Applying Eq. (3) over i, j ∈ V = {1, . . . , 80 } stocks will 

result in  80(80 − 1)/2 = 3160  possible pairwise spatial difference in the return movement of each datasets. These results 

articulate the network structure in each market mood. We show them with the distance weighted matrices Dθ = ( dθ
i,j)  ∈

 𝕄80,80. Solving Eq. (4) for each distance matrix Dθ = { Dñ,  Dᶆ,  Dç,  Dḑ} will enable us to derive D′θ and portrait the spatial 

differences in a two dimensional space as given by Fig. 3.  

 

In the Fig. 3, we highlight four example stocks where each shows a particular network transformation during different market 

moods. We interpret the behavior of sample stocks SCNB, PNC, FII and BAP and highlight them with red, green, orange and blue, 

respectively. In all four panels, the blue lines intersection point corresponds to the center of aggregate stocks so that a stock close 

to the intersection has a strong synchronized return movement with the common trend of the market aggregation.  

 

 
Figure 3. Stocks collective (dis)similarity pattern during each market mood. In this figure, we present the estimated spatial (dis)similarity 
patterns of each stock during each market mood. We colored four example stocks with distinguished changing return patterns. In each panel, 
the big and small distance from the blue cross section accounts for a low and high similarity between stock and the entire market respectively.   

 

In the Panel (a), SCNB displays a highly segmented return pattern which has changed to a very synchronous pattern with market in 

the Panel (c). As described in section 3, this implies that the stock SCNB shows a convergent bipolar behavior during market 

transition to extreme negative return moves. In another example, the FLL stock shows a convergent bipolar behavior during mania 

market mood. This is evident from comparing its loci in panel (a) and (d) where a segmented return pattern herds with highly 

integrated stocks when market changes to mania mood. In the third example, the stock PNC is integrated with market stocks 

during normal days and this high integration collapses during the depression, chaos and mania market moods as an indication of a 

complete divergent bipolar behavior. In the last example, we see the stock BAP having convergent bipolar behavior during a chaos 
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market mood. This can be concluded from comparing its movement with aggregate that shows change in a segmented return 

pattern to herding with highly integrated stocks during chaos market mood.  

Despite the importance of MDS when dealing with the spatial structure of stock return in a two-dimensional space, it has three 

major problems: First, the two-dimensional map in MDS is not an accurate abstraction of the (dis)similarity matrix. As noted in 

section 3.2, it is an estimation approach that basically minimizing the error between D and D′ distance matrices given by Eq. (4). 

On the other hand, the visual reports of the MDS (also in the AHC) is highly sensitive to the highly outlier stocks. In fact, if you had 

a highly segmented stock in your analysis, you will need to visualize the MDS panel in a very big screen or rescale it that in either 

case, it loses the intended visual properties. Finally, it does not show the stock-cluster of stocks relations. In the next step, we 

solve the third problem by applying the AHC algorithm using the average linkage metric  d((δ)i,j). The other two problems are 

addressed in the baseline model CEN (Sec. 4.2). 

 

Fig 4. Hierarchical networks during different market moods. This figure displays stock dendrograms where each stock has an ordinal rank of 
(dis)similarity with the market. The left and right side of the dendrograms has a short and long vertical line representing the maximum and 
minimum similarities among ranked stocks. This scaled scheme addresses the (dis)similarity of both stock-stock and stock-cluster of stocks return 
patterns. 

 
Considering the same example stocks from MDS panels (Fig. 3), we can trace their bipolar behavior from the dendrograms in Fig. 

4. We see the PNC (green colored) as a highly integrated stock during normal market mood at the left side changes its 

synchronized return move to a segmented pattern during all extreme market moods referring to a divergent bipolar disorder. In 

the second example, we have the SCNB (red on the map) a highly segmented stock at the end tail of the normal panel with high 
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dissimilarity rank. In the other panels (mania, depression and chaos), its dissimilarity closes to zero as noted by a convergent 

bipolar disorder. In another example, BAP is a dissimilar stock at the end tail of the normal panel that remains (relatively) stable 

during mania and depression market moods but shifts to a highly integrated pattern with other stocks during the chaos market 

mood (a convergent bipolar behavior). 

