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Abstract Gravitational sinking of photosynthetically fixed particulate organic carbon (POC) constitutes
a key component of the biological carbon pump. The fraction of POC leaving the surface ocean depends
on POC sinking velocity (SV) and remineralization rate (Ciemin), both of which depend on plankton
community structure. However, the key drivers in plankton communities controlling SV and Cyemin are
poorly constrained. In fall 2014, we conducted a 6-week mesocosm experiment in the subtropical NE
Atlantic Ocean to study the influence of plankton community structure on SV and Cyemin. Oligotrophic
conditions prevailed for the first 3 weeks, until nutrient-rich deep water injected into all mesocosms
stimulated diatom blooms. SV declined steadily over the course of the experiment due to decreasing CaCO;
ballast and—according to an optical proxy proposed herein—due to increasing aggregate porosity mostly
during an aggregation event after the diatom bloom. Furthermore, SV was positively correlated with the
contribution of picophytoplankton to the total phytoplankton biomass. Cremin Was highest during a
Synechococcus bloom under oligotrophic conditions and in some mesocosms during the diatom bloom after
the deep water addition, while it was particularly low during harmful algal blooms. The temporal changes
were considerably larger in Cyemin (max. fifteenfold) than in SV (max. threefold). Accordingly, estimated
POC transfer efficiency to 1,000 m was mainly dependent on how the plankton community structure
affected Cremin. Our approach revealed key players and interactions in the plankton food web influencing
POC export efficiency thereby improving our mechanistic understanding of the biological carbon pump.

1. Introduction

Phytoplankton fix approximately 50-Gt carbon per year, which is comparable to the annual primary produc-
tion of the terrestrial biosphere (Field et al., 1998; Longhurst et al., 1995). The majority of the organic
biomass generated by phytoplankton is consumed and remineralized in the surface ocean, while 11-27%
is exported below the euphotic zone (Field et al., 1998; Henson et al., 2011). This export flux maintains a
permanent surface-to-depth CO, gradient, which allows the ocean to store significantly more atmospheric
CO, than it would without this biological carbon pump (BCP; Volk & Hoffert, 1985). The BCP is driven
by (1) gravitational sinking of particulate organic carbon (POC), (2) downwelling of POC and dissolved
organic carbon (DOC), and (3) zooplankton-mediated active transport (Ducklow et al., 2001; Hansell &
Carlson, 2001; Steinberg et al., 2008). Among these mechanisms, gravitational sinking is considered the most
important pathway, although this is still a matter of debate (Boyd et al., 2019; Hernandez-Leon et al., 2019;
Steinberg & Landry, 2017; Stukel et al., 2018).

The efficiency of the BCP through gravitational sinking can be determined empirically by fitting a power law
function to, for example, depth-resolved sediment trap fluxes (Martin et al., 1987). This provides the b value,
which quantifies the transfer efficiency from the surface to the deep ocean. However, it is also possible to
determine BCP efficiency mechanistically by assessing the ratio of carbon-specific remineralization rates
(Cremin in d71) and particle sinking velocity (SV in m d™1; Sanders et al., 2014). This ratio is known as the
remineralization length scale (RLS in m™") and quantifies the fraction of carbon within an aggregate that
is remineralized per meter sinking (e.g., Belcher et al., 2016; Iversen et al., 2010). Densely packed and heavily
ballasted particles will sink rapidly and provide relatively little surface area for bacterial remineralization
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(Iow RLS). Conversely, fluffy aggregates with plentiful easily degradable organic matter will sink slowly and
be largely decomposed before they reach depths below the winter mixed layer (high RLS; Francois et al.,
2002). Assessing the fraction of POC transferred below winter mixed layer depth is important because par-
ticles that successfully carry POC down there will likely lock CO, in water masses, which have no exchange
with the atmosphere for centuries to millennia (Kwon et al., 2009). Both SV and Cyemin are determined by
surface ocean plankton communities as they form the sinking POC and set its initial properties although
SV and Cyemin are modified in deeper water (Fischer & Karakasg, 2009; Henson, Sanders, et al., 2012; Lam
et al., 2011; Laurenceau-Cornec et al., 2015; Lomas et al., 2010).

