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Abstract

Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect

marine biota and ecosystems with largely unknown consequences for marine food webs.

Changes in food web structure have the potential to alter trophic transfer, partitioning, and

biogeochemical cycling of elements in the ocean. Here we investigated the impact of realis-

tic end-of-the-century CO2 concentrations on the development and partitioning of the car-

bon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord,

Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two

sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and

the other one left at ambient CO2 concentrations. Elemental mass balances were calculated

and we highlight important challenges and uncertainties we have faced in the closed meso-

cosm system. Our key observations under high CO2 were: (1) A significantly amplified trans-

fer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels,

during times of regenerated primary production. (2) A prolonged retention of all three ele-

ments in the pelagic food web that significantly reduced nitrogen and phosphorus sedimen-

tation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to

nitrogen) that appeared in the particulate matter pool as well as the downward particle flux.

This excess carbon counteracted a potential reduction in carbon sedimentation that could

have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight

the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in

the surface ocean but also show that impacts are temporarily variable and likely depending

upon the structure of the plankton food web.
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1. Introduction

The ocean is a major sink for anthropogenic carbon dioxide (CO2) by absorbing more than 2

Pg carbon per year from the atmosphere [1,2]. This uptake of atmospheric CO2 leads to both

carbonation (increasing CO2 concentration) and acidification (decreasing seawater pH) of the

surface ocean [3,4]. Changes of both environmental factors are expected to impact marine

biota from the organism [5] to the ecosystem level [6,7]. Phytoplankton groups belonging to

the picoeukaryotes will likely benefit from increased inorganic carbon availability [8,9], while

calcifying phyto- and zooplankton groups such as coccolithophores or pteropods will likely be

impaired by decreasing seawater pH and changes in seawater carbonate chemistry [10,11].

Presumed shifts in plankton community composition, e.g. to smaller (medium-sized) phyto-

plankton organisms [12] with different elemental stoichiometry can modify marine element

cycling [13–15]. Recent studies have further revealed the potential of CO2 to alter the partition-

ing of carbon between dissolved and particulate organic matter pools in the euphotic ocean

zone [16–18]. Increasing proportions of dissolved organic carbon can stimulate bacterial

growth and recycling of organic matter [17,19,20], but are also known to promote particle for-

mation and organic matter export by increasing particle stickiness [19,21]. While our knowl-

edge about the impact of CO2 on carbon cycling in the ocean is continuously growing, the

potential effects on cycling of macronutrients (inorganic nitrogen, phosphorus, and silica)

through changes in the marine food webs require more in-depth investigation. In fact, the par-

titioning of macronutrients between different pools and trophic levels determines their turn-

over rates and can thereby feedback on ecosystem structure and functioning [22]. For instance

changes in stoichiometry and fatty acid composition of primary producers as a consequence of

increasing CO2 have already been shown to impact mesozooplankton reproduction and devel-

opment [23,24]. This implies direct consequences for element cycling within the ocean’s food

webs.

Calculating the mass balance of carbon and macronutrients is one of the best ap-

proaches to estimate their partitioning and cycling. However, such approaches are prone

to high uncertainties in open ocean regions. Availability of essential parameters (e.g.

gas exchange of CO2 or sinking particulate matter) is often limited, while vertical mixing

and lateral advection permanently exchange the investigated water masses. Pelagic meso-

cosms have the advantage of isolating a water mass from the surrounding ocean and hence

allow us to investigate natural plankton assemblages of several trophic levels at close

to natural conditions. The enclosed water bodies can be characterised with respect to ele-

ment pools and plankton community, while repetitive sampling of the same water parcel

allows monitoring of changes over long timescales and successive phases of plankton

development.

Here we present results from a pelagic in situ mesocosm CO2 perturbation study in Gullmar

Fjord (Sweden) covering the full winter-to-summer plankton succession typical for the

coastal sea in mid-latitudes. The mid-latitude regions are of particular importance to global

element cycling due to the annual formation of large phytoplankton spring blooms character-

ised by high export efficiency [25]. We monitored the enclosed plankton communities (from

viruses to fish larvae) over more than 100 days in two sets of five mesocosms representing

ambient and projected year 2100 pCO2 (partial pressure of CO2), respectively [26]. Element

pools of carbon, nitrogen, phosphorus, and silica (C, N, P, and Si) were measured to compute

mass balances and estimates of net community production, thereby assessing the impact of

ocean acidification on the partitioning and cycling of major elements within the ocean surface

layer.
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2. Materials and methods

2.1 Mesocosm setup and maintenance

Ten “Kiel Off-Shore Mesocosms for Ocean Simulations” (KOSMOS; [27]) were deployed on

January 29, 2013 in Gullmar Fjord on the west coast of Sweden (58.26635˚N, 11.47832˚E). Per-

mission for the study location was granted by the Längsstyrelsen Västra Götalands Län (refer-

ence no: 258-39615-2012) and by the owner of the adjacent private property (Lysekil Skaftö

1:27). Sea ice drift and technical problems described in Bach et al. [26] delayed the start of the

experiment until March 7 (day -2 = t-2, i.e. 2 days before homogenization of the water column;

see Sect. 2.2). Each cylindrical mesocosm bag (2 m diameter) enclosed a 17 m deep water col-

umn, sealed at the bottom end by a two meter long, funnel-shaped sediment trap (Fig 1A).

Enclosed nekton and large mesozooplankton (e.g. fish larvae or jelly fish) were removed

during the initial period of the study by a full-diameter-size net (1 mm mesh) that was pulled

through each mesocosm (t6; Fig 2). Samples relevant for mass balancing of elements were

taken over a period of more than 100 days until June 22 (t105; Fig 2). Biofilm formation on the

inner and outer walls of the cylindrical mesocosm bags was prevented by regular cleaning [26]

(Fig 2). Settled material adhering to the inner surface of the sediment trap funnels was

removed at the very end of the experiment (t102). A detailed description of the study site, the

initiation of the experiment, and mesocosm cleaning can be found in Bach et al. [26].

2.2 System manipulations and volume determination

The natural salinity gradient inside the mesocosms was removed by injecting air to the bottom

of the enclosures in two stages (t-2 and t0; Fig 2; [26]). A ‘high CO2 treatment’ of initially

Fig 1. KOSMOS mesocosm unit and conceptual figure of element pools and fluxes. (A) Schematic illustration of a

KOSMOS unit, including the floatation frame at the sea surface and the enclosure bag reaching down to the sediment

trap at the bottom. (B) Element pools (inorganic nutrients [IN], dissolved organic matter [DOM], particulate matter

[PM], particulate matter of copepods [PMCOP]) and fluxes (air-sea gas exchange of CO2, sedimentation of particulate

matter [PMSED]) included in the mass balance calculations of carbon, nitrogen, phosphorus, and silica (C, N, P, and

Si). Grey arrows indicate exchange between the individual element pools in the water column. Illustration of the

KOSMOS unit modified from Rita Erven (GEOMAR).

https://doi.org/10.1371/journal.pone.0197502.g001
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961 μatm pCO2 (t5) was established in five of the ten mesocosms (M2, M4, M6, M7, M8) by

stepwise addition of CO2-saturated seawater (t-1, t0, t2, t4). The other five mesocosms served as

untreated controls (M1, M3, M5, M9, M10), representing ambient CO2 conditions. pCO2 lev-

els were re-adjusted four times in the high CO2 mesocosms (t17, t46 + t48, t68, t88; Fig 2) to

counteract the loss from outgassing and biological uptake.

