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Abstract 

 Rationale: Although methylphenidate and other stimulants have been demonstrated to improve 

task performance across a variety of domains, a computationally rigorous account of how these drugs 

alter cognitive processing remains elusive. Recent applications of mathematical models of cognitive 

processing and electrophysiological methods to this question have suggested that stimulants improve the 

integrity of evidence accumulation processes for relevant choices, potentially through catecholaminergic 

modulation of neural signal-to-noise ratios. However, this nascent line of work has thus far been limited 

to simple perceptual tasks and has largely omitted more complex “conflict” paradigms that contain 

experimental manipulations of specific top-down interference resolution processes. Objectives and 

Methods: To address this gap, this study applied the Conflict Linear Ballistic Accumulator (LBA), a 

newly proposed model designed for conflict tasks, to data from healthy adults who performed the Multi-

Source Interference Task (MSIT) after acute methylphenidate or placebo challenge. Results: Model-

based analyses revealed that methylphenidate improved performance by reducing individuals’ response 

thresholds and by enhancing evidence accumulation processes across all task conditions, either by 

improving the quality of evidence or by reducing variability in accumulation processes. In contrast, the 

drug did not reduce bottom-up interference or selectively facilitate top-down interference resolution 

processes probed by the experimental conflict manipulation. Conclusions: Enhancement of evidence 

accumulation is a biologically plausible and task-general mechanism of stimulant effects on cognition. 

Moreover, the assumption that methylphenidate’s effects on behavior are only visible with complex 

“executive” tasks may be misguided. 

Keywords: methylphenidate, stimulants, evidence accumulation, conflict tasks, executive 

functions, cognitive modeling, computational psychiatry, Bayesian 
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Methylphenidate and other stimulants are among the most effective pharmacological 

interventions for symptoms of attention-deficit/hyperactivity disorder (ADHD: Pliszka & AACAP Work 

Group on Quality Issues, 2007; Stuhec, Munda, Svab, & Locatelli, 2015). The pharmacological action of 

stimulants at the cellular level, which involves blocking dopamine and norepinephrine reuptake from the 

synapse, has been well-characterized for decades (Solanto, 1998). However, the precise mechanisms 

through which these biophysical processes alter complex behavioral outcomes are still only partially 

understood.  

A wealth of previous research demonstrates that acute stimulant administration increases 

accuracy and response speed on choice reaction time tasks and improves performance across a variety of 

paradigms thought to index complex cognitive functions implicated in ADHD, including attention, 

working memory and response inhibition (e.g., Coghill et al., 2014; Pietrzak, Mollica, Maruff, & 

Snyder, 2006; Reid & Borkowski, 1984; Rosch et al., 2016; Strand et al., 2010). Recently, Hawk and 

colleagues (2018) provided the first direct empirical evidence that methylphenidate-related 

improvements in cognitive performance partially mediate drug effects on clinical outcome measures in 

ADHD. Although this line of work supports the hypothesis that stimulants’ effects on cognition are an 

important component of their clinical utility, an explanatory gap remains; a biologically-plausible 

account of how stimulant effects on catecholamine action improve performance across a variety of 

higher-order cognitive domains has yet to be elucidated. 

One candidate account has been suggested by recent work within the framework of formal 

evidence accumulation models, which explain response time and accuracy on choice tasks as the product 

of a race between accumulators that gather noisy evidence for each possible choice over time until one 

choice “wins” by reaching a critical threshold of evidence (Smith & Ratcliff, 2004). Multiple models in 

this class have demonstrated considerable success in explaining patterns of behavioral data across a wide 
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variety of cognitive tasks (e.g., Brown & Heathcote, 2008; Usher & McClelland, 2001; Ratcliff & 

McKoon, 2008). Their biological plausibility is strongly supported by single-cell recordings in primates 

(Gold & Shadlen, 2007; Hanes & Schall, 1996; Smith & Ratcliff, 2004), which suggest that spiking 

activity within certain neural subpopulations during choice tasks displays properties consistent with an 

evidence accumulation process.  

Given the importance of evidence accumulation for cognition, it is possible that methylphenidate 

and other stimulants improve cognitive task performance by enhancing evidence accumulation through 

their influence on catecholamine systems that modulate neural signal-to-noise ratios. This idea found 

support in a recent study by Fosco, White and Hawk (2017) in a model-based analysis of cognitive 

performance in children with ADHD, a condition associated with less efficient evidence accumulation 

overall (Ziegler, Pedersen, Mowinckel, & Biele, 2016; Weigard, Huang-Pollock, Brown & Heathcote, 

2018). They found that the drug dramatically increased children’s efficiency of evidence accumulation 

toward correct choices, reduced their threshold for responding (i.e., causing a faster, less cautious 

response style), and lengthened time spent on non-decision processes (e.g., motor speed). In addition, 

using electrophysiological methods, Loughnane et al. (2019) found that stimulant administration prior to 

oddball task performance in healthy adults reduces the latency and increases the build-up rate of the P3b 

potential, which is thought to correspond to evidence accumulation (Kelly & O'Connell, 2013). 

These observations support the promising hypothesis that methylphenidate and other stimulants 

enhance evidence accumulation by selectively targeting relevant evidence (increasing signal) and/or by 

reducing variability in accumulation processes (decreasing noise). However, a key gap in existing work 

is that it has been limited to investigation of relatively simple perceptual tasks, for which most evidence 

accumulation models were designed. In contrast, most tasks in the literature on stimulants and ADHD 

involve more complex paradigms that are designed to explicitly measure specific top-down interference 
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resolution processes thought to be aberrant in ADHD (Coghill et al., 2014; Willcutt et al., 2005). For 

example, in “conflict” tasks, where irrelevant stimulus attributes, such as location in the Simon task 

(Hedge & Marsh, 1975) or nearby visual stimuli in the Flanker task (Eriksen & Eriksen, 1974), conflict 

with relevant attributes, a top-down interference resolution process is theorized to overcome the 

influence of irrelevant information. Hence, an important question concerns the selectivity of the drug’s 

effects: does methylphenidate improve performance generally across both conflict and non-conflict tasks 

(or conflict and non-conflict conditions within a task), or are its effects at least partially selective to the 

top-down interference resolution process that is postulated to be operative under conditions of conflict? 