Observations based on sediment trap deployments led to the hypothesis that the availability of ballast miner-
als largely controls the transfer of POC through the mesopelagic (Armstrong et al., 2002; Francois et al.,
2002; Klaas & Archer, 2002). However, more recent assessments of sediment trap data challenged the ballast
ratio hypothesis (Armstrong et al., 2009) by indicating that the global correlation between ballast and POC
fluxes is an artifact of the large degree of spatial averaging (Wilson et al., 2012). Deviations from this correla-
tion exist regionally, indicating that ballast can be very important under certain conditions but other factors
such as particle (re)packaging and POC refractiveness against remineralization should also be taken into
account to fully understand regionally and temporally changing patterns of CO, sequestration efficiency
through gravitational sinking (Boyd & Trull, 2007; Le Moigne et al., 2016; Passow & De La Rocha, 2006;
Wilson et al., 2012). Particle properties that determine SV and Cyemip, are largely controlled by the plankton
community, and therefore, it is essential to understand the ecological processes that form and reprocess sink-
ing POC (Bach et al., 2016; Henson, Lampitt, et al., 2012; Herndl & Reinthaler, 2013; De La Rocha & Passow,
2007; Lam et al., 2011; Lam & Bishop, 2007; Siegel et al., 2014).

However, investigating the links between surface ocean plankton communities and POC exported to depth
faces several problems. These are primarily related to the lateral advection of POC during sinking and the
time lag between primary production and export. Both must be taken into account to correctly link particles
collected at depth with the plankton communities that actually produced them (Henson et al., 2015;
Prahl et al., 2000; Stange et al., 2017). In situ mesocosms have been suggested as an important tool to
overcome the spatial and temporal challenges associated with oceanic sampling (Bach et al., 2016;
Legendre et al., 2018; Sanders et al., 2014). Although mesocosms largely exclude the physical complexity
of the marine realm, they enclose the same plankton communities for long times and therefore simulate a
Lagrangian system. This allows us to link processes in the plankton community with export-relevant para-
meters without the ambiguity caused by unconstrained advection or unknown time lags. Indeed, previous in
situ mesocosm experiments have proven to be useful for this purpose (Bach et al., 2016; Bressac et al., 2014;
Gazeau et al., 2017; Knapp et al., 2016; Stange et al., 2018).

In a recent in situ mesocosm experiment at the Norwegian coast, we investigated the influence of processes
in the plankton community on SV (Bach et al., 2016). We found that enhanced ballasting of particulate
organic matter by minerals did not necessarily lead to faster sinking of particles. Instead, aggregate porosity
played an equally important role, which in turn was dependent on the trophic state of the food web. These
results support the notion that plankton community structure is important in controlling SV. However, SV is
only one side of the coin and to assess the influence of plankton on BCP efficiency, it is essential to measure
SV and Ciepin simultaneously. We therefore conducted an in situ mesocosm experiment in the oligotrophic
NE Atlantic where these two measurements and a detailed examination of the plankton community
were combined.

2. Material and Methods

2.1. Experimental Design

On 29 September 2014, we deployed nine units of the Kiel Off-Shore Mesocosms for Future Ocean
Simulations (M1-M9; Riebesell et al., 2013) in Gando Bay, Gran Canaria (27°55'41”N, 15°21'55"W). The
mesocosms consisted of a cylindrical bag made of transparent polyurethane foil (13 m long, 2 m in diameter),
which was suspended in an 8-m high floatation frame. Each bag was equipped with a 2-m-long funnel-
shaped sediment trap (Boxhammer et al., 2016).
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The mesocosm bags were initially folded to ease their handling. After deployment of the mesocosms in
Gando Bay with Research Vessel Hesperides, the mesocosm bags were unfolded thereby enclosing ~35 m?
of seawater. The upper and lower openings of the bags were covered with meshes (3-mm mesh size) during
deployment to exclude patchily distributed nekton (e.g., fish) and large zooplankton (e.g., large jelly fish)
from the enclosed water mass. The mesocosm bags were left open (with meshes attached) for 4 days to allow
rinsing of the mesocosm walls and to ensure homogenous mixing of the water column inside the bags. On
27 September, divers removed the meshes from the openings and attached the sediment traps to the bottom
of the mesocosms. The upper ends of the mesocosm bags were pulled above surface on day —4 thereby iso-
lating the water mass. This marked the beginning of the experiment.

Between days 0-6 and on days 21 and 38, seven of the nine mesocosm units were enriched with CO, aerated
seawater to reach pCO, values of 369, 352 (M1 and M9 both untreated control mesocosms), 563 (M3),
668 (M7), 716 (M4), 887 (M2), and 1,025 (M8) patm. The influence of pCO, on SV and Ciemin Was not further
explored in our analyses because of three reasons. First, our initial data exploration indicated no clear CO,
effect. Second, pCO, cannot influence SV directly because sinking is a physical process, although it can influ-
ence SV by changing plankton communities (Bach et al., 2016). Third, Cyemin can be influenced directly by
PpCO, by changing metabolic rates of heterotrophs (Piontek et al., 2010) but also by changing plankton com-
munities (Stange et al., 2018). Our setup does not allow us to distinguish this physiological from the ecological
component, but we would expect a much more consistent CO, dependency if physiology had been the domi-
nant factor. We therefore focus in this paper on the links between plankton communities and SV and Cyemin
as they seem to be more important, and the findings are also applicable in a more general context (such as
coupling ecological processes with export fluxes). Please note, however, that we investigated the influence of
pCO, on export mass fluxes and organic matter stoichiometry in a separate paper (Stange et al., 2018).