Fig 2. Manipulation, sampling, and maintenance schedule. Days of experiment are relative to the day of water

column homogenization (day 0 = t0).

https://doi.org/10.1371/journal.pone.0197502.g002
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Seed populations of organisms from the surrounding fjord were introduced to the meso-

cosms by adding 22 L of fjord water on every fourth day (Fig 2). In total, the regular fjord

water additions summed up to about 1% of the mesocosms’ volume [26]. In early May, we

introduced green sea-urchin larvae (Strongylocentrotus droebachiensis [Müller, 1776]; t56) and

herring eggs (Clupea harengus [Linnaeus, 1758]; t48), that hatched two weeks later on t62. Ani-

mal welfare of herring larvae was assured according to guidelines of the ethics permit (no 332–

2012). The species C. harengus is not endangered and specimens were anaesthetised with MS-

222 before handling and fixation to reduce stress to a minimum.

The volume of each mesocosm was determined by adding a known amount of calibrated

sodium chloride brine solution and by measuring the salinity increase as described in Czerny

et al. [28]. The brine solution was evenly dispersed inside the mesocosms on April 24 (t46), ele-

vating salinity by about 0.1 units from on average 29.2 to 29.3. Mesocosm volumes were con-

verted from kilograms of seawater to litres using individual seawater density of each

mesocosm on t46.

2.3 Sampling procedures and CTD operations

The mesocosm water columns and sediment traps were sampled every second day starting at

t-1 with the exception of one additional inorganic nutrient sampling on t2 (Fig 2). The sedi-

ment traps at 19 m water depth were emptied with a vacuum system following Boxhammer

et al. [29]. Water column samples were taken with depth-integrating water samplers (IWS,

Hydro-Bios) which collected equal amounts of water from all depth levels between 0 and 17 m.

Samples sensitive for contamination or gas exchange such as inorganic nutrients (including

dissolved inorganic nitrogen (DIN = nitrate (NO3
-) + nitrite (NO2

-) + ammonium (NH4
+)),

phosphorus (DIP = phosphate (PO4
3-)) and silica (DSi = Si(OH)4)), dissolved organic matter

(DOM; DOC (carbon), DON (nitrogen), DOP (phosphorus)) and carbonate chemistry sam-

ples (dissolved inorganic carbon (DIC), pH) were directly transferred from the IWS samplers

into corresponding sample bottles. DOC/DON samples were gravity filtered through glass

fibre filters (pore size 0.7 μm, Whatman) during transfer into pre-combusted glass vials on

board of the sampling boats and acidified in the lab (HCl, 25%, analysis grade, Carl Roth) to

pH 2 as described in Zark et al. [30]. DOP samples were collected in acid-rinsed polycarbonate

bottles (Nalgene) and filtered in the lab trough 0.7 μm (GF/F, Whatman) into low-density

polyethylene vials (LDPE, Roth) using gentle vacuum filtration (<200 mbar). Until t55 DOP

samples were only collected on 12 out of 30 sampling days (see Fig 2) and were poisoned with

mercury chloride following Kattner [31]. DOP samples collected after t55 were taken alongside

the 48 hours sampling routine (apart from t83 –t87) and stored frozen at -20˚C.

Carbonate chemistry samples were taken as described in Bach et al. [26] and sterile-filtered

(0.2 μm) for a maximum of three days storage (dark and cold) before analysis.

Particulate matter (PM) was sampled from seawater pooled in 10 L carboys that were sub-

sampled within a few hours at in-situ water temperatures. Water from these carboys was used

for analysis of biogenic silica (BSi), total particulate carbon (TPC), nitrogen (TPN), and phos-

phorus (TPP), as well as Chlorophyll a (Chla) concentrations.

Mesozooplankton was collected with an Apstein net (55 μm mesh size, 17 cm diameter

opening) by vertical net hauls (17 to 0 m water depth), representing a sampled volume of

about 385 L. We restricted the sampling frequency to every eighth day to minimize the impact

on the mesozooplankton community (Fig 2). A subsample of 4% was used for high-resolution

plankton imaging with the ZooScan method (see Sect. 2.4.6), while the majority of the sample

was preserved with sodium tetraborate-buffered formalin (4% v/v) for taxonomic abundance

analyses [32].
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CTD casts, providing salinity and temperature profiles, were performed with a CTD60M

(Sea & Sun Technology) on every sampling day between 11 a.m. and 3 p.m. (local time; Fig 2),

covering a water depth from 0.3 to 18 m.

2.4 Sample analysis

2.4.1 Carbonate chemistry measurements and calculations. DIC was determined by col-

orimetric titration following Johnson et al. [33], with an estimated precision of 3 μmol kg-1

(standard deviation of duplicate measurements). Measurement accuracy was ensured by cali-

bration against certified reference materials (CRM, supplied by A. Dickson, Scripps Institution

of Oceanography, USA). pHT (total scale) was determined spectrophotometrically, based on

the absorption ratio of the sulphonephthalien dye, m-cresol purple [34], with a precision of

~0.002 pH units (SD of duplicates), while the accuracy was set by the equilibrium constants of

the indicator. pCO2 was calculated from the combination of pHT and DIC using CO2SYS [35]

with the carbonate dissociation constants (K1 and K2) of Lueker et al. [36]. The input data

included salinity, temperature, and inorganic nutrient concentrations (PO4
3- and Si(OH)4).

2.4.2 Inorganic nutrient measurements. Inorganic nutrient samples (NO3
- + NO2

-,

PO4
3-, and Si(OH)4,) were filtered as triplicates through 0.45 μm cellulose acetate syringe filters

(Whatman) before measuring them with a QuAAtro AutoAnalyzer (Seal Analytical) as

described in Bach et al. [26]. When concentrations of NO3
- + NO2

- and PO4
3- dropped below

0.1 μmol L-1 (t37 and t35, respectively), we switched to using the nanomolar system described

by Patey et al. [37]. NH4
+ concentrations were determined according to Holmes et al. [38].

Inorganic nutrient measurements were stopped after t95 as concentrations were close to or

below their detection limits.

2.4.3 DOM measurements. Concentrations of DOC and total dissolved nitrogen (TDN)

were analysed of duplicate samples using high-temperature catalytic oxidation on a Shimadzu

TOC-VCPH/CPN Total Organic Carbon Analyser, equipped with an ASI-V autosampler and

a TNM-1 module for TDN determination as described in Zark et al. [30]. Samples with con-

centrations of DOC and TDN exceeding the measurement of their duplicate by 30% or more

were considered being contaminated and were excluded from the dataset. Measurements from

the high and ambient CO2 mesocosms were subsequently pooled for identification and

removal of outliers using the Dixon-Dean test (p<0.05). DON concentrations were calculated

by subtracting the concentration of DIN (see Sect. 2.4.2) from average TDN values.

DOP was converted to orthophosphate by autoclaving for 30 minutes in an oxidizing

decomposition solution (Merck, catalogue no. 112936). Concentration of total dissolved phos-

phate (TDP) was then determined from triplicate subsamples with a QuAAtro AutoAnalyzer

(Seal Analytical) as described for PO4
3- in Sect. 2.4.2. DOP concentrations were calculated by

subtracting DIP from TDP concentrations. DON and DOP datasets ended on t95 because mea-

surements of DIN and DIP were discontinued after this day.