Evidence accumulation models could be highly useful in addressing this question, but extending these 

models to conflict tasks has proven challenging. There have been several important attempts to 

formulate evidence accumulation models for such tasks (Hübner, Steinhauser, & Lehle, 2010; Ulrich, 

Schröter, Leuthold, & Birngruber, 2015; White, Ratcliff & Starns, 2011), but their parameter recovery 

has thus far been found to be relatively poor (White, Servant & Logan, 2018), which significantly limits 

their use as measurement tools (Heathcote, Brown & Wagenmakers, 2015).  

 Recent work by Heathcote, Hannah and Matzke (under review) instead used existing parameters 

from the linear ballistic accumulator (LBA: Brown & Heathcote, 2008), a well-established evidence 

accumulation model, to explain behavioral effects on standard conflict tasks. The LBA (Figure 1a) 

frames decisions as a race between two or more accumulators (one for each possible choice) that gather 

evidence at a constant rate until one reaches a response threshold, denoted by a b parameter. On a given 

trial, the rate of accumulation for accumulators is drawn from a normal distribution with a mean of v and 

standard deviation of sv, which are both typically estimated separately for accumulators that match the 

stimulus (correct) and that mismatch the stimulus (incorrect). The model also contains parameters for 

uniformly-distributed start point noise (A) and time taken up by non-decision processes (t0).  
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Importantly, to account for conflict effects, Conflict LBA theory (Heathcote et al., under review) 

proposes that early interference from irrelevant stimulus attributes can be described as a priming effect 

that gives the accumulator for the choice favored by these attributes a head start in the race. Since 

increases in LBA start points are identical to threshold reductions, this effect is reflected by reductions 

in b for the matching (correct) accumulator on congruent trials and for the mismatching (error) 

accumulator on incongruent trials (Figure 1a). The theory further assumes that a top-down process 

attempts to correct for irrelevant information during the trial, but that this correction is often imperfect 

and varies substantially from trial to trial. This variability results in greater sv on incongruent trials while 

miscalibration in the top-down process is reflected by altered (typically reduced) v on incongruent trials. 

Heathcote et al. (under review) demonstrated that different combinations of these mechanisms (priming, 

plus calibration and variability in interference resolution processes) accounted for hallmark phenomena 

(e.g., delta function shapes: de Jong, Liang, & Lauber, 1994) across a variety of conflict tasks.  

The current study applies the Conflict LBA to data from healthy adults who completed the 

Multi-Source Interference Task (MSIT: Bush & Shin, 2006) in a double-blind, placebo-controlled 

experimental trial of methylphenidate. We aimed to test whether methylphenidate effects on evidence 

accumulation seen in prior studies can be extended to conflict tasks. In addition, we were interested in 

whether methylphenidate affects the integrity of evidence accumulation in both congruent and 

incongruent task conditions or, alternatively, selectively facilitates processes in the incongruent 

condition, such as the top-down interference resolution process thought to operate in this condition. 

Methods 

Sample and Experimental Procedures 

 48 healthy participants were recruited from the community through ads on University of 

Michigan websites and flyers placed on campus and in other Ann Arbor locations. Of this initial sample, 
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two participants were excluded for failing to complete one of the experimental sessions and an 

additional participant was excluded due to apparent misunderstanding of the task (<50% accuracy in the 

incongruent condition at one session), leaving 45 participants (age 21.9 +/- 3.6 years, range 18-33; 24 

females) for analysis. 

 All experimental procedures were approved by a local institutional review board and were in 

accordance with the ethical standards of the Declaration of Helsinki. In a double-blind, randomized, 

cross-over design, participants received either 40mg of methylphenidate (MPD) or a placebo (PBO) 80 

minutes prior to performing an event-related MSIT task during fMRI scanning. Herein, we focus 

exclusively on modeling the behavioral data because we were concerned that fMRI results would be 

beyond the scope of the study and make the current report overly complex. Order of drug administration 

(MPD vs. PBO) was counter-balanced across subjects. The dose of MPD was chosen to optimize 

predicted effects on task performance in an acute dosing context, consistent with recent studies 

(Clatworthy, et al. 2009, Schlösser, et al. 2009). In particular, dosing was adjusted upwards relative to 

clinical dosing schedules to account for the fact that clinical dosing takes advantage of chronic 

administration to achieve higher steady-state blood levels.  

The MSIT was modeled after the version of the task used by Bush et al. (2008). Participants 

were presented with white three-digit stimuli on a black background and were instructed to press a 

response button (1, 2 or 3) to indicate which digit was unique (e.g., respond “2” for the stimulus 020). In 

the congruent condition, the unique digit was always in the same serial position as the correct response 

and the other digits were 0s (e.g., 100, 003), while in the incongruent condition the position of the 

unique digit was mismatched with the that of the correct response and other digits represented 

competing responses (e.g., 233, 212). Participants completed 100 trials in each congruency condition, 

which were pseudo-randomly interspersed, at each experimental session. Subjects were told to respond 
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to stimuli rapidly and accurately. During each trial, stimuli appeared for 500ms, which was followed by 

a jittered ITI of 1-8.5s.  

Specification of Models 

The MSIT paradigm contains two possible forms of interference: a Simon-like effect, which 

primes the choice matching the serial position of the target in both congruent and incongruent 

conditions, and a Flanker-like effect, which produces interference in the incongruent condition only, as 

the flanking elements in the congruent condition (0s) do not correspond to a possible response. The 

Conflict LBA was previously found to describe behavioral data from both the Simon and Flanker 

paradigms well (Heathcote et al., under review), suggesting that this framework could jointly account 

for both types of effects on the MSIT. However, the LBA, like many cognitive and neuroscience 

models, displays highly-correlated parameters that can be difficult to estimate when individual-level 

data are sparse (Kolossa & Kopp, 2018; Gutenkunst et al., 2007). As a result, inclusion of all Conflict 

LBA parameters in situations where the number of trials in each condition is small and/or when errors 

are rare may result in parameter tradeoffs that compromise interpretability (e.g., Heathcote, Loft & 

Remington, 2015), making simplified models more useful (Heathcote et al., under review). A key 

concern for the current analysis is that sv parameters are particularly difficult to estimate in evidence 

accumulation models, in part because they trade off with v parameters, leading to inaccurate or biased 

estimates of both (Boehm et al., 2018). 