On day 23 we collected ~85 m> of natural nutrient-rich seawater from a depth of 650 m with a specifically
designed deep water collection bag. The bag was lowered to the target depth at a location 4 nautical miles off-
shore Gran Canaria, where the ocean is ~1,000-m deep, and filled with a remote-controlled propeller system.
Once the bag was full, a 300-kg weight was released so that floatation panels mounted at the top of the bag
brought it back to the surface. Afterward, the bag was gently towed to the mesocosm deployment site with
the vessel SAPCAN IV and moored next to the mesocosms. About 20% (~7 m>) of the water was pumped out
from each mesocosm and replaced with deep water, which was injected evenly into the water columns of the
mesocosms with a specifically designed distribution device during the night from day 24 to 25. Please note
that mesocosm 6 was irreparably damaged on day 26 and therefore only included in the analyses until that
day. A detailed description of all technical operations is provided in the overview paper accompanying this
mesocosm campaign (Taucher et al., 2017).

2.2. Sampling and Sample Processing of Water Column Parameters

Suspended particulate material and nutrients in the mesocosm water columns were sampled with two dif-
ferent devices every other day between 09:00 a.m. and 12:00 p.m. from small boats. Chlorophyll a (chl-a),
PM, and phytoplankton were sampled with a specifically designed vacuum pumping system, which effi-
ciently collected equal amounts of water from each depth between 0 and 13 m (Taucher et al., 2017).
Nutrient and microzooplankton samples were collected with depth-integrating water samplers (IWSs,
Hydro-Bios, Kiel). The IWSs are equipped with pressure sensors and gently take in a total volume of 5 L uni-
formly distributed over 0-13 m.

Seawater collected with the vacuum system was stored in 20-L carboys and transferred into a temperature-
controlled room (set to 15 °C) immediately after arriving at the land-based laboratory facilities of Plataforma
Ocednica de Canarias (PLOCAN), which is located next to Taliarte harbor and hosted our study. The 20-L
carboys were gently mixed before taking subsamples for the individual measurements. Subsamples for
chl-a and POC were filtered (Apressure = 200 mbar) on glass fiber filters (GF/F nominal pore size =
0.7 um). Chl-a samples were immediately frozen to —80 °C and later analyzed using reverse-phase high-
performance liquid chromatography following van Heukelem and Thomas (2001). POC filters were stored
in glass Petri dishes and immediately frozen to —20 °C after filtration. POC samples were fumed in hydro-
chloric acid (37%) for 2 hr before measurement. POC concentrations were determined using an elemental
analyzer (EuroEA) following Sharp (1974). Flow cytometry subsamples were taken directly from the 20-L
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carboys and measured within 3 hr using an Accuri C6 flow cytometer (BD Biosciences). Gates were set based
on the forward scatter (FSC-A) and red fluorescence (FL3-A) signals except for the Synechococcus group
where the orange (FL2-H) instead of FL3-A signal was used to distinguish them from bulk phytoplankton.
The size of different phytoplankton groups was determined by fractionation with a variety of polycarbonate
filters (0.2, 0.8, 2, 3, 5, and 8 pm) following Veldhuis and Kraay (2000). We distinguished between picoeukar-
yotes (Peuks; 0.2—2 um), Synechococcus-like autotrophs (Synechococcus; 0.6—2 um), small nanoautotrophs
(Nano I; 2—5 um), larger nanoautotrophs (Nano II; 5-8 um), and microautotrophs (Micro; >8 um). We then
calculated the relative red fluorescence contribution of each of these groups to the total red fluorescence as
described by Bach et al. (2018). A significant linear correlation between FL3-A and chl-a concentration
confirmed that the red fluorescence measurement is a useful proxy for chl-a (Figure S1 in the supporting
information). Accordingly, FL3-A was converted to chl-a and used thereafter to calculate the percentage
each of the above mentioned groups contributed to the total chl-a concentration. Samples for transparent
exopolymer particles (TEP) were filtered onto polycarbonate filters (0.4-um pore size) and subsequently
stained with Alcian Blue (Passow & Alldredge, 1995). TEP concentrations were determined colorimetrically
with a spectrophotometer through absorption at 787 nm. The dye solution had previously been calibrated
using Gum Xanthan, and the concentrations of TEP are expressed as microgram Gum Xanthan equivalents
per liter (ug GXeq LY.