2.4.4 Particulate matter and Chlorophyll a measurements. Size fractions of PM smaller

and greater than 200 μm (separated with a 200 μm mesh) were collected using gentle vacuum

filtration (�200 mbar) on pre-combusted (6 h at 450˚C) glass fibre filters (GF/F, 0.7 μm pore

size, Whatman) or cellulose acetate filters (0.65 μm, Whatman) for analysis of TPC, TPN, TPP

or BSi, respectively. The thereby collected PM included phytoplankton, small and abundant

zooplankton as well as detritus, but essentially no mesozooplankton, such as copepodites or

adult copepods (see also Sect. 2.4.6). Glass fibre filters were stored at -20˚C in pre-combusted

(6 h at 450˚C) glass petri dishes until analysis, while cellulose acetate filters were also frozen at

-20˚C but stored in plastic petri dishes. TPC/TPN filters were oven-dried over night at 60˚C,

packed in tin foil and analysed alongside blank filters on an acetanilide calibrated CN analyser

Ocean acidification can influence biogeochemical cycling of C, N, and P
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following Sharp [39]. We refrained from acidifying the filters to remove inorganic C, as pelagic

calcifying organisms were very low in abundance. Accordingly, all particulate C data are pre-

sented as TPC but are assumed to represent particulate organic carbon (POC). TPP collected

on the filters was converted to orthophosphate as described for TDP in Sect. 2.4.3. Concentra-

tion of inorganic phosphate was then determined spectrophotometrically according to Hansen

and Koroleff [40]. BSi was leached from the collected particulate matter by alkaline pulping

with 0.1 M NaOH at 85˚C. After 135 minutes the leaching process was terminated with 0.05 M

H2SO4 and DSi was measured by spectrophotometry following Hansen and Koroleff [40]. If

not indicated differently, presented PM values are the sum of the two measured size fractions

(< and>200 μm). Exceptions are TPP and BSi samples that were filtered as bulk samples

before t7 and t29, respectively. BSi data of t29 were removed from the dataset due to a systematic

error made during size fractionation on this specific day.

Water column samples for Chla concentration analysis were filtered as described for PM,

taking care to minimize light exposure during filtration. Chla content of the collected particles

was extracted and analysed by high-performance liquid chromatography (HPLC) as described

in Bach et al. [26].

2.4.5 Elemental analysis of sediment trap samples. The sediment trap samples were col-

lected in 5 L Schott Duran glass bottles. To separate PM from bulk seawater, particles were

concentrated by flocculation and coagulation with ferric chloride (FeCl3) as described by Box-

hammer et al. [29]. Briefly, FeCl3 and NaOH (for pH stabilisation) were added simultaneously

to the well-stirred samples. The clear supernatant water was removed after one hour of particle

sedimentation. Mean concentration efficiency of this method was 99.6% with respect to sam-

ples’ TPC content [29]. The concentrated samples were centrifuged, deep-frozen at -30˚C and

lyophilised for 72 hours. The desiccated material was then ground in a ball mill to a homoge-

neous powder of 2–60 μm particle size [29]. TPC, TPN, TPP, and BSi content of the finely

ground sample material was determined from subsamples of 1–2 mg as described for PM of

water column samples (see Sect. 2.4.4). The cumulative mass flux of all four elements was

expressed in μmol L-1 by dividing the summed up mass flux by the calculated mesocosm vol-

umes (Sect. 2.2).

From May 25 (t77) onwards we screened the freshly taken samples for dead herring larvae

that hatched inside the mesocosms on t62 (see Sect. 2.2). All larvae found were removed for

separate analysis, thus they did not contribute to the vertical flux.

2.4.6 Calculation of mesozooplankton biomass. Biomass of the mesozooplankton com-

munity was calculated based on abundance data obtained from counting with a stereomicro-

scope [32]. The community was strongly dominated by the copepod species Pseudocalanus
acuspes (Giesbrecht, 1881), which represented about 97% of the mesozooplankton counts.

Therefore, we only considered copepod biomass for mesozooplankton PM. Copepod nauplii

were sufficiently abundant (up to 100 ind. L-1) to be sampled quantitatively on PM filters (Sect.

2.4.4). Adult copepods and copepodites, however, were much lower in abundance and natu-

rally escape sampling by the IWS. Thus they were not represented in PM analysis. To avoid

double counting of nauplii biomass, only adult copepod and copepodite biomass were in-

cluded in the calculation of copepod PM (PMCOP). We applied the image-based ZooScan

approach to estimate biomass for the different copepod size classes [41], since biomass mea-

surements of individual organisms have not been conducted. Therefore, subsamples from the

mesozooplankton net tows (4% of the total sample) were evenly distributed on a flat-bed scan-

ner (Perfection Pro V750, Epson) to provide high-resolution images (10.6 μm pixel size) of all

particles and organisms in the sample. Subsequent image processing with ZooProcess [41]

provided a large number of variables for object characterization, including several measures of

size such as length or area. For estimation of copepod biomass we then converted measured
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area of each individual imaged organism to dry-weight (dw) by applying the empirical rela-

tionship of [42]:

dw ¼ 43:97 � area1:52 ð1Þ

The dry-weight was subsequently converted to C and N content (μmol) using the data for

body mass composition of zooplankton from Kiørboe [43]. For copepods, the applied C:dw

and N:dw ratios were 0.48 and 0.10, respectively. The resulting conversion factors for C and N

biomass per individual organism were applied to the complete time series of abundance data

for adult copepods and copepodites. P content was calculated using a conversion factor of C:P

of 52:1 derived from Pseudocalanus sp. caught in Oslofjord (Norway) during the same time of

the year (average ratio of individuals caught between March and May) by Gismervik [44].

Similar procedures for image-based biomass estimation of mesozooplankton have been

applied in previous studies and showed generally reliable results [45–47]. It should be noted,

however, that this approach assumes constant size ranges of copepod life stages and can thus

not account for shifts in size structure within a community or population.

2.5 Calculation of net changes in element pools and net community

production

The relevant pools for mass balancing C, N, P, and Si are dissolved inorganic nutrients (INC/N/P/Si),

dissolved organic matter (DOMC/N/P), suspended particulate matter (PMC/N/P/Si), and the sum

of particulate matter collected in the sediment traps (SPMSED (C/N/P/Si)). Mesozooplankton,

strongly dominated by copepods, was treated as a separate PM pool (Sect. 2.4.6), and defined as

PMC/N/P (COP). A summary of all pools and fluxes considered in the mass balances are shown in

the conceptual Fig 1B. Net changes of the element pools (IN, DOM, PM, and PMCOP) were cal-

culated as delta (Δ) values relative to conditions at the start of the experiment. We defined the

starting conditions as the average value of the first seven sampling days (t-1 –t11). Averaging

over this relatively long period was necessary to minimize the influence of data variability. This

was well justifiable as relative changes of the element pools were small before t13 (Sect. 3.1).

However, some exceptions (listed in the following text) had to be made for distinct element

pools. The first two data points of DSi (t-1 and t1) were excluded due to a methodological mea-

surement problem. The reference value of ΔDIC in the high CO2 treatment is based on a single

sampling day t5, since before DIC was increased by stepwise CO2 additions (Sect. 2.2) and after-

wards CO2 rapidly outgassed to the atmosphere (super-saturation of the water column). DOC

and DON data of t-1 were removed from the datasets as measurements displayed substantial

unexplainable variability with strong impact on calculated starting conditions. Reference values

for DOP were calculated from three data points (t-1, t1 and t9), as those days were the only days

when DOP was sampled during the initial phase of the experiment (Fig 2). The first mesozoo-

plankton sampling on t1 served as the reference point for net changes in PMC/N/P (COP). The

start and end point of the individual reference periods, as well as the calculated reference values

of each element pool within the water column are summarized in Table 1.

Reference values of both CO2 treatments are average values ± standard deviation (SD) of

the indicated reference periods for calculation of net changes in the respective element pools

(see Table 2 for abbreviations of the element pools). If start and end point of the reference

period are identical, the reference period is limited to only one data point. t-tests performed

on average values of all ambient and high CO2 mesocosms are indicated by p-values (bold val-

ues indicate significant difference, p�0.05).