As the MSIT had relatively few trials in each cell and low error rates, we sought to fit simplified 

versions of the Conflict LBA. On the basis of results from a targeted model selection analysis and 

several practical considerations, all of which are reported in detail in Supplemental Materials, we 

selected two models for use in the primary analyses: 1) a “mean drift rate” (MDR) model, in which v 

was allowed to vary by match/mismatch, congruency condition and drug condition, while sv was only 
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allowed to vary by match/mismatch, and 2) a “drift rate variability” (DRV) model in which sv was 

allowed to vary by match/mismatch, congruency condition and drug condition, while v was only allowed 

to vary by match/mismatch. Results from both models are reported below because parameter tradeoffs 

would likely prevent effects in v and sv from being easily distinguished from one another in models of 

this data set. Hence, we were able to assess whether evidence accumulation processes were enhanced by 

the drug or were enhanced in the congruent, relative to the incongruent, condition, but we were limited 

in our ability to make specific inferences about whether these improvements were due to increases in 

average rates of evidence accumulation or reductions in the variability of evidence accumulation. 

We fixed sv for the mismatching accumulator in the MDR model and sv for the congruent 

condition mismatching accumulators in the DRV model to 1 in order to identify parameters (see Donkin, 

Brown & Heathcote, 2009). Due to the previous findings of stimulant effects on response thresholds and 

non-decision time (Fosco et al., 2017), both models also allowed b and t0 to also vary by drug condition 

(MPD/PBO). Both models allowed b to explain priming from the Simon-like effect only (Figure 1b) due 

to practical challenges (Supplemental Materials) with allowing b to simultaneously explain the Flanker-

like effect; nine b parameters were estimated in each drug condition, with different thresholds for each 

accumulator when the target was located at each of the three possible positions. This allowed for both 

priming (i.e., lower b for the accumulator corresponding to the target position) as well as response bias 

(i.e., different thresholds for each accumulator, allowing a lower b for those corresponding to favored 

responses).  A single A parameter was estimated for each model across all conditions. 

Parameter Estimation and Hypothesis Testing 

 Prior to model-fitting, RTs <300ms were removed as likely fast guesses (<1% of data). Due the 

task’s low error rate, we used hierarchical Bayesian methods in Dynamic Models of Choice (DMC: 

Heathcote et al., 2018) to fit the Conflict LBA, as such methods allow estimation of group-level 
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parameters that can be used for inference and inform individual-level estimates, even when parameters 

are not well-identified at the individual level alone. In this model, group distributions of all LBA 

parameter values were assumed to follow truncated positive normal distributions described by location 

(μ) and scale (σ) hyper-parameters, for which broad and non-informative priors were posited (all priors 

reported in Supplemental Materials). Differential evolution Markov chain Monte Carlo simulations 

(Turner, Sederberg, Brown & Steyvers, 2013), with start points determined by earlier simulations at the 

individual level, were used to sample from posterior distributions of all group- and individual-level 

parameter values. Sixty-five separate chains were used in the simulations, and thinning (retaining only 

every 10th sample) was implemented to save file space. After an initial burn-in period that lasted until 

convergence was indicated by both visual inspection of chains (to ensure they were overlapping and 

stable) and the Gelman-Rubin statistic (G-R<1.10: Gelman & Rubin, 1992), 300 iterations of the 

simulation were retained, leaving 19,500 posterior samples per-parameter for inference. 

 Model fit was assessed with posterior predictive plots (Gelman, Meng & Stern, 1996), which 

allow visual inspection of how well the model accounts for key effects in behavioral data. Effects in 

parameter values were assessed using 95% credible intervals (CIs) of average posterior difference 

distributions of individual-level parameters. We considered effects to be reliable if the 95% CI did not 

contain 0. Procedures for calculating posterior difference distributions are described in Supplemental 

Materials. All code and data are available at: osf.io/t3cn5. 

Results 

Model Fit 

 Analyses of behavioral summary statistics (Supplemental Materials) indicated that RTs were 

longer and accuracy was lower in the incongruent, relative to congruent conditions, and that RTs were 

shorter in the MPD, relative to PBO, conditions. Plots of posterior predictive data compared with 
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empirical data for group average correct1 RT quantiles (.1, .5 and 9) and group average accuracy rates 

are displayed in Figure 2 for both models. Black points and lines represent empirical data while gray 

violin density plots represent the range of values predicted by 500 samples drawn from posterior 

distributions of model parameters. Therefore, the density and spread of the violin plots represent 

uncertainty in predictions of the model due to uncertainty about the values of its parameter estimates. 

Both models provide an excellent description of correct RT quantiles and capture the RT main effects 

present in empirical data: shorter RT in the MPD condition and longer RT in the incongruent condition. 

Although both models captured the general pattern of lower accuracy rates in the incongruent condition 

well, predicted absolute values of accuracy rates in this condition were lower than those in the empirical 

data. However, the difference was of a small magnitude (2-3%), suggesting that this misfit is relatively 

minor.  

 Figure 3 displays group-averaged delta functions, which plot the difference between congruent 

and incongruent correct RT quantiles (.1, .3, .5, .7 and .9) on the y-axis against their mean on the x-axis, 

and conditional accuracy functions (CAFs), which display mean accuracy rates as a function of RT 

quantile bins. Delta functions showed a linear increasing pattern in both drug conditions, which is 

atypical for most variants of the Simon task and more common in Flanker paradigms (Heathcote et al., 

under review). Nonetheless, both models captured this pattern well, suggesting that they provided an 

excellent description of interference effects in RT. CAFs of the PBO condition indicated that fast (<.25 

quantile) and slow (>.75 quantile) incongruent condition responses were slightly less accurate than 

responses in the middle of the range. CAFs of the MPD condition showed a clearer trend of reduced 

accuracy for fast responses, suggesting fast errors due to a possible speed/accuracy trade-off in this 

condition. The DRV model appeared to provide a better description of these CAF trends than the MDR 

                                                             
1 Predictive plots of error RTs would be difficult to interpret due to low error rates, and are therefore not reported.  
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model.  