IWS microzooplankton samples were transferred into brown glass bottles (250 ml), preserved with acidic
Lugol's solution (1-2% final concentration), and stored in the dark until measurement. Abundances of the
major groups, that is, ciliates and heterotrophic dinoflagellates, were determined using a Zeiss Axiovert 25
inverse light microscope (Utermohl, 1958). Seawater collected with the IWS for nutrients were transferred
into acid-cleaned (10% HCI) plastic bottles (Series 310 PETG) and filtered using 0.45-um filters (cellulose
acetate, Whatman) directly after arrival at PLOCAN. NO5;™ + NO,~ (NO, ), Si (OH),, and PO,>” concentra-
tions were determined photometrically (Hansen & Koroleff, 1999; Murphy & Riley, 1962), while NH,* con-
centrations were determined fluorometrically (Holmes et al., 1999). The applied analytical tools and
specifications to analytical procedures are described with more detail by Taucher et al. (2017).

Mesozooplankton samples were collected every eighth day (2 to 4 p.m. local time) with vertical net hauls
using an Apstein net (55-yum mesh size, 17-cm diameter opening) equipped with a closed cod end. The sam-
pling depth was restricted to 13 m to avoid contact of the net with the sediment trap material accumulating
at the bottom of the mesocosms. Samples were rinsed on board the sampling boats, collected in containers,
and stored in cool boxes until arrival at PLOCAN. Back in the laboratories, samples were preserved in dena-
tured ethanol and quantified and classified to the lowest possible taxonomic level using a stereomicroscope
(Olympus SZX9) as described by Algueré-Muiiiz et al. (2019)

In situ sizes of aggregates were measured inside the mesocosms with vertical casts of the profiling under-
water camera system KIELVISION (Taucher et al., 2018). The camera is equipped with a 12 megapixel sen-
sor, has a resolution of 25 um per pixel, and photographs a volume of 120 ml per picture. Camera profiles
were obtained by manually lowering the system at ~0.5 m/s and recording images from downcasts only.
Image acquisition was triggered by an integrated pressure sensor, which was set to obtain one image frame
per 0.1-m depth interval, resulting in a total sample volume of ~13-14 L per mesocosm profile. A detailed
description of the camera system and the evaluation procedures is provided in the paper by Taucher,
Aristegui, et al. (2018).

2.3. Sampling and Processing of Sedimented Particulate Organic Matter

Particulate matter (PM) that settled into the terminal sediment traps at the bottom of the mesocosms was
recovered every other day between 08:00 and 09:00 a.m. with the vacuum method described by
Boxhammer et al. (2016). Briefly, the collection cylinder at the bottom of the sediment trap was connected
to the surface with silicon hose. By applying a weak vacuum to the hose, we sucked all material accumulated
in the sediment traps up to the surface and collected this in 5-L glass bottles (Schott Duran). The bottles were
stored in cool boxes filled with seawater until arrival in the laboratories at PLOCAN in the early afternoon.
Back on shore, we homogenized the samples by gently rotating the glass bottles and took a 60-ml subsample
(1-5% of the total sample) with a serological pipette for the determination of SV and Cyemin (See sections 2.4
and 2.5). The remaining particle suspension was concentrated by centrifugation, freeze-dried, and ground
with a ball mill to transform the sample into a homogenous powder (Boxhammer et al., 2016). Total
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particulate carbon, nitrogen and phosphorus (TPC, TPN, and TPP), POC, and biogenic silica (BSi) were
determined on the powder as described in the following.

For the determination of TPC, TPN, and POC, duplicate subsamples (2 mg) of the sediment powder were
transferred into tin (TPC and TPN) or silver cups (POC). POC subsamples were acidified for 1 hr with 1 M
HCI and dried at 50 °C overnight. TPC, TPN, and POC concentrations were determined with an elemental
analyzer (Euro EA-CN, Hekatech), which was calibrated with acetanilide (CsHoNO) and a soil standard
(Hekatech, catalogue number HE33860101) prior to each measurement run. Particulate inorganic carbon
(PIC) was calculated by subtraction of POC from TPC. For the analysis of BSi, subsamples of 1 mg were
transferred into 40-ml plastic vials and heated for 135 min with NaOH (0.1 M) at 85 °C. Subsequently, sam-
ples were neutralized using H,SO,4 (0.05 Molar) and analyzed spectrophotometrically following Hansen and
Koroleff (1999).