Net community production (NCP) is most commonly estimated by measuring the biologi-

cal drawdown of DIC or NO3
- [48,49]. In the present study, we derived NCP from the actual

Ocean acidification can influence biogeochemical cycling of C, N, and P

PLOS ONE | https://doi.org/10.1371/journal.pone.0197502 May 25, 2018 8 / 25

https://doi.org/10.1371/journal.pone.0197502


build-up of biogenic C, N, P, and Si following Hansell and Carlson [48] and Spilling et al. [18].

This total NCP theoretically equals the cumulative drawdown of inorganic nutrients (ΔIN)

and is therefore given in moles per litre and not as a rate. We calculated net community pro-

duction in (1) high temporal resolution lacking mesozooplankton contribution (Eq 2) and (2)

in reduced temporal resolution but including mesozooplankton contribution (Eq 3):

NCPC=N=P=Si ¼ DPMC=N=P=Si þ DDOMC=N=P þ SPMSED ðC=N=P=SiÞ ð2Þ

NCPC=N=P ðCOPÞ ¼ DPMC=N=P þ DPMC=N=P ðCOPÞ þ DDOMC=N=P þ SPMSED ðC=N=PÞ ð3Þ

Table 1. Conditions of the element pools during the reference period of the experiment.

ambient CO2 high CO2 t-test

reference period reference value reference period reference value
start end μmol L-1 ± SD start end μmol L-1 ± SD p-value

IN DIC t-1 t11 2079.3 ± 3.2 t5 t5 2184.3 ± 4.3 <0.001

DIN t-1 t11 7.0 ± 0.1 t-1 t11 6.9 ± 0.1 0.380

DIP t-1 t11 0.76 ± 0.01 t-1 t11 0.76 ± 0.01 0.242

Si t2 t11 9.9 ± 0.3 t2 t11 9.8 ± 0.1 0.572

DOM DOC t1 t11 189.0 ± 10.8 t1 t11 190.1 ± 5.7 0.840

DON t1 t11 8.8 ± 0.6 t1 t11 8.9 ± 0.4 0.804

DOP t-1 t11 0.16 ± 0.02 t-1 t11 0.14 ± 0.02 0.238

PM TPC t-1 t11 14.4 ± 0.7 t-1 t11 14.7 ± 0.8 0.613

TPN t-1 t11 1.9 ± 0.1 t-1 t11 2.0 ± <0.1 0.554

TPP t-1 t11 0.08 ± 0.01 t-1 t11 0.09 ± 0.01 0.665

BSi t-1 t11 0.4 ± <0.1 t-1 t11 0.4 ± <0.1 0.679

PMCOP TPCCOP t1 t1 7.5 ± 2.5 t1 t1 6.8 ± 0.9 0.590

TPNCOP t1 t1 1.4 ± 0.5 t1 t1 1.2 ± 0.2 0.590

TPPCOP t1 t1 0.14 ± 0.05 t1 t1 0.13 ± 0.02 0.590

https://doi.org/10.1371/journal.pone.0197502.t001

Table 2. Colour code, line types, and abbreviations of the different element pools and their calculated net community production.

Colour Line type Abbreviation Element pool Elements SF

/ net community production (days)

dark grey solid IN inorganic nutrients C, N, P, Si 2

orange solid DOM dissolved organic matter C, N, P �2

green solid PM suspended particulate matter C, N, P, Si 2

brown solid PMSED sedimented particulate matter C, N, P, Si 2

light red solid PMCOP calculated copepod organic matter C, N, P 8

blue solid NCPC/N/P (COP)

ambient CO2

net community production of the element at ambient CO2 incl. PMCOP C, N, P �8

blue dashed NCPC/N/P/Si

ambient CO2

net community production of the element at ambient CO2 excl. PMCOP C, N, P, Si �2

dark red solid NCPC/N/P (COP)

high CO2

net community production of the element at high CO2 incl. PMCOP C, N, P �8

dark red dashed NCPC/N/P/Si

high CO2

net community production of the element at high CO2 excl. PMCOP C, N, P, Si �2

Sampling frequency (SF) indicates the time resolution of the respective data set.

�Samples for DOP determination were taken irregularly, reducing the time resolution of DOP, NCPP, and NCPP (COP) (see Sect. 2.3).

https://doi.org/10.1371/journal.pone.0197502.t002
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Thus, NCPC/N/Si was calculated for every second day (Table 2), while NCPP followed the

irregular sampling of DOP described in Sect. 2.3 and illustrated in Fig 2. NCPC/N/P (COP) was

calculated for usually every 8th day (Table 2) following the mesozooplankton sampling regime

(Fig 2).

2.6 Data analysis and statistics

Data shown in tables and figures represent average treatment values (ambient and high CO2)

of the five treatment replicates. Datasets of C and Si pools encompassed the entire duration of

the experiment until t103 and t105, respectively. Datasets of N and P, however, ended on t95 as

this was the last day where DON and DOP data were available (see Sect. 2.4.3).

Two sample t-tests using R software [50] were performed for detection of differences in the

initial concentrations of element pools between ambient and high CO2 mesocosms (average

values used for delta calculations; Table 1).

For detection of CO2 treatment effects on net changes of element pools and calculated net

community production, univariate permutational analysis of variance (PERMANOVA) tests

were run in R software [50], using Euclidean distances matrices with 99,999 permutations

[51,52]. PERMANOVA was chosen, as assumption of homogeneity of variances was not met

for all analysed parameters in all experimental phases. CO2 effects were evaluated for average

values of each experimental phase (see Sect. 3) or in the case of sedimented PM for cumulative

values at the end of the four experimental phases.

3. Results and discussion

The experiment was divided into four phases based on the development of Chla concentra-

tions (Fig 3A; see also [26]): Phase I (t-1 –t16), Phase II (t17 –t40), Phase III (t41 –t80), Phase IV

(t81 –t105). These phases were used for the interpretation of net changes in the C, N, P, and Si

pools inside the mesocosms (Fig 1B). Average pCO2 values of the four experimental phases

and the entire experiment at ambient and high CO2 (t-1 –t105) are given in Table 3.

Average volume of ambient and high CO2 mesocosms (mean ± SD, n = 5) was determined

on t46 of the experiment. pCO2 values (μatm) are averages of the four experiment phases (I, II,

III, IV) and of the entire experiment (I–IV). The two symbols (+) and (–) represent out- and

in-gassing conditions of CO2, respectively (presumed atmospheric pCO2 of 395 μatm).