Model Parameter Estimates 

 We focused on drug and congruency condition effects in several main parameters of interest, 

which are displayed in Figures 4 and 5 for the MDR and DRV models, respectively. For the MDR 

model, we assessed effects in both the mean quantity of evidence individuals are able to accumulate (the 

average of v.match and v.mismatch) and the mean quality of that evidence (v.match minus v.mismatch). 

Increases in evidence quantity mostly reduce response times, while increases in evidence quality mostly 

lead to more accurate responding. For the DRV model, we separately assessed effects in drift variability 

for the matching (sv.match) and mismatching (sv.mismatch) accumulators. For both MDR and DRV 

models, drift rate effects were also assessed using a sensitivity metric (Heathcote el al., 2015; Winkel et 

al., 2016), which is similar to d’ from signal detection theory in that it indexes the difference between 

mean rates of the matching and mismatching accumulators (signal) relative to their variability (noise): 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 (𝑣.𝑚𝑎𝑡𝑐ℎ − 𝑣.𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ) 2(𝑠𝑣.𝑚𝑎𝑡𝑐ℎ3 + 𝑠𝑣.𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ3)/2⁄  

This summary metric provides an index of discrimination between choices in an accumulator model that 

can be compared across the MDR and DRV models despite the fact that, as noted above, congruency or 

drug effects in sensitivity cannot be specifically attributed to either v or sv differences given limitations 

of the current data set. For ease of interpretation, we averaged b parameter estimates for accumulators 

that were primed and separately averaged those that were not primed, with the goal of investigating 

effects of priming and drug condition on individuals’ response thresholds in both MDR and DRV 

models. Finally, we assessed drug effects on non-decision time (t0) in both MDR and DRV models. For 

inference, medians (Δ) and 95% CIs of posterior difference distributions for all effects are reported 

below. Posterior difference distributions of interactions indicate the main effects of priming (primed – 

non-primed) or congruency condition (congruent - incongruent) in the PBO condition subtracted from 
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the same effects in the MPD condition.  

MDR model. Evidence quantity was greater overall in the congruent condition, Δ =.36, CI = [.32, 

.41], and greater in the MPD condition, Δ =.19, CI = [.14, .24]. There was also evidence for a 

congruency x drug interaction, Δ =.14, CI = [.05, .23], in which the congruency-related differences in 

evidence quantity were of greater magnitude in the MPD condition, Δ =.43, CI = [.36, .50], than in PBO, 

Δ =.29, CI = [.24, .35]. Similarly, evidence quality was greater overall in the congruent condition, Δ 

=.41, CI = [.32, .51] and greater overall in the MPD condition, Δ =.13, CI = [.04, .22]. A congruency x 

drug interaction in which congruency-related effects on evidence quality were lower in MPD than in 

PBO was not reliably different from 0, Δ =-.15, CI = [-.33, .03]. Sensitivity was greater overall in the 

congruent condition, Δ =.47, CI = [.36, .57], and greater in the MPD condition, Δ =.15, CI = [.04, .25], 

likely because of the increased evidence quality present in both conditions. A congruency x drug 

interaction effect in sensitivity was not reliably different from 0, Δ =-.17, CI = [-.37, .03]. Response 

thresholds were lower for primed accumulators, Δ =-.63, CI = [-65, -.61], and lower overall in the MPD 

condition, Δ =-.18, CI = [-20, -.16]. A priming x drug interaction, Δ =-.06, CI = [-.10, -.02], indicated 

that the priming effect was larger in the MPD, Δ =-.66, CI = [-.69, -.64], than PBO condition, Δ =-.60, 

CI = [-.63, -.58]. Non-decision times were longer in MPD, Δ =.037 seconds, CI = [.030, .043]. 

DRV model. For sv.match, rates were less variable in the congruent condition, Δ = -.05, CI = [-

.06, -.03], and less variable in the MPD condition, Δ = -.07, CI = [-.09, -.06]. There was evidence for a 

congruency x drug interaction, Δ = -.04, CI = [-.07, -.02], in which worsening of sv.match in the 

incongruent condition was of greater magnitude in the MPD condition, Δ = -.07, CI = [-.09, -.05], than 

in the PBO condition, Δ = -.03, CI = [-.04, -.01]. For sv.mismatch, rates were more variable in the 

congruent condition, Δ = .27, CI = [.25, .29], while the drug effect was not credibly different from 0, Δ = 

-.02, CI = [-.04, .00]. As sv.mismatch was fixed to 1 in the congruent condition, interactions in this 
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parameter were not assessed. Sensitivity was greater overall in the MPD condition, Δ =.28, CI = [.18, 

.38], consistent with findings from the MDR model, although increased sensitivity in the DRV model 

was due to reduced drift rate variability rather than to improved mean quality of evidence. In contrast to 

MDR model findings, sensitivity was lower in the congruent condition, Δ = -.88, CI = [-.99, -.78], and 

there was evidence for a congruency x drug interaction, Δ = -.28, CI = [-.48, -.08] in which congruency-

related reductions in sensitivity were greater for the MPD, Δ =-1.02, CI = [-1.20, -.86], than for the PBO 

condition, Δ = -.74, CI = [-.87, -.62]. However, this interaction should be interpreted with caution due to 

the paradoxical direction of the congruency main effect (which implies better performance in the 

incongruent condition), and the fact that sv.mismatch was fixed to 1 across congruent trials, which may 

have led to reduced estimates of MPD-related sensitivity effects on these trials. Thresholds were lower 

for primed accumulators, Δ =-.70, CI = [-71, -.69], and lower in the MPD condition, Δ =-.14, CI = [-15, 

-.12]. A priming x drug interaction effect was not credibly different from 0, Δ =.00, CI = [-.02, .02]. The 

drug effect on non-decision time was not credibly different from 0, Δ =.001 seconds, CI = [-.006, .007]. 