We typically report PM mass flux to the sediment trap in umol/L per 48 hr (Gpeasured) @8 this value is useful
to calculate elemental budgets and can be easily calculated from known PM mass flux to the sediment traps
and mesocosm volumes (Boxhammer et al., 2018). Here, we report PM mass flux in mmol/m? per 48 hr
(Geor) as this is more easily comparable to the sediment trap and thorium literature (Buesseler, 1998;
Honjo et al., 2008). The problem here is that the mesocosm volume varied between 30.8 and 36.8 m® because
of the flexible nature of the bags even though the diameter of the stabilizing rings was identical (2 m). Thus,
to correct the mass flux, we had to normalize the measured mass flux to the average mesocosm volume

(Vaverage) as

Vmesocosm
2
GCOI‘ = Gmeasured X Vmesocosm X /ﬂr (1)
Vaverage

where Viesocosm are the individual volumes of the nine mesocosms determined as described by Taucher
et al. (2017) and r is the radius of the cylindrical mesocosm bags (1 m).

2.4. Measurement of Carbon-Specific Remineralization Rates (Cremin)

Seawater used for dissolved oxygen (O,) consumption assays was collected from each mesocosm with TWS
hauls on days 11, 19, 23, 29, 33, 37, 41, 47, and 53. Samples from each mesocosm were filled headspace-free
(allowing significant overflow) into seven 250-ml Schott Duran bottles. No mesh was applied during the fill-
ing procedure. The 63 bottles per sampling day were stored in dark plastic boxes and covered with aluminum
foil inside cool boxes. Upon arrival in the laboratory (~3-6 hr after taking the samples), all bottles were trans-
ferred into a water bath at in situ temperature (22 °C) and stored there in the dark for max. 2 hr until the
incubation assays started.

To initiate the incubations, we added 1-3 ml of the PM suspension collected in sediment traps into four of
the seven bottles per mesocosm. Unlike in previous experiments (e.g., Bach et al., 2016), the suspension
was homogeneous so that 1-3 ml were representative for the bulk sample. The three remaining bottles
per mesocosms were not enriched with sediment trap material and served as blank incubations to correct
for the O, consumption in the natural unfiltered seawater. Care was taken to exclude air bubbles from
the incubations. All bottles were placed on a slowly rotating plankton wheel (~1 rpm) and incubated in
the dark for up to 39 hr in a temperature-controlled room set to the in situ temperature (22 °C) of surface
water (0-15 m) in Gando Bay.

O, consumption inside the bottles was measured using noninvasive O, sensitive microsensor spots (PSt3-
NAU spots, PreSens) mounted with silicon glue inside the 250-ml incubation bottles. The applied sensor
spots were two-point calibrated with air-saturated and anoxic water. They had a measurement range of
0-1,400 umol/L O,, a resolution of +1.4 umol/L O, at 283 umol/L O,, and a response time of <40 s. The
O, concentrations were read 6-7 times during each incubation through the glass walls of the bottles using
a handheld optical O, meter (Fibox 4, PreSens, Germany). The first measurement was always conducted
immediately after the addition of PM to the replicate bottles. The second measurement was taken approxi-
mately 2 hr after the start to have a second measurement early during the assay. Subsequent measurements
were performed in 8-hr intervals. The Fibox4 handheld O, meter automatically corrects for salinity and tem-
perature. We used the daily average salinity determined with a conductivity, temperature, depth (CTD)
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probe on the day of incubation (Taucher et al., 2017). Temperature was measured in a dummy bottle that
was treated similar to the incubation bottles.

After the incubation period, the entire content of the bottles was filtered (Apressure = 200 mbar) onto com-
busted glass fiber filters (pore size 0.7, GF/F, Whatman). All filters were fumed with hydrochloric acid (37%)
for 2 hr to remove inorganic carbon and dried at 50 °C overnight. POC on these filters was determined as
described in section 2.3. The O, consumption in each bottle was calculated with linear regressions fitted
to the decline in O, concentrations over time (Figure S2). The mean O, consumption rate measured in
the three control bottles (which contained mesocosm water but without the addition of sediment trap mate-
rial) was subtracted from the O, consumption measured in the bottles including sediment trap material
(Figure S2). Great care was taken to add sufficient sediment trap material to measure a detectable O, con-
sumption over time but at the same time avoid more than ~20 % O, consumption during the incubation.
Minimizing concentration changes in the course of the incubation is important because the O, concentra-
tions itself has an influence on the measured rate (Holtappels et al., 2014; Ploug & Bergkvist, 2015). O, con-
sumption rates (umol - O, - L - day) were converted to CO, production rates (umol - C - L - day) assuming a
widely used respiratory quotient (RQ) of 1-mol O, consumed: 1-mol CO, produced (Belcher et al., 2016;
Cavan & Boyd, 2018; Iversen & Ploug, 2013; Ploug & Grossart, 2000). The C-specific remineralization rate
(Cremin in d™*) was calculated as