3.1 Temporal development of the C, N, P, and Si pools during the

phytoplankton spring-bloom

The first (pre-bloom) phase of the experiment was characterised by relatively stable environ-

mental conditions with high concentrations of DIN, DIP, and DSi (~7.0, ~0.76, and ~9.8 μmol

L-1, respectively; Fig 3B–3D) and short day length [26]. The enclosed water columns were

entirely mixed due to thermal convection inside the mesocosm bags [26]. Enclosed plankton

assemblages were relatively similar among the ten mesocosms although small differences were

detected (see [26]). No significant differences in initial concentrations of inorganic nutrients

as well as the other element pools (PM, PMCOP, DOM) were found between CO2 treatments

apart from DIC, as a direct consequence of the CO2 manipulation (see reference values in

Table 1). Net changes in the pools of all four elements (C, N, P, Si) were relatively small under-

lining the pre-bloom character of Phase I (Fig 4). The decline of DOC in this early phase was

not reflected in changes of any other C pool and is therefore more likely associated with sam-

pling induced artefacts than with real changes in the DOC pool. Thus, we do not draw any

conclusion from this trend.
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The second phase covers the first major build-up and decrease of Chla during the phyto-

plankton spring-bloom (Fig 3A). Primary production was fuelled by inorganic nutrients that

rapidly decreased during the bloom development (Fig 3B–3D). Small silicifiers (2–5 μm,

mostly diatoms) as well as the large diatom Coscinodiscus concinnus (Smith, 1856;>200 μm)

dominated the bloom-forming autotrophic community during this phase (see Bach et al. [53]

for detailed information). Low DIN and DIP concentrations limited primary production after

t31 and thus terminated the exponential growth of phytoplankton (Fig 3B and 3C). The

Fig 3. Temporal development of Chlorophyll a, inorganic nutrients, and dissolved inorganic carbon. Solid lines

show mean values of (A) Chlorophyll a (Chla), (B) dissolved inorganic nitrogen (DIN), (C) dissolved inorganic

phosphorus (DIP), (D) dissolved silica (DSi), and (E) dissolved inorganic carbon (DIC) in the ambient (blue) and high

(red) CO2 treatment. Coloured areas indicate the standard deviation of the five treatment replicates. Roman numbers

denote the different phases of the experiment.

https://doi.org/10.1371/journal.pone.0197502.g003

Table 3. Overview of the CO2 treatments.

Color code Volume Phase I Phase II Phase III Phase IV Phases I–IV

t-1 –t16 t17 –t40 t41 –t80 t81 –t105 t-1 –t105

m3 ± SD pCO2 pCO2 pCO2 pCO2 pCO2

ambient CO2 48.2 ± 1.5 366 (–) 329 (–) 367 (–) 447 (+) 377 (–)

high CO2 51.0 ± 2.4 762 (+) 641 (+) 747 (+) 878 (+) 756 (+)

https://doi.org/10.1371/journal.pone.0197502.t003
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decrease of DSi, however, just slowed down according to uptake kinetics of diatoms [54,55].

Thus, DSi was still available in low concentrations after the first bloom (>1 μmol L-1 at the end

of Phase II; Fig 3D). Peak values of PM were reached between t31 and t37 with average net build-

up of TPC, TPN, TPP, and BSi of ~33.6, ~4.7, ~0.33 and ~3.3 μmol L-1, respectively (Fig 4). Sed-

imentation of PM of all four elements and build-up of DOMC/N/P started to increase right from

the onset of the first phytoplankton bloom (Fig 4). Highest sedimentation rates were observed

during the bloom peak, implying a close temporal coupling between primary production and

sinking particle flux. In contrast to particulate C, N, and P, the amount of BSi removed from the

water column during this period equalled the net build-up in the water column (Fig 4). BSi:C

ratios in the sediment trap samples were four times higher than those in the water column (S1

Fig 4. Mass balances of silica, carbon, nitrogen, and phosphorus. Solid and dashed lines indicate temporal net

changes (Δ values) of the silica, carbon, nitrogen, and phosphorus (Si, C, N, and P) pools and of their respective net

community production as average values of ambient and high CO2 mesocosms respectively (see Table 2 for a detailed

symbol description). DIC is only included at ambient CO2 (grey, dotted line), lacking correction for CO2 air-sea gas

exchange (see Sect. 3.2). Roman numbers denote the different phases of the experiment. Percentages indicate the

approximate discrepancy between net community production and inorganic nutrient consumption during Phases III

and IV.

https://doi.org/10.1371/journal.pone.0197502.g004
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Fig), suggesting a strong decoupling of the two elements when it comes to sinking from the pro-

ductive surface layer; a phenomenon also observed in the open ocean [56,57].

The strong decline of Chla concentrations at the end of Phase II was much less pronounced

in the PM pools (compare Figs 3A and 4). TPC, TPN, and TPP remained relatively high even

though Chla strongly decreased. This suggests a highly efficient transfer of autotrophic into

heterotrophic biomass and/or non-sinking phytodetritus accumulating in the water column.

Indeed, bacterial as well as micro- and mesozooplankton abundances increased parallel to the

Chla decrease [32,58].

Phase III encompassed the second and slightly less pronounced build-up and decrease of

Chla during the spring-bloom (Fig 3A). Small diatoms and flagellates (2–5 μm), but mainly the

giant diatom C. concinnus (up to 50% Chla contribution) dominated the phytoplankton commu-

nity during this phase (see [53]). The shift in dominance from small diatom species (<200 μm)

to the large cells of C. concinnus (>200 μm) is clearly reflected in the temporal development of

the two size fractions of BSi (S2 Fig). Regenerated N and P, as well as the remaining DSi likely

fueled primary production during this second bloom. Peak values of PM were reached between

t49 and t53 with average net build-up of TPC, TPN, and TPP of ~36.8, ~5.1, and ~0.25 μmol L-1,

respectively (Fig 4C–4H). A peak in net build-up of BSi was absent due to the high loss through

sedimentation and only very low DSi concentrations available (Figs 4A, 4B and 3D). The high

variability in DON and DOP concentrations likely masked consumption of both pools by the

plankton community (Fig 4E–4H). We suspect that considerable proportions of DON and DOP

were rather refractory and only a small fraction of these pools, composed of labile compounds,

was used and turned over by bacteria and phytoplankton on time scales that could not be

resolved by our 48 h sampling regime. This assumption is consistent with field observations

[59,60] and is supported by relatively high background concentrations of (likely refractory)

DON and DOP right after mesocosm closure (see Table 1). Labile DOP is known to be recycled

within hours to days [59,61], therefore often fuelling primary production under DIP depletion.

In contrast to the relatively stable concentrations of DON and DOP (Phases III and IV), DOC

concentrations showed a decreasing trend during the second phytoplankton bloom, reaching

values lower than the initial ones by the end of Phase III.

Adult copepod and copepodite biomass (PMC/N/P (COP)) decreased directly after mesocosm

closure (Fig 4C–4H), but increased again during the phytoplankton blooms with highest val-

ues reached during and after the second bloom peak in Phase III. Predation by herring larvae

that hatched inside the mesocosms (t62; see Sect. 2.2) and started feeding on larger mesozoo-

plankton around t80 were most likely responsible for the decline of PMC/N/P (COP) in the post-

bloom Phase IV. The relative change in the PMC/N/P (COP) pool was most pronounced in the P

mass balance due to the relatively high P content of copepods. In contrast to primary produc-

ers, the PM pool of mesozooplankton is likely not properly accounted for in most mass balance

approaches due to the relatively small number of organisms in the sample volumes that are

used for PM analysis. We observed a temporal contribution of up to 20% to TPP build-up,

which emphasizes that this pool should not be neglected.

The fourth phase (post-bloom) was characterized by typical summer conditions in the

coastal mid-latitudes. Inorganic nutrient concentrations were depleted (Fig 3B–3D), the water

column was stratified (see [26]), and PM concentrations had almost declined to those of the

pre-bloom phase (Fig 4).