Discussion 

 The current study examined MSIT task data from healthy adults who received acute 

methylphenidate challenge in a randomized, placebo-controlled, double-blind, cross-over study. We 

applied two variants of the Conflict LBA (Heathcote et al., under review), a framework that extends the 

established LBA model (Brown & Heathcote, 2008) to describe interference-related processes in 

conflict paradigms. Consistent with previous research on simple perceptual tasks (Fosco et al., 2017; 

Loughnane et al., 2019), we found that methylphenidate improved performance by reducing response 

thresholds and by enhancing the sensitivity (signal-to-noise ratio) of evidence accumulation processes, 

although we were unable to pinpoint whether evidence accumulation was improved due to increases in 

the average quality of evidence (signal) or to reductions in evidence accumulation variability (noise). 
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Our results suggest that enhancement of evidence accumulation, in combination with associated 

reductions in response threshold, is a biologically-plausible, task-general mechanism through which 

stimulants improve cognition. 

In contrast, methylphenidate did not appear to selectively influence processes that were directly 

probed by the experimental conflict manipulation. Differences between congruent and incongruent trials 

on the MSIT were accounted for both by a priming effect in thresholds, which biased early evidence 

toward choices indicated by irrelevant information, and by differences in drift rate processes between 

congruent and incongruent trials. Alternate models suggested that either 1) evidence quality and quantity 

were reduced in the incongruent condition (MDR model) or 2) rates for the matching accumulator 

become more variable, and those for the mismatching accumulator became less variable, in the 

incongruent condition (DRV model). The former effects may reflect miscalibration or insufficiency of 

interference resolution processes in the incongruent condition, while the latter may reflect variability in 

these processes (Heathcote et al., under review). Although inferences varied somewhat between the two 

models, there was agreement across models that methylphenidate did not reduce either the priming 

effect caused by irrelevant information or differences in evidence accumulation between congruent and 

incongruent trials. Indeed, when drug-related interaction effects were found, there was evidence that 

priming effects and congruency-related differences in drift rate variables were actually increased by the 

drug. 

Notably, the presence of fast errors and reductions in response thresholds under stimulant 

challenge suggests that participants implemented speed/accuracy trade-offs in conditions where their 

evidence accumulation was improved, which are considered adaptive because they often further reduce 

RT without a significant decrement to accuracy rates (Dutilh, Vandekerckhove, Tuerlinckx, & 

Wagenmakers, 2009). However, it is unclear whether such adaptive threshold reductions are a direct 
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effect of the drug, or simply a secondary response to drug-related enhancements in evidence 

accumulation. It is also notable that, despite the general consistency of our findings with those of Fosco 

et al. (2017), only the MDR, and not the DRV, model replicated their finding of increased non-decision 

times under stimulant challenge. The fact that this effect, which is difficult to interpret (Fosco et al., 

2017) and mirrors paradoxical findings of shorter non-decision times in ADHD (Karalunas, Geurts, 

Konrad, Bender, & Nigg, 2014; Weigard et al., 2018), was not robust across models suggests that it may 

result from parameter trade-offs, although additional work is needed to confirm this possibility. 

 Taken together, this pattern of results suggests that methylphenidate facilitates conflict task 

performance by enhancing evidence accumulation processes across all task conditions, rather than by 

selectively influencing specific processes, such as top-down interference resolution processes, that are 

proposed to be specifically activated in incongruent conditions. Such an account explains why 

methylphenidate-related facilitation effects are present across a wide variety of cognitive paradigms 

(Coghill et al., 2014; Pietrzak et al., 2006), including simple choice tasks (Reid & Borkowski, 1984). 

Moreover, it is consistent with an emerging set of findings from tasks that do not have overt 

manipulations aimed at taxing specific top-down processes (Fosco et al., 2017, Loughnane et al., 2019). 

When considered within the emerging body of work on methylphenidate and evidence accumulation 

processes, the current findings also support a biologically-plausible account of stimulant effects on 

behavior. Stimulants may increase the overall integrity of evidence accumulation across a wide variety 

of tasks and experimental conditions by facilitating catecholamine systems that optimize neural signal-

to-noise ratios through modulation of arousal and/or neural gain, such as the locus coeruleus 

norepinephrine (LC-NE) system (Aston-Jones and Cohen, 2005). Such an account would be consistent 

with theories that implicate poor signal-to-noise ratios across a wide variety of tasks in ADHD due to 

deficits in catecholamine-mediated state-regulation processes (Karalunas et al., 2014; Weigard et al., 



17 
 

2018; Sikström & Söderlund, 2007). It would also be consistent with related theories that implicate 

metabolic limits on evidence accumulation efficiency in ADHD, which are hypothesized to be related to 

norepinephrine action (Killeen, Russell, & Sergeant, 2013).  

 Findings from this study should be considered within the context of several limitations. First, the 

analysis involved simplified versions of the Conflict LBA that assumed priming could account for 

interference caused by the Simon-like manipulation, only, and that were not able to distinguish effects in 

mean drift rates from those in drift rate variability. Although these choices were informed by model 

selection analyses and practical constraints that are detailed in Supplemental Materials, it is unclear 

whether they affected our substantive inferences. Second, our MSIT task had a very low error rate, 

which both made parameter estimation difficult and may prevent our findings from generalizing to tasks 

with higher error rates. Both limitations underscore the need to experimentally validate a measurement 

model of the MSIT task, which would likely involve changes to the task that both increase the number 

of trials per cell and generate errors for the purpose of improving parameter estimation. Finally, 

although this study focuses on modeling behavioral data, our key conclusions should also be tested at 

the neural level of analysis. Specifically, future work should determine whether methylphenidate’s 

effects on neuroimaging indices are also similar between conflict and non-conflict conditions.  