 

4.2. Results from CEN model 

 

In this section, we study the CEN structure and dynamics of stock return during different market moods. According to the 

discussed methodology, we use featured data sets identified in Sec. 3.1 to characterize the set of networks  G80,3160
θ  with n =

80 nodes and K = 3160  edges in θ market moods. In this network structure, the nodes are stocks and the edge lengths denote 

the strength of pairwise (dis)similarity in the time-varying return pattern. In that way, the set of 80 × 80 symmetric matrixes Lθ =

{Lñ,  Lᶆ,  Lç,  Lḑ} describes networks with elements Lθ
i,j equal to the weights of existing edges drive from mθ dimensional space. 

These quantities provide a general characterization of the suggested CEN model.  In the next step, we calculate the alpha measure 

and network dispersion as two measures of understanding the structure of suggested multi-state network. We use Lθ in Eq. (8) 

and Eq. (9) to calculate the  ∝θ and L̅θ respectively. Table 1 shows the descriptive statistics of these measures for each state and 

four example stocks. 
 

Table 1  

Descriptive statistics of the alpha measure and network dispersion coefficient 

   

N=80 Mean
∝̅θ= L̅θ 

Median St.d Kurtosis Skew Range Min Max Sum  BAP FLL PNC SCNB 

∝i
ñ  3.85 3.61 0.88 0.14 0.84 3.93 1.97 5.9 308  4.7 3.9 3.0 5.8 

∝i
ᶆ

 23.79 22.8 4.96 1.54 1.1 25.48 16.25 41.74 1903  25.9 19.2 30.9 25.0 

∝i
ḑ 

 21.18 20.24 4.69 1.43 1.04 24.03 10.86 34.89 1695  23.7 19.5 27.2 18.9 

∝i
ç 

 28.85 28.38 5.86 0.25 0.47 31.53 14.75 46.28 2308  24.0 35.6 29.7 27.7 

 

Comparing the alpha measures among states reports a considerable increase in the mean, median and Std. measures of centrality 

when market mood changes from normal to extreme market moods. Notably, the average of alpha (equal to the clustering 

coefficient) for extreme market moods (23.79, 21.18, and 28.85) is almost seven times greater than the normal market mood 

average. However, these statistics are only slightly different among abnormal states. The highest dispersion is in the chaos market 

mood where mean, median and Std. increase from 3.85, 3.61, 0.88 to 28.85, 28.38 and 5.86 respectively. The same results can 

also be understood from comparing the sum column among the states. We can see the same scale effect on the closeness 

centrality of the example stocks. In the next section, we would analyze such a dynamics with more details. To better highlight the 

asymmetric behavior of alpha measure during normal days and the days of market stress, we look at its probability distribution in 

Fig. 5. For comparability among different market moods, we normalized the alpha measure between zero and one. 

 

 
Fig 5 . Probability density of normalized  ∝ measure In this figure, we present the 
probability density function of ∝ measure for each individual stock during θ market 
moods. The left side of the chart accounts for the stocks with synchronous aggregate 
behavior and the right side is about the highly segmented stocks. 
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As shown in the Fig. 5, we have a relatively symmetric distribution for chaos market mood noted by a grey line. The normally 

distributed feature of alpha measure implies that the probability of extremely segmented return patterns is very low compared to 

the long tail distributions. For the three other market moods, we observe a positively skewed distribution (also given in Table 1) 

which identifies the community structure (in the hump) and the high possibility of observing segmented stocks abnormally distant 

from the center of the network (tail part). With all the importance of the state dependent alpha measure, we cannot use it for 

quantifying the global and self-organized dynamics of alpha measure. This level of knowledge requires other calculations that we 

do in the next section. 