(rsediment —Tcontrol ) RQ
Cremin = 2
remin POCine ( )

where POC;,. is the POC content (umol - C - L) measured in the incubation bottles and rsegiment a0d Feontrol
are the O, consumption rates in the bottles with and without sediment trap material, respectively
(Figure S2). We approximated the relative uncertainty involved in the Cpem;, bioassay to be ~+35% based
on an error propagation applying the following individual uncertainties: +20% for RQ based on assessments
by (Berggren et al., 2012); +10% for POC;,,. based on our experience with sampling and measurement errors
associated with elemental analysis; and +20% for Fsediment @0d 7eontrol, respectively, based on the approxi-
mate variation among replicates (Figure S2).

2.5. Measurement of SV

SV and optical properties of sinking particles recovered from the sediment traps were measured with a
FlowCam as described in the method paper by Bach et al. (2012). Briefly, the sediment trap subsample
was transferred with pipettes into a settling chamber (1 X 1 cm), which was vertically mounted in the
FlowCam. We used a larger settling chamber compared to earlier studies (Bach et al., 2016), to enable the
measurements of particles with a maximum equivalent spherical diameter (ESD) of 1,000 um (with the ear-
lier setup we were restricted to maximally 400 um). Sinking particles were recorded individually at in situ
temperatures of 22 °C for 20 min. The settling chamber was ventilated with a small fan to avoid convection
through heat accumulation near the FlowCam electronics.

SV and optical properties recorded with the FlowCam were extracted from the raw data with the MATLAB
script described by Bach et al. (2012). For the analysis of SV and particle properties, all particles were
grouped into six classes according to their ESD (40-90 pm, 80-130 pum, 120-180 um, 170-260 pum, 240-400
pum, and 380-1,000 um). The overlap between classes was necessary in order to avoid exclusion of particles
exactly on the borders (Bach et al., 2012). Particles out of focus were removed from the analyses based on
their edge gradient. The uncertainty of the mean SV was estimated to be +15% based on our experience with
replicate measurements (Bach et al., 2012).

2.6. Using Optical Properties as a Proxy for Particle Porosity

The FlowCam records 46 optical properties for each particle among which the ESD and particle intensity
(Int) were useful to estimate porosity. ESD is a commonly used metric to assess the diameter of nonspherical
particles (Stemmann & Boss, 2012). The FlowCam calculates the ESD as the average of 36 perpendicular dis-
tances between parallel tangents touching opposite sides of the particle. Int is defined as the grayscale sum
divided by the number of pixels making up the particle. Int can range between 0 and 255 where higher num-
bers depict brighter particles. The underlying assumption of our porosity approximation is that aggregates
have a higher Int in a back-light-illuminated system like the FlowCam (i.e., they appear brighter) when
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Figure 1. P;;,;, our proxy for aggregate porosity, can be considered as a size-normalized measure of particle intensity
(equation (3)) where intensity reflects particle transparency. Shown here are randomly taken FlowCam pictures of
sinking particles collected in M3 during two sampling days (days 13 and 39 as noted on each picture at the top). The
associated P;;,; values (dimensionless) are given below each picture. P;;,; is higher when the particles are brighter and
more transparent, which should be indicative for increased particle porosity (i.e., lower compactness). Low P;;,; particles
on the left side of the figure were produced under oligotrophic conditions (day 13), while high P;;,; particles on the
right were collected during the mass flux event (day 39).

more of the light passes through the photographed aggregate. This should be the case when the aggregate is
porous and relatively little solid matter attenuates the light beam (Figure 1). However, light attenuation also
scales with ESD of the aggregate because the longer the light path through the aggregate, the more light can
be absorbed (Stemmann & Boss, 2012). Thus, to serve as a useful proxy for porosity (P;,,), Int needs to be
scaled with ESD (in um) as

Pyt = (Int/255)**ESD 3

where Int was normalized to its theoretical maximum of 255. Furthermore, we squared Int as its measured
range is small compared to the measured range of ESD and would therefore have had only a marginal influ-
ence of P;,, without squaring. The usefulness of P;,, as an optical proxy for porosity will be discussed in
section 4.1.