 In sum, we applied the Conflict LBA (Heathcote et al., under review), a novel mathematical 

model of conflict task performance, to MSIT data from healthy adults receiving acute methylphenidate 

or placebo challenge. We found stimulants improve task performance by enhancing evidence 

accumulation processes across both congruent and incongruent conditions, suggesting absence of 

selective facilitation of processes specific to the incongruent condition (e.g., top-down interference 

resolution processes). Our findings help clarify methylphenidate’s mechanism of action and invite 

further computational and neurobiological investigation. 
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Figure Captions 

Figure 1. Schematic of the model. a) LBA model of a standard Simon task, where shape (square vs. 
triangle) is the relevant information, including the priming process proposed by the Conflict LBA: A = 
start point variability, b.pr = threshold for primed accumulator, b.non-pr = threshold for non-primed 
accumulator, v = mean drift rate, sv = drift rate variability, mat = accumulator matching the stimulus, 
mis = accumulator mismatching the stimulus. b) Conflict LBA model used to explain behavior on the 
MSIT, which includes a similar (Simon-like) priming effect to that displayed above and also allows drift 
rate parameters to vary by congruency condition. Note that, in our primary analyses, we only allowed v 
to vary by congruency condition in the MDR model and only allowed sv to vary by congruency 
condition in the DRV model. For drift rate parameter labels: c = congruent, i = incongruent. 
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Figure 2. Posterior predictive plots of group average correct RT quantile and accuracy rate summary 
statistics from the empirical data (black points and lines) plotted with those predicted by 500 posterior 
samples (represented by gray violin density plots) from the MDR (left) and DRV (right) models. 
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Figure 3. Group average delta functions and conditional accuracy functions (CAFs) for the empirical 
data and for values predicted by the MDR (left) and DRV (right) models. Delta functions represent the 
difference between congruent and incongruent correct RT quantiles (.1, .3, .5, .7 and .9) on the y-axis 
against the congruent/incongruent mean on the x-axis, for empirical data (black points and lines) and 
data predicted by 500 posterior samples from the model (small gray points = data predicted by each 
individual sample, gray lines = average of data predicted by all posterior samples). CAFs display 
accuracy rates for different RT quantile bins in the congruent (dotted lines) and incongruent (solid lines) 
conditions. Black lines and points represent accuracy rates for each bin in the empirical data while gray 
violin plots represent accuracy rates predicted by 500 posterior samples from the model. For all plots: 
Con = congruent, Inc = incongruent, MPD = methylphenidate condition, PBO = placebo condition.  
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Figure 4. Medians (gray bars) and 95% credible intervals (black error bars) for average posterior 
distributions of MDR model parameters of interest in the placebo (PBO) and methylphenidate (MPD) 
conditions. Parameters including overall evidence quantity (average of v.match and v.mismatch), the 
congruency effect in evidence quantity, overall evidence quality (v.match minus v.mismatch), the 
congruency effect in evidence quality, overall perceptual sensitivity, the congruency effect in perceptual 
sensitivity, overall response threshold (b), priming effects in response threshold, and non-decision time 
(t0). CIs were obtained by averaging over samples from posterior distributions of individual-level 
parameter values.  
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Figure 5. Medians (gray bars) and 95% credible intervals (black error bars) for average posterior 
distributions of DRV model parameters of interest in the placebo (PBO) and methylphenidate (MPD) 
conditions. Parameters including overall rate variability of the matching accumulator (sv.match), the 
congruency effect in sv.match, overall rate variability of the mismatching accumulator (sv.mismatch), 
the congruency effect in sv.mismatch, overall perceptual sensitivity, the congruency effect in perceptual 
sensitivity, overall response threshold (b), priming effects in response threshold, and non-decision time 
(t0). CIs were obtained by averaging over samples from posterior distributions of individual-level 
parameter values.  
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Model Selection and Specification Details 

 As noted in the text, the Conflict LBA, like many cognitive and neuroscience models, displays 

highly-correlated parameters that can be difficult to estimate when individual-level data are sparse 

(Kolossa & Kopp, 2018; Gutenkunst et al., 2007), which often makes simplified models more useful for 

measurement (Heathcote, Hannah & Matzke, under review). Therefore, we sought to use LBA model 

variants in the current analysis that were simple enough for us to obtain interpretable parameter 

estimates, while also providing the best possible description of the MSIT data. To do so, we took the 

results of the previous model selection analysis conducted by Heathcote et al. (under review), as well as 

several practical considerations, into account before conducting a focused model selection analysis with 

the MSIT data set.  

 Results from the Heathcote et al. (under review) model selection, in which multiple archival data 

sets from the Stroop, Simon and Flanker paradigms were fit to different variants of the Conflict LBA, 

are displayed in Supplemental Table 1. Akaike information criterion (AIC: Akaike, 1973) suggested that 

Stroop and Simon paradigms were generally well-described by models that included both a priming 

process in the b parameter and differences in sv between congruent and incongruent trials. Flanker 

paradigms, in contrast, tended to be best described by models that included differences in both v and sv 

between congruent and incongruent trials, and did not include priming effects in b.  

 The MSIT is assumed to contain two distinct types of interference effect: a Simon-like effect, 

which primes the choice matching the serial position of the target in both congruent and incongruent 

conditions, and a Flanker-like effect, which produces interference in the incongruent condition only, as 

the flanking elements in the congruent condition (0s) do not correspond to a possible response. Although 

a comprehensive model selection analysis, such as the one conducted by Heathcote et al. (under review), 

would be an ideal procedure for determining which combination of Conflict LBA parameters bests 
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describes one, or both, of these potential interference effects, we were unable to conduct such an 

analysis due to several practical constraints.  

First, as noted in the text, sv parameters tend to trade off with v parameters in evidence 

accumulation models, which often limits researchers’ ability to index effects in v separately from those 

in sv (Boehm et al., 2018). Such trade-offs often occur when there is little information about the shape of 

the error RT distribution (i.e., few error RTs are present). Participants in the current study had very low 

error rates (<5% on average for incongruent trials, <1% for congruent trials), and pilot analyses we 

conducted with the MSIT task suggested that models which allowed both v and sv to vary by drug and 

congruency conditions displayed evidence of parameter trade-offs. Therefore, we assumed that, given 

the trial number and error rates in the MSIT data set, it would be difficult to determine whether 

experimental effects could be uniquely attributed to v or sv. Instead, we opted to fit one model which 

allowed only v to explain relevant experimental effects (mean drift rate model: MDR) and a second 

model which allowed only sv to explain these effects (drift rate variability model: DRV). Such a 

procedure allowed us to explore whether drift rate processes differed by congruency and drug conditions 

in one or both of these plausible models, and to determine whether effects in other parameter estimates 

were robust between the models. We also used a sensitivity index, which, as described in the text, takes 

both mean drift rates and drift rate variability into account, to test whether experimental effects in 

overall efficiency of evidence accumulation (i.e., signal-to-noise ratios) were similar between models. 