 

4.2.1 Return dynamics in the applied CEN model 

In this section, we calculate the network dynamics of stock return as the final output and the main purpose of the suggested CEN 

model. For capturing the global dynamics we basically divide the average of edge length (same with the average of alpha measure) 

in an abnormal market mood to its normal market component. We use L̅θ from the second column of Table 1 and calculate the 

global dynamics set g
ñ→a

= {6.18, 5.5, 7.5} with elements corresponding to the ᶆ, ḑ, ç market moods respectively. As like 

observed in Sec. 4.2, we have a considerable dispersion during abnormal moods compared to normal mood. However, we do not 

see a considerable difference among abnormal states’ global dynamics. In the next step, we calculate the self-organized dynamics 

which accounts for the magnitude and sign of the SBB. In the next stage, we exclude this global dynamics from the alpha measures 

of the abnormal states using Eq. (8-2). 

 

Table 2 reports the descriptive statistics of  ∝i
a|ñ 

 for all three abnormal market moods and four selected example stocks. As we see 

in Table 2, the average and sum of transformed alpha measure is the same in all market moods. On the other hand, the Kurtosis 

and skewness of transformed alpha measure in chaos market mood is considerably low in comparison with the other abnormal 

states. Comparing the Min and Max columns with the Mean column reveals that the absolute difference between max and mean 

is much greater than the same between min and mean. This result shows that the possibility of observing highly segmented return 

pattern is much higher than the highly integrated stocks. Comparing centrality statistics, we do not see a significant difference 

among the transformed alpha measure of all abnormal market moods. In the next step, we apply Eq. (11) and calculate SBB by 

simply taking the difference between ∝i
a and ∝i

a|ñ
. Then, we use Eq. (11-3) and calculate the MBB of each state.  Finally, the sum 

of MBB from each state gives us the total MBB as the final result. We report these results in Table (2).  

 

Table 2  
Descriptive statistics of the transformed alpha measure and SBB 

N=80 ∝̅θ= L̅θ Median Std Kurtosis Skew Range Min Max Sum Ω𝑎  Ω BAP FLL PNC SCNB 

∝i
ᶆ|ñ 

 3.85 3.70 0.80 1.54 1.10 4.13 2.63 6.76 308 
  

4.2 3.1 5.0 4.0 

∝i
ç|ñ 

 3.85 3.68 0.85 1.43 1.04 4.37 1.98 6.35 308 
  

4.3 3.5 4.9 3.4 

∝i
ḑ|ñ 

 3.85 3.79 0.78 0.25 0.47 4.21 1.97 6.18 308 
  

3.2 4.7 3.9 3.7 

         162     

Ωi
ᶆ

 0 -0.05 0.9 1.8 0.7 5.0 -1.8 3.2 0 48.6 
 

-0.5 -0.77 2.00 -1.79 

Ωi
ḑ

 0 -0.05 0.9 1.4 0.5 5.2 -2.4 2.8 0 50.8 
 

-0.4 -0.33 1.93 -2.39 

Ωi
ç
 0 0 1.0 0.1 0.2 4.9 -2.1 2.8 0 62.7 

 
-1.5 0.87 0.96 -2.14 

 

Analyzing results in the aggregate level (macro results) shows that there is no significant difference in MBB between mania and 

depression abnormal market moods (48.6, 50.8). However, MBB in chaos market mood is notably higher (62.7) than other 

abnormal states. A higher MBB for a state shows that most of the stocks in that state have changed their behavior by market 

transition to that abnormal state and vice versa. In the same way, the total MBB denoted by Ω = 162 shows the sum of absolute 

SBB for all stocks and all abnormal states. This measure must be compared with other similar market and the results of a parallel 

study.  
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Next, we analyze the quantitative results for the selected example stocks (micro results) which can be followed from the visual 

results of the MDS and AHC models. From Table 2, we see BAP stock has a high negative (-1.5) SBB that belongs to its convergent 

bipolar behavior. This number describes BAP as a segmented stock during normal days that clearly changes its behavior towards 

integration with the market during market transition to chaos mood. Result for FLL shows high convergent and divergent SBB 

during mania and chaos market moods respectively. Analyzing the SBB between PNC and SCNB stocks shows that both of them 

have a highly erratic dynamic during all abnormal market moods. However, the positive sign in PNC and the negative sign in SCNB 

describe them with a divergent and convergent bipolar behavior respectively.  