2.7. Calculation of the RLS

The RLS was calculated by dividing Ciemin (unit = d™ by the SV (unit = m/day). Accordingly, RLS can
be considered as a turnover length, which says how much carbon is respired per meter while POC is sink-
ing to depth. A complicating factor of this calculation was that we had several particle size classes for SV
but only the bulk (and not size-dependent) respiration rates. To account for this, we first calculated the
individual size dependencies of SV for every mesocosm and day with linear regressions. Second, we used
the aggregate size data that were measured on every sampling day with the profiling camera system
KIELVISION (see section 2.2). By combining the in situ size of particles measured in each mesocosm
on each sampling day with the individual linear regressions calculated in step 1, we calculated the SV
for the average size of in situ particles (SVipsitw)-

2.8. Estimation of Carbon Transfer Efficiency Through the Mesopelagic

Transfer efficiency (Teg) is defined here as the percentage of sinking POC that makes it from the bottom of
the mesocosms (15 m) through the mesopelagic and reaches 1,000 m.

POC1000
To = [ —220 ) %109 4
eff ( POC;s ) @

To calculate T, we used the following equation derived in Bach et al. (2016):
Cmodel
POC(z) = POC(Z—I)—(POC(Z—I) — (z—(z-1)) 5)
model

where z is the depth (m), Cpoqel the model remineralization rate (d™), and SV 0461 the SV parameterization
in the model (m/day). Cpyoqde1 decreases with depth due to decreasing temperature (T) following Q1 kinetics:
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Cimodel = bbio Cremin T (6)

where Cremin is the turnover rate measured in this study and by, is a scaling factor to achieve a realistic flux
attenuation (see below for by, parameterization). For T 'we used a profile measured near Gran Canaria at the
European Station for Time-Series in the Ocean (29.17°N; —15.50°W; Figure S3) on 26 February 2014 during a
cruise with R/V Poseidon (P465). SVinodel increases with depth according to

SVmodel =0.04z + SVin—situ (7)

The equations for Cpoge; and SV y,o4e1 Were taken from Schmittner et al. (2008), and their application was
justified in Bach et al. (2016). With the average Cremin (0.054 day) and SVi, ity (37.5 m/day) measured herein
(see results) we calculate a mean transfer efficiency from 100 to 1,000 m of 13% with the standard by,
value of 1.066 used earlier (Bach et al., 2016; Schmittner et al., 2008). This flux attenuation is similar to a
widely used Martin b value of 0.86 (Martin et al., 1987; please note that we used transfer efficiency 100 to
1,000 m [and not 15 to 1,000 m]) in this case to more easily compare the outcome to those by Martin et al.
(1987). However, attenuation varies seasonally and regionally (Berelson, 2001) and previous studies reported
higher or lower b values for the subtropics than 0.86 (Henson, Sanders, et al., 2012; Marsay et al., 2015;
Weber et al., 2016). A comprehensive analysis of regionalized flux attenuations calculated 897 b values from
underwater camera imaging and 1,971 b values from POC flux data and found that the median b value in the
subtropical NE Atlantic to be ~0.6 (Guidi et al., 2015). Thus, we decreased by;, in equation (6) from 1.066 to
1.038 to achieve a mean transfer efficiency from 100 to 1,000 m of 25%, which is equivalent to a Martin b
value of 0.6 (Guidi et al., 2015; Henson, Sanders, et al., 2012).

The POC mass flux to 1,000 m (POC;qgg) Was calculated as

Tett

POCyg00 = POCy5 ®)

where POC;; is the measured POC mass flux at the bottom of the 15-m deep mesocosms.

3. Results

3.1. Developments in the Plankton Community

The experiment started in oligotrophic conditions with concentrations of all inorganic nutrients close to
detection limits (Figure 2). Chl-a, POC, and BSi concentrations were low during this period and averaged
at approximately 0.1 pug/L, 9 pmol/L, and 0.09 umol/L, respectively (Figure 2). Deep water was added to
all mesocosms on day 24, which increased inorganic nutrient concentrations to 3.15, 0.17, and 1.60 mol/L
for NO,~, PO,>~, and Si (OH),, respectively. This stimulated a phytoplankton bloom with peak chl-a con-
centrations of 2.61 ug/L on day 28. POC increased correspondingly with a slight delay of about 1-2 days
(Figure 2). POC concentrations remained at an elevated level after the bloom and decreased only slowly,
while chl-a decreased within a few days after the peak. The decline of BSi after the bloom occurred at a rate
ranging between those of chl-a and POC (Figure 2). TEP concentrations were quite stable and on average 120
ug GXeq L ™! before the deep water addition but increased rapidly thereafter right at the point where chl-a
peaked and nutrients were almost exhausted. TEP declined after peak concentrations but remained at ele-
vated levels until the end of the experiment. The maximum TEP buildup varied considerably between meso-
cosms, ranging from ~300 (M1) to almost 1100 (M9) ug GXeq L.