 Second, although it is plausible that both the Simon-like and Flanker-like interference effects 

caused priming in b, modeling priming from the Flanker-like effect as separate from the Simon-like 

effect would likely be difficult for several reasons. The Simon-like effect is present in both congruent 

and incongruent conditions, allowing b parameters for Simon-primed accumulators to be identified from 

correct responses in the congruent condition and incorrect responses in the incongruent condition and b 
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parameters for non-primed accumulators to be identified from incorrect responses in the congruent 

condition and correct responses in the incongruent condition. However, the Flanker-like effect is only 

present in the incongruent condition, meaning that b parameters for the Flanker-primed accumulators 

can only be identified from incorrect responses in incongruent condition, which are very rare. 

Furthermore, on half of the trials in the incongruent condition, the Simon-like and Flanker-like effect 

favored different responses (e.g., 131, 233), while on the other half of trials the response favored by the 

Simon-like effect was the same as that favored by the Flanker-like effect (e.g., 211, 332), making the 

two effects even more difficult to disentangle.  Hence, we did not attempt to explain the Flanker-like 

effect with priming in b parameters. Although this constraint may have prevented the models in the 

current study from providing a comprehensive description of the data, the model selection analysis from 

Heathcote et al. (under review) indicated that priming effects in b were rarely needed to account for 

interference effects in Flanker tasks, suggesting that this constraint was reasonable.  

 Finally, because of the large number of parameters and subjects in the hierarchical MSIT models, 

estimating these models required a high degree of computational resources, including system memory 

and computation time. Because of this practical constraint, a systematic model selection analysis, in 

which all possible combinations of parameters would be allowed to vary to explain both the congruency 

and drug effects, would be challenging due to the resources needed to estimate the large number of 

models involved. 

 Working within these constraints, we conducted a focused model selection analysis with the goal 

of identifying best-fitting MDR and DRV models that could both be used for inference in the current 

study. Models considered in the MDR class allowed v, b and t0 to vary by drug condition. Models 

considered in the DRV class models allowed sv, b and t0 to vary by drug condition. All models in both 

classes allowed v and sv to vary by match/mismatch, b to vary by choice accumulator (one, two, three), 
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and had single estimates of start point variability (A). In each class, four different models were estimated 

and compared 1) a “null” model, which did not allow either drift rate parameters or priming effects in b 

to explain congruency effects in the MSIT, 2) a “b only” model which only allowed Simon-like priming 

effects in b to explain congruency effects, 3) a “rate only” model which only allowed rate parameters (v 

for the MDR class and sv for the DRV class) to explain congruency effects, and 4) a “rate + b” model 

which allowed both the rate parameter (v for the MDR class and sv for the DRV class) and Simon-like 

priming effects in b to explain congruency effects. Results of the model comparison analysis are 

reported in Supplemental Table 2. In both classes, the “rate + b” model was clearly indicated as the best 

fitting model by both the deviance information criterion (DIC: Spiegelhalter, Best, Carlin, & Van Der 

Linde, 2002) and the Watanabe-Akaike information criterion (WAIC: Watanabe, 2010). The difference 

in WAIC between this model to the next-best-fitting model, when compared to the standard error (SE) 

of the difference using the “paired estimate” method (Vehtari, Gelman, & Gabry, 2016), was large for 

both the MDR (WAIC difference = 235.5 , SE = 50.2) and DRV (WAIC difference = 376.6, SE = 62.9) 

class models. The results of this model selection analysis suggested that, regardless of whether drift rate 

effects are attributed to changes in v or sv, both drift rate parameter differences between congruent and 

incongruent trials and Simon-like priming effects in b are needed to explain congruency-related 

performance differences. Therefore, the “rate + b” models were selected for use in further analyses in 

the main text.  

Priors for Hierarchical LBA Model Parameters 

 As strong priors for parameters of the LBA have not yet been established, we used relatively 

broad and mildly informative priors, following Turner et al. (2013). In the hierarchical model, priors for 

individual-level parameters are not explicitly set because group-level parameters act as priors for 

individual-level parameters. Priors for all group-level scale (σ) parameters were exponential 
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distributions with a scale of 1. Priors for group-level location (µ) parameters, which were the same 

regardless of the factors these parameters varied by (e.g., congruency and drug conditions), were 

truncated normal (TN) distributions with the following locations, scales, lower bounds, and upper 

bounds: 

Aµ ~TN(µ=1, σ=0.5, 0, ∞) 
bµ ~TN(µ=1, σ=0.5, 0, ∞) 
vµ ~TN(µ=2, σ=1, 0, ∞) 
svµ ~TN(µ=1, σ=1, 0, ∞) 
t0µ ~TN(µ=1, σ=0.5, .1, ∞) 

Calculation and Interpretation of Credible Intervals for Effects 

 Credible intervals (CIs) for inference were obtained from posterior difference distributions of 

individual-level parameter values. To test main effects, samples from all distributions in each of the two 

conditions were averaged within-condition and within-subject, and the resulting average posterior 

distributions for one condition were subtracted from those of the other condition. For example, to test for 

drug main effects on evidence quality, parameter estimates for evidence quality on congruent PBO and 

incongruent PBO trials were averaged within each individual and the resulting distribution was 

subtracted from each individual’s distribution of evidence quality averaged across congruent MPD and 

incongruent MPD trials. To test interactions, difference distributions for one effect were created at each 

level of the other effect and one of these distributions was then subtracted from the other to create a 

single difference distribution for the interaction effect. For example, to test for congruency x drug 

interactions in evidence quality, parameter estimates from the incongruent MPD condition were 

subtracted from those in the congruent MPD condition, parameter estimates from the incongruent PBO 

condition were subtracted from those in the congruent PBO condition, and the latter distribution was 

then subtracted from the former. Following the calculation of posterior difference distributions at the 
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level of each individual, samples were averaged across all individuals to create an averaged posterior 

difference distribution, which was then used for inference. CIs were obtained by calculating the .025 and 

.975 quantiles of each averaged posterior difference distribution. 