3.2 Mass balances of Si, C, N, and P

The NCP of all four investigated elements (see Eqs 2 and 3) should in theory match the con-

sumption of their inorganic nutrients over time. This worked out well for Si, where NCP was
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only slightly overestimated with on average ~5% during Phases III and IV (2nd bloom and

post-bloom; Fig 4A and 4B). This is well within the range one would expect from combining

measurement uncertainties of three different pools (DSi, BSi, BSiSED; Fig 1B). Interestingly, we

observed a temporal mismatch of DSi consumption and NCPSi shortly before and during the

onset of the spring-bloom (between Phases I and II). Wall growth, a common artefact in enclo-

sure experiments [62–64], can be excluded as a sink for DSi, as mesocosm inside walls were

frequently cleaned (see Sect. 2.1; Fig 2) and we have not observed a comparable pattern in the

mass balances of N or P (Fig 4E–4H). Thus, we assume that this mismatch at the end of Phase

I might be explained by internal storage of DSi in diatom cells, which can contribute up to

50% of their total silica content (see review by Martin-Jézéquel et al. [65]). We observed that

one of the dominating diatom taxa during that time, Arcocellulus sp. (see [53]), had very fragile

frustules that potentially broke during the filtration process for BSi analysis and released inter-

nally stored DSi. Apart from this specific period the Si mass balance was virtually closed.

When attempting to calculate the mass balance of C, we faced two major difficulties. These

were (1) the unexplainable day-to-day variability in DOC data (up to ~50 μmol L-1 within 48

hours; Fig 4C and 4D) and (2) the poorly constrained gas exchange of CO2 with the atmo-

sphere. Both made it ultimately impossible to calculate a reasonable mass balance of C. Achiev-

ing accurate DOC data in an experimental setup like pelagic mesocosms has shown to be

challenging [64], but not impossible [9,66]. Measurement precision and accuracy in the pres-

ent study was high [30], so that the variability is more likely to originate from artifacts which

were induced during sampling. We refrained from smoothing the data by calculating moving

averages since potential contaminations can only increase not decrease the mean and would

have led to an overestimation of DOC build-up and NCPC (see S3 Fig). However, it should be

noted that the strong variability in ΔDOC had a substantial impact on calculated NCPC (Fig

4C and 4D).

To correct DIC for the air-sea flux of CO2 we have followed the approach described by

Czerny et al. [67], using the injected tracer gas N2O to infer the exchange rate (“gas transfer

velocity”) of CO2. This technique has been shown to yield good estimates of CO2 transfer

velocity in past mesocosm experiments under relatively stable physical conditions [18,64].

However, in the present study, the hydrographic situation within the mesocosms was highly

dynamic with initial thermal circulation of the entire water columns until t37, followed by vari-

able thermal stratification and surface layer mixing depth (see [26]). The thermocline physi-

cally isolated the bottom layer of the mesocosms from the atmosphere and led to pulsed inputs

of N2O into the surface layer every time the mixing depth changed. This in turn resulted in dis-

continuous outgassing of N2O, which impeded reasonable estimates of N2O and consequently

CO2 gas transfer velocities. Hence, DIC concentrations could not be corrected appropriately

for CO2 air-sea gas exchange. To illustrate the discrepancy of un-corrected DIC data with

NCPC we have included the measured net change in DIC into Fig 4C (dotted grey line, ambi-

ent treatment). In Phase IV the cumulative sedimentation of C alone exceeds net drawdown of

DIC by a factor of three. Including CO2 gas exchange with the atmosphere is therefore clearly

crucial for mass balance calculations of C or when net organic C build-up is calculated from

DIC drawdown. Hence, the exclusion of the CO2 air-sea gas exchange in DIC drawdown [68]

should be seen as very critical.

Balancing the NCP of N and P with DIN and DIP drawdown was not as easy as for Si but

not as difficult as for C. The offset between inorganic nutrient consumption and NCP during

build-up of the first bloom (Phase II) was highly variable in the case of N (-40 to +13%) and

relatively constant for P (approx. -7%; Fig 4E–4H). The offset stabilised during Phases III and

IV at values of about +30% and -15% for N and P, respectively, when the phytoplankton com-

munity had taken up all inorganic nutrients. NCPN can theoretically be increased above DIN
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consumption by N2-fixation, a significant external N source in the close-by Baltic Sea [69–71].

However, this explanation for the overestimated NCPN was excluded in the present study, as

the corresponding organisms (diazotrophic cyanobacteria) were not present in the meso-

cosms. The pronounced overestimation of NCPN is therefore more likely a result of accumu-

lated measurement inaccuracies of the N pools. Similar to DOC, build-up of DON showed

strong variability of up to 4 μmol L-1 within 48 hours, not reflected in any other N pool (Fig 4E

and 4F). Thus, the DON pool was the source of the largest uncertainty within the N mass

balance.

The underestimation of NCPP was unexpected as uncertainties in sampling of DOM and

PM (e.g. clogging of filters or bursting phytoplankton cells) rather result in a certain overesti-

mation of the two pools, than leading to their underestimation (Fig 4G and 4H). The discrep-

ancy in DIP consumption and NCPP might be caused by variability in DIP measurements

during the reference period used for calculation of net changes (see Table 1 and Sect. 2.5). Dur-

ing this period, DIP concentrations varied by about 0.1 μmol L-1 within 48 hours with only

low primary production going on [72]. A potential overestimation of the background concen-

tration of DIP by about 0.1 μmol L-1 could have led to an overestimated consumption of DIP,

possibly explaining the observed offset in the P mass balance.

Altogether, our study has shown that mass balance calculations of elements in marine eco-

systems are challenging even in enclosed mesocosm systems with discrete measurements of all

relevant parameters. Precise determination of the DOM pools and in the case of C the accurate

correction of DIC by the CO2 air-sea gas exchange turned out to be most critical. This high-

lights the enormous challenge of mass balancing elements in open systems (e.g. the coastal

ocean, estuaries or eddies) where even more uncertainties emerge due to permanent exchange

of water masses.

3.3 Impact of CO2 on partitioning of C, N, and P

TPC was the only PM pool influenced by increased CO2 (Fig 5A, 5F and 5K). We observed a

positive trend in TPC build-up at high CO2 during both phytoplankton blooms (Phases II and

III; up to 7 and 9 μmol L-1, respectively), although this observation was statistically non-signifi-

cant due to high within-treatment variability (Fig 5A, Table 4). The tendency of increased C-

fixation was likely caused by enhanced ‘carbon overconsumption’ [73,74], which was also indi-

cated by a positive trend in the C:N ratio of particulate matter at high CO2 during both phyto-

plankton blooms (Fig 6A; non-significant in all Phases, see Table 5). The observed trend in the

C:N ratio was most prominent in the particle size fraction larger than 200 μm, which was

mainly constituted by the large diatom C. concinnus (Fig 6C). Thus, the dominance of C. con-
cinnus during the second phytoplankton bloom (see Sect. 3.1 and [53]) explains the influence

of the particle size fraction larger 200 μm on the bulk PM C:N ratio during this time (Phase

III). The CO2-dependent C:N signal in the water column was also found in sinking PM (Fig

6B), indicating that the excess C fixed by C. concinnus (size fraction >200 μm) was not trans-

ferred into higher trophic levels or re-mineralized by bacteria in the water column. Instead

this C was removed from the water column by sinking C. concinnus cells.

In contrast to other plankton community CO2 perturbation studies [16,17], we have not

detected an increase in DOC build-up at high CO2, although the high variability in the present

data set may have masked small differences (Fig 5B).

Surprisingly, we found that copepod biomass was significantly elevated under high CO2

during times of regenerated production (Phase III; Table 4). Between the peak of the first phy-

toplankton bloom and mid of the post-bloom Phase IV (t35 –t89), PMC/N/P (COP) was increased

by on average 2.7, 0.5 and 0.05 μmol L-1 with respect to TPCCOP, TPNCOP, and TPPCOP (Fig
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5C, 5H and 5M). Enhanced primary production at high CO2 that was revealed by Eberlein

et al. [72] during the same study must have caused this amplified transfer of biomass from pri-

mary producers (phytoplankton) to the higher trophic level of mesozooplankton (see [75]).