 

5. Summary and conclusion 

The picture of capital markets as groups of interacting traders, continually adapting to new information and reflecting them in 

prices seems like a much adopted picture of capital markets theory (Small, 2005). However, In contrast to such a simple 

microscopic structure, the macroscopic behavior of stock prices appears to be a surprisingly complex and nonlinear phenomenon. 

In the decision science and human dynamics literature, this remarkable macroscopic behavior and the existence of typical pattern-

like structures has been highly tied with (deterministic) traders psychology and a strong desire to make profits coupled with fear of 

losing. With such a highly nonlinear autocatalytic structure of traders beliefs, modeling return dynamics is extremely difficult with 

respect to both temporal and ensemble autocatalytic properties. These levels of complexity reinforce the idea of a stock market as 

a complex system possessing a structure spanning several scales. 

 
In this context, we presented a spatiotemporal CEN model with the edges weighted by log return (dis)similarity to study the 

nonlinear process of interactions in traders’ belief and its aspiration in the aggregate dynamics of stock return. This approach 

addresses the influential role of complex system analysis in understanding the temporal and autocatalytic behavior of stock 

markets.  To reduce the complexity and uncover the main characteristics of stock return we adopt the spectral properties of the 

distance ((dis)similarity) matrix. Uncovering these (dis)similarities through the network dynamics of stock returns generates 

meaningful insights about the stocks’ and market’s mass psychology. In particular, we demonstrate that changes in the state of 

the market are an important determinant of a self-organized change in stocks’ collective (network) return behavior. 

 

Our approach scales market time into normal and extreme episodes (depression, mania and chaos) and constructs a spatial 

representation of (dis)similar stocks within a multi-state CEN framework. Tracing each stock’s network transformation during 

these episodes demonstrates that returns have both global and self-organized dynamics. We model and interpret the self-

organized dynamics for each stock and the entire market as evidence of SBB and MBB. We establish that SBB occurs in two 

opposite directions: convergent SBB and divergent SBB. In a high convergent SBB, a stock with abnormal return pattern changes 

its segmented trend toward a highly synchronized return move with most integrated stocks. On the other hand, in a high 

divergent SBB, a stock with synchronized return pattern breaks its linkage with aggregate when market moves to an abnormal 

mood. Mathematically, convergent and divergent SBB are expressed by negative and positive values where SBB close to zero 

accounts for a stable stock which remains stable in its network position during transition to the out-of-equilibrium market moods.  

The first empirical evidence of the proposed model indicates that network dispersion increases significantly during all periods of 

major absolute price movements (positive, negative and chaos market mood). These results can be identified from the outputs of 

the alpha measure and global dynamics coefficient. These results are also consistent with the predictions of rational asset pricing 

where dispersion in stocks’ collective returns is significantly higher than average during days characterized by large swings in 

average price. However, the rationality hypothesis does not report the asymmetric behavior of individual stocks that emerges 

during phase transition in the market state. In the CEN model, this problem is assessed by devising a mathematical approach that 

differentiates global return dynamics (same for all stocks) from the self-organized dynamics of each individual stock. This level of 

knowledge reveals a variety of stylized facts regarding stocks’ and market’s heterogeneous response to the extreme conditions in 

the market. 

 

We believe suggested CEN model provides an improved understanding of financial markets’ complex network behavior under 

changing market condition. This may, in turn, improve the knowledge of underlying economic and financial factors that 
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characterize and influence market behavior. In the finance literature, the particular application domain can include the effective 

portfolio management, contagion and volatility analysis. Our future work in this direction will investigate different network 

measures with their application in understanding the network structure and dynamics of CEN model. 

 

Appendix (A): Extension of the model to the edge length 
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Appendix (B): Extension of the model to the data elements 
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