Effects in Behavioral Summary Statistics 

 Evidence for effects in behavioral summary statistics (median correct RT, accuracy rate) was 

assessed using Bayesian repeated-measures ANOVAs in the JASP statistics program (JASP Team, 

2016; Wagenmakers et al., 2018)2. Results from Bayesian repeated-measures ANOVAs and descriptive 

statistics for RT and accuracy are displayed in Supplemental Table 3. For median correct RT, the model 

with the most substantial evidence included both congruency and drug main effects (BF10 = 2.399e+45). 

This model was more than 1000 times more likely than models which contained the congruency effect 

only (BF10 = 1.988e+42) and the drug effect only (BF10 = 1.148) and was 3.5 times more likely than the 

model which contained both main effects as well as a congruency x drug interaction (BF10 = 

6.857e+44). Therefore, the most-likely model suggests that RTs were longer overall in the incongruent 

condition and shorter in the MPD condition, but that congruency effects did not differ by drug condition. 

For accuracy rates, the model with the most substantial evidence included a congruency main effect only 

(BF10 = 8.719e+9). This model was 5.3 times more likely than the second most-likely model, which 

contained both congruency and drug main effects (BF10 = 1.643e+9) and was 21.4 times more likely 

than one which contained both main effects and an interaction (BF10 =  4.072e+8). A drug effect only 

model was not supported (BF10 = 0.185). Therefore, the evidence suggests that accuracy was worse in 

the incongruent condition, but that there were no main effects or interactions involving methylphenidate. 

 
 

                                                             
2 Bayesian repeated measures ANOVAs compare models assuming different combinations of factor effects using Bayes 
Factors (BFs), which are intuitively interpreted as an odds ratio, with values >1 providing evidence that observing the data 
makes the model more likely and <1 indicating the model becomes less likely. Standard JASP priors (r scale = .5 for fixed 
effects, r scale = 1 for random effects) were used for all analyses. 
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Supplemental Table 1. Results from the model selection analysis of Heathcote et al. (under review), in 
which versions of the Conflict LBA that allowed all possible combinations of parameters to explain 
behavioral interference effects were fit to archival conflict task data sets from Pratte, Rouder, Morey, 
and Feng (2010), Heathcote and Hannah (2013), and White, Ratcliff and Starns (2011). The 
“Experiment” column at left indicates the study, experiment number, and type of task used in the 
experiment. The remaining columns to the right list AIC values, summed over individual participants’ 
fits and reported relative to the best model (which has a 0 entry), for models in which the parameters in 
the column label were allowed to explain interference effects. This table reproduces information from a 
similar table present in Heathcote et al. (under review) with permission from the authors of the original 
manuscript.  
 

Experiment b+v+sv b+sv b+v v+sv b sv v 
Pratte et al., (2010), Exp. 1 
(Stroop) 

115 37 2 2 63 521 0 

Pratte et al., Exp. 3 
(Stroop and Simon) 

130 0 31 83 17 295 61 

Pratte et al., Exp. 5 
(Stroop and Simon) 

190 0 34 122 25 481 63 

Heathcote & Hannah 
(2013) (Simon) 

118 0 2 23 216 657 320 

White et al., (2011), Exp. 
1 (Flanker) 

41 46 110 0 486 3612 1040 

White et al., Exp. 2  
(Flanker) 

0 265 521 45 968 5868 1560 

White et al., Exp. 3  
(Flanker) 

46 528 794 0 1837 5342 2098 

White et al., Exp. 4  
(Flanker) 

189 163 761 0 2629 5764 1699 

White et al., Exp. 5  
(Flanker) 

445 803 1437 0 1263 3168 230 
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Supplemental Table 2. Results from the focused model selection analysis of mean drift rate (MDR) and 
drift rate variability (DRV) class models, including values of the deviance information criterion (DIC: 
Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) and the mean of the Watanabe-Akaike information 
criterion (WAIC: Watanabe, 2010). 
 

Model 
Class 

Interference Effect 
Parameters WAIC DIC 

MDR 

rate + b -16227.1 -16244.7 
rate only -15686.1 -15621.2 
b only -15991.6 -16018.3 
null -4475.04 -4358.02 

DRV 

rate + b -16475.9 -16568.8 
rate only -10927.2 -11186.4 
b only -16099.4 -16142.5 
null -4529.21 -4422.17 
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Supplemental Table 3. Model comparison results from Bayesian repeated-measures ANOVAs 
conducted with median correct RT (in seconds) and accuracy rate data in JASP. P(M) shows the uniform 
distribution of probabilities across all candidate models, P(M|data) shows posterior model probabilities, 
BF10 shows the Bayes Factor for each model compared to the null, and BFM shows the change from prior 
model odds to posterior model odds (Wagenmakers et al., 2018). Odds in favor of one model relative to 
another model can be quantified by dividing the BF10 of the first model by the BF10 of the second. 
 
Median Correct RT Model Comparison  

Models  P(M)  P(M|data)  BFM  BF10   

Null model (incl. subject)   0.200   3.240e-46   1.296e-45   1.000    

congruency   0.200   6.440e -4   0.003   1.988e+42    

drug   0.200   3.721e-46   1.489e-45   1.148    

congruency + drug   0.200   0.777   13.952   2.399e+45    

congruency + drug + congruency  ✻  drug   0.200   0.222   1.143   6.857e+44    

 
Median Correct RT Descriptive Statistics 
Congruency  Drug  Mean  SD             

Con   PBO   0.699   0.115               

    MPD   0.649   0.092               

Inc   PBO   0.950   0.147               

    MPD   0.901   0.129               

 
Accuracy Rate Model Comparison  

Models  P(M)  P(M|data)  BFM  BF10   

Null model (incl. subject)   0.200   9.285e-11   3.714e-10   1.000    
congruency   0.200   0.810   17.009   8.719e+9    
drug   0.200   1.715e-11   6.860e-11   0.185    
congruency + drug   0.200   0.153   0.720   1.643e+9    
congruency + drug + congruency  ✻  drug   0.200   0.038   0.157   4.072e+8    

 
Accuracy Rate Descriptive Statistics 
Congruency  Drug  Mean  SD   
Con   PBO   0.996   0.007     
    MPD   0.998   0.005     
Inc   PBO   0.952   0.058     
    MPD   0.957   0.063     
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