Increased abundance of zooplankton organisms without a corresponding increase in primary

producers and their respective biomass has also been observed in other studies [76]. The disap-

pearance of the CO2 effect on copepod biomass (C, N, P) towards the end of the study (Phase

IV) can likely be explained by a potential further transfer into biomass of herring larvae. This

Fig 5. Time course of net changes of the element pools at ambient and high CO2. Solid lines indicate temporal net changes (Δ values) of the element pools and net

community production of (A–E) carbon, (F–J) nitrogen, and (K–O) phosphorus as average values of the ambient (blue) and high (red) CO2 mesocosms. Coloured areas

indicate the standard deviation of replicated (n = 5) treatments. Roman numbers denote the four different phases of the experiment. Black asterisks identify significant

CO2 effects (PERMANOVA, p<0.05).

https://doi.org/10.1371/journal.pone.0197502.g005
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assumption is supported by (1) the fact that the decrease in copepod biomass in the water col-

umn (Fig 5C, 5H and 5M; Phase IV) was not reflected in the downward flux of C, N, and P

Table 4. Tested CO2 effects on selected pools and net community production.

Parameter ambient CO2 high CO2 SS Pseudo-F p (perm)

μmol L-1 ± SD μmol L-1 ± SD

ΔTPC

I 0.6 ± 0.4 0.5 ± 0.3 0.001 0.010 0.897

II 16.4 ± 7.1 17.6 ± 4.6 3.536 0.100 0.755

III 22.9 ± 12.4 27.6 ± 7.1 55.450 0.540 0.477

IV 10.3 ± 5.0 11.8 ± 4.3 6.015 0.280 0.587

ΔTPCCOP

I -0.9 ± 1.2 -1.4 ± 0.5 0.478 0.561 0.595

II -3.0 ± 1.7 -2.5 ± 0.9 0.496 0.277 0.619

III 0.7 ± 1.0 2.8 ± 1.6 10.588 5.946 (+) 0.047

t35 –t89 0.4 ± 0.8 3.1 ± 1.8 18.399 9.145 (+) 0.016

IV -2.7 ± 1.7 -0.9 ± 1.3 8.187 3.507 0.087

ΔTPNCOP

I -0.2 ± 0.2 -0.3 ± 0.1 0.016 0.561 0.595

II -0.5 ± 0.3 -0.5 ± 0.2 0.016 0.277 0.621

III 0.1 ± 0.2 0.5 ± 0.3 0.351 5.946 (+) 0.047

t35 –t89 0.1 ± 0.1 0.6 ± 0.3 0.589 9.014 (+) 0.016

IV -0.5 ± 0.3 -0.2 ± 0.2 0.272 3.507 0.088

ΔTPPCOP

I -0.02 ± 0.02 -0.03 ± 0.01 <0.001 0.561 0.595

II -0.06 ± 0.03 -0.05 ± 0.02 <0.001 0.277 0.618

III 0.01 ± 0.02 0.05 ± 0.03 0.004 5.946 (+) 0.046

t35 –t89 0.01 ± 0.02 0.06 ± 0.04 0.007 9.145 (+) 0.015

IV -0.05 ± 0.03 -0.02 ± 0.03 0.003 3.507 0.088

STPNSED

t15 0.1 ± <0.1 0.1 ± <0.1 <0.001 0.939 0.358

t39 1.8 ± 0.3 1.7 ± 0.1 0.065 1.074 0.355

t69 4.1 ± 0.5 3.4 ± 0.1 1.116 8.352 (–) 0.047

t79 4.6 ± 0.5 4.1 ± 0.2 0.725 4.883 0.063

t105 7.0 ± 0.6 6.3 ± 0.6 1.438 4.367 0.088

STPPSED

t15 0.01 ± <0.01 0.01 ± <0.01 <0.001 0.083 0.786

t39 0.12 ± 0.03 0.12 ± 0.01 <0.001 0.196 0.683

t69 0.29 ± 0.03 0.25 ± 0.01 0.004 7.903 (–) 0.040

t79 0.33 ± 0.04 0.30 ± 0.02 0.002 2.297 0.174

t105 0.47 ± 0.05 0.43 ± 0.05 0.005 1.844 0.189

NCPC

I -4.5 ± 14.4 -5.1 ± 13.6 1.040 0.005 0.939

II 7.0 ± 16.0 -4.9 ± 12.3 352.050 1.741 0.239

III 60.6 ± 9.3 74.1 ± 17.6 456.040 2.305 0.152

IV 63.7 ± 6.8 67.6 ± 15.9 36.600 0.245 0.653

Values are average values of the different phases (I–IV) in the ambient and high CO2 treatments ± standard deviation (SD). Effects of CO2 were assessed by

PERMANOVA, giving the sum of squares (SS), the F value by permutation (Pseudo-F), and the p-value (p (perm)). Significant effects detected are highlighted in bold,

while positive or negative trends are indicated by (+) and (-), respectively.

https://doi.org/10.1371/journal.pone.0197502.t004
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(Fig 5D, 5I and 5N) and (2) by the fact that the difference in copepod biomass build-up

between the two CO2 treatments was reflected in an increased survival rate of herring larvae at

high CO2 by the end of the study (see [77]). The amplified transfer of C, N, and P to higher tro-

phic levels (copepods and likely fish larvae) at high CO2 in turn has caused a prolonged reten-

tion of biomass in the water column, which significantly reduced the downward flux of N and

P (Table 4). Cumulative sedimentation of both elements started to differ between treated and

control mesocosms at the same time when CO2 driven trends in TPNCOP and TPPCOP

occurred (t35 onwards; Fig 5H, 5I, 5M and 5N). The difference in cumulative sedimentation of

N and P between treatments (Fig 5I and 5N) constantly increased until t69 (0.7 and 0.04 μmol

L-1 for N and P, respectively) and remained at this level until the end of the experiment. On

t105 the deposition of N and P at high CO2 was reduced by on average ~11 and ~9%, respec-

tively. Due to increasing within-treatment variability during the second half of the study,

cumulative sedimentation of both elements was significantly different on t69 but not on the

last day of experiment (t105; Table 4).

Interestingly, the prolonged retention of biomass within the water column did not affect

the downward flux of C (Fig 5D). We assume that the positively influenced relative C content

(i.e. C:N ratio) of sinking PM under high CO2 (Fig 6B) must have compensated for a theoreti-

cally reduced sedimentation of the element. The CO2 related trend in the C:N ratio of sinking

particles was driven by large amounts of sinking C. concinnus cells, dominating the downward

flux of PM during Phases III and partly IV (see S4 Fig). Hand picked cells from unprocessed

sediment trap samples (t65) were found to have C:N ratios of up to 30:1 in the high CO2 meso-

cosms. The large cell size of C. concinnus (>200 μm) prevented grazing by the dominating

mesozooplankton species P. acuspes, which excluded transition of its biomass into higher tro-

phic levels and allowed the diatom cells to sink out of the water column.

Our findings show that increased retention of N and P within the pelagic food web

under high CO2 can lead to a significant and equivalent reduction of their sedimentation.

Fig 6. Time course the particulate carbon to nitrogen ratio at ambient and high CO2. Solid lines show mean values

of the particulate carbon (TPC) to nitrogen (TPN) ratio in (A) the water column, (B) collected sediment trap samples,

and of the suspended particle size fractions (C) larger and (D) smaller than 200 μm in the ambient (blue) and high

(red) CO2 treatment. Coloured areas indicate standard deviation of replicated (n = 5) treatments. Roman numbers

denote the four different phases of the experiment. Vertical dashed lines represent the Redfield ratio of carbon to

nitrogen (6.6).

https://doi.org/10.1371/journal.pone.0197502.g006
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Furthermore, the plankton community composition in the present study has shown that a

predator-prey size mismatch between phyto- and mesozooplankton taxa (here C. concinnus
and P. acuspes) can strongly influence element cycling. Together with changes of phytoplank-

ton C:N ratios, the observed impacts of ocean acidification on element partitioning have the

potential to alter cycling of carbon and nutrients in the marine realm.

4. Conclusions

In this study we investigated the influence of simulated ocean acidification on the development

and partitioning of the C, N, P, and Si pools in a coastal pelagic ecosystem. Our mass balance

approach over 100 days, covering a natural winter-to-summer plankton succession, has

highlighted important challenges and uncertainties in elemental mass balance calculations, but

also revealed significant changes of element pool partitioning under realistic end-of-the-cen-

tury CO2 concentrations (~760 μatm pCO2):

• Even in a closed mesocosm system we experienced high uncertainties and methodological

challenges for our mass balance approach that highlight potential uncertainties in balance

calculations of major biogeochemical elements in the open ocean. Accurate determination

of the DOM pools and the CO2 air-sea gas exchange were most critical in the current study.

• Transfer of C, N, and P from primary producers to higher trophic levels during times of

regenerated production was significantly amplified at high CO2, leading to prolonged

Table 5. Tested CO2 effects on the total particulate carbon to nitrogen ratio.

Parameter ambient CO2 high CO2 SS Pseudo-F p (perm)

mol:mol ± SD mol:mol ± SD

C:N BULK

P I 7.4 ± 0.2 7.5 ± 0.3 0.027 0.433 0.515

P II 6.4 ± 0.5 6.7 ± 0.4 0.198 0.909 0.353

P III 7.3 ± 1.3 8.1 ± 1.1 1.438 1.042 0.324

P IV 8.9 ± 2.3 8.9 ± 1.2 0.001 <0.001 0.984

C:N <200 μm

P I 8.0 ± 0.3 7.9 ± 0.3 0.002 0.029 0.864

P II 6.5 ± 0.5 6.6 ± 0.4 0.055 0.250 0.614

P III 6.3 ± 0.5 6.4 ± 0.4 0.029 0.132 0.634

P IV 7.4 ± 0.5 7.1 ± 0.2 0.155 1.241 0.315

C:N >200 μm

P I 6.2 ± 0.3 6.4 ± 0.4 0.110 1.035 0.332

P II 6.3 ± 0.7 7.0 ± 0.6 1.242 2.685 0.158

P III 10.2 ± 3.0 12.5 ± 2.7 12.757 1.583 0.302

P IV 15.8 ± 9.6 21.2 ± 5.8 74.100 1.183 0.308

C:N SED

P I 10.1 ± 0.5 10.6 ± 0.4 0.661 3.409 0.105

P II 9.2 ± 0.4 9.6 ± 0.4 0.399 2.683 0.143

P III 11.6 ± 1.6 13.9 ± 2.5 14.315 3.139 0.135

P IV 10.8 ± 1.1 12.2 ± 1.1 4.699 3.759 0.095

Values are average values of the different phases (I–IV) in the ambient and high CO2 treatments ± standard deviation (SD). Effects of CO2 were assessed by

PERMANOVA, giving the sum of squares (SS), the F value by permutation (Pseudo-F), and the p-value (p (perm)). Significant effects detected are highlighted in bold,

while positive or negative trends are indicated by (+) and (-), respectively.

https://doi.org/10.1371/journal.pone.0197502.t005
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retention of biomass in the water column. Retention of N and P within the pelagic food web

resulted in reduced sedimentation of both elements by about 11 and 9%, respectively.

• C-fixation relative to N showed a positive trend at high CO2, correlating with the time of

inorganic nutrient depletion and the bloom of the large diatom C. concinnus. The excess C

fixed by C. concinnus was not available for higher trophic levels due to its large cell size

(>200 μm) and was removed from the water column by sinking of the diatom cells. This

excess C counteracted a potential reduction in C sedimentation that could have been

expected from patterns of N and P fluxes.

Even though the observed impacts were temporarily variable and likely dependant on the

food web structure, our findings show that ocean acidification has the potential to change the

biogeochemical cycles of C, N, and P by retaining C and nutrients in the sea surface food web.

Supporting information

S1 Fig. Time course of the biogenic silica to total particulate carbon ratio. Solid lines show

mean values of the biogenic silica (BSi) to particulate carbon (TPC) ratio in (A) the water col-

umn and (B) sediment trap samples of the ambient (blue) and high (red) CO2 treatment. Col-

oured areas indicate standard deviation of the replicated (n = 5) treatments. Roman numbers

denote the different phases of the experiment.

(PDF)

S2 Fig. Time course of different size classes of biogenic silica. Solid lines, dotted lines, and

dashed lines represent the three size classes of total biogenic silica (BSi), the fraction >200 μm,

and the fraction <200 μm respectively. All lines represent mean values of the (A) ambient and

(B) high CO2 treatment. Roman numbers denote the different phases of the experiment.

(PDF)

S3 Fig. Moving average of dissolved organic carbon and net community production.

Dashed lines show net changes of dissolved organic carbon (DOC, yellow) and net community

production of carbon (NCP, blue/red) as average values of (A) ambient and (B) high CO2

mesocosms. Solid lines of the same colour code show strongly smoothed data (moving average

of nine), with an adjusted reference period for calculation of net changes to t1 –t17. Accord-

ingly, smoothed data sets do not start before day 9. Roman numbers denote the different

phases of the experiment.

(PDF)

S4 Fig. High-resolution image of a typical sediment trap sample during Phase III. Section

of a high-resolution image, taken from a sediment trap subsample of Mesocosm 4 (high CO2)

on t65 (Phase III). The highly abundant round objects are cells of the large diatom Coscinodis-
cus concinnus (Smith, 1856).

(PDF)
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microzooplankton communities in the Gullmar Fjord, Skagerrak: Evidence from a long-term mesocosm

study. Doi H, editor. PLoS ONE. 2016; 11: e0165800. https://doi.org/10.1371/journal.pone.0165800

PMID: 27893740

59. Benitez-Nelson CR, Buesseler KO. Variability of inorganic and organic phosphorus turnover rates in the

coastal ocean. Nature. 1999; 398: 502–505. https://doi.org/10.1038/19061

60. Bronk DA, See JH, Bradley P, Killberg L. DON as a source of bioavailable nitrogen for phytoplankton.

Biogeosciences. 2007; 4: 283–296. https://doi.org/10.5194/bg-4-283-2007

61. White AE, Watkins-Brandt KS, Engle MA, Burkhardt B, Paytan A. Characterization of the rate and temper-

ature sensitivities of bacterial remineralization of dissolved organic phosphorus compounds by natural pop-

ulations. Front Microbiol. 2012; 3: 276–13. https://doi.org/10.3389/fmicb.2012.00276 PMID: 22908008

62. Chen CC, Petersen JE, Kemp WM. Spatial and temporal scaling of periphyton growth on walls of estua-

rine mesocosms. Mar Ecol Prog Ser. 1997; 155: 1–15. https://doi.org/10.3354/meps155001

63. Riebesell U, Lee K, Nejstgaard JC. Pelagic mesocosms. In: Riebesell U, Fabry VJ, Hansson L, Gattuso

J-P, editors. Guide to best practices in ocean acidification research and data reporting. Luxembourg;

2010. pp. 95–112. https://doi.org/10.2777/58454

64. Czerny J, Schulz KG, Boxhammer T, Bellerby RGJ, Büdenbender J, Engel A, et al. Implications of ele-
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