The phytoplankton community was dominated by picophytoplankton and nanophytoplankton during oligo-
trophic conditions (days —3 to 24; Figure 3). A bloom of Synechococcus (0.6-2 um) developed during this
phase, which peaked around day 11 (Figure 3b). Synechococcus abundances declined toward the end of
Phase I, while picoeukaryotes (0.2-2 um) became more important (Figure 3a). Nanophytoplankton made
a stable and significant contribution to chl-a, while microphytoplankton contributed very little
(Figures 3c-3e). The nanophytoplankton contribution remained comparatively stable even after the deep
water addition, whereas the relative contribution of picophytoplankton and microphytoplankton reversed.
Microphytoplankton was mostly represented by large chain-forming diatoms (Leptocylindrus sp.,
Guinardia sp., and Bacteriastrum sp.) and the prymnesiophyte Phaeocystis sp. (Taucher et al., 2018).
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Figure 2. Development of relevant biogeochemical parameters during the experiment. (a) NO3~ + NO,™, (b) PO43_,
(c) Si (OH)y, (d) NH4+, (e) chlorophyll a, (f) total particulate carbon, (g) biogenic silica, and (h) transparent exopolymer
particles. The green dashed line marks the day of the deep water addition. The green-shaded and the gray-shaded
backgrounds denote the time of the phytoplankton bloom and the diatom mass flux event, respectively.

Exceptional to this general pattern were mesocosms M2 and M8 where the toxic phytoplankton species
Vicicitus globosus (Dictyochophyceae; Chang et al., 2012) contributed majorly to the deep water-induced
phytoplankton blooms (Riebesell et al., 2018; Figure 3f).

The zooplankton community comprised protists and metazoa. Protists (i.e., microzooplankton, Figure 4a)
were mainly represented by aloricate ciliates and small-sized dinoflagellates (<25 um). Planktonic foramini-
fera were an abundant calcifying protist group with all individuals belonging to the family Globigerinidae
(Lischka et al., 2018). The most abundant metazoa were copepods, represented primarily by the genera
Paracalanus, Clausocalanus, Oithona, and Oncaea. Gelatinous zooplankton comprised Hydrozoa with unre-
solved taxonomic affiliation and tunicates, represented by Oikopleura dioica and Doliolum sp. A detailed
analysis of the zooplankton community can be found in the papers by Lischka et al. (2018), Taucher,
Stange, et al. (2018), and Alguer6-Muiiiz et al. (2019).

Zooplankton abundances were lower during oligotrophic conditions than after the deep water addition
except for foraminifera (Figure 4). Most groups responded to the deep water addition with significant
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Figure 3. Phytoplankton groups distinguished by means of flow cytometry. Shown here is the contribution of each group
to the total concentration of chlorophyll a in the water column. (a) Picoeukaryotes (0.2-2 um), (b) picocyanobacteria
(most likely Synechococcus spp.; 0.6-2 um), (c) smaller nanophytoplankton (2-5 um), (d) larger nanophytoplankton
(5-8 um), (e) microphytoplankton (>8 um), and (f) the toxic phytoplankton Vicicitus globosus (~20-30 pum). Please note
that size range given here accounts for the majority of the gated population but some particles will always be larger or
smaller. The plots also show data measured in the Atlantic (black dots) directly next to the mesocosms to illustrate how
the enclosure destabilizes the phytoplankton community (section 4.4). The green dashed line marks the day of the

deep water addition. The green-shaded and the gray-shaded backgrounds denote the time of the phytoplankton bloom and
the diatom mass flux event, respectively.

population growth although the response varied profoundly among mesocosms. For example,
microzooplankton and copepods (including nauplii) did not respond positively to the deep water addition
in M2 and M8 until the bloom of the toxic phytoplankton V. globosus vanished (compare Figures 3f and
4a-4c). The reason for the large variability of microzooplankton and copepod abundances among the
remaining mesocosms is unclear at present. Other important differences were the significant blooms of
tunicates (Doliolum sp.) and hydrozoa in M1. Neither of them grew to high abundances in any other
mesocosm, although they were present in all of them (Figures 4e and 4f).

3.2. Mass Flux to the Mesocosm Sediment Traps

The mass flux of biogenic material (G.,,) can be separated into three phases. The first one comprises the oli-
gotrophic conditions and the first 10 days after the deep water addition when phytoplankton formed a bloom
but the generated biomass was not yet sinking out (days —3 to 34.5). During this initial period, POC, PIC, and
BSi mass fluxes averaged at 2.93, 0.32, and 0.14 mmol/ m? per 48 hr. The second phase lasted for 11 days start-
ing 10 days after the deep water addition when the major diatom (or V. globosus in M2 and M8) bloom was
sinking out (days 34.5-45.5). POC, PIC, and BSi mass fluxes averaged at 29.7, 0.84, and 2.06 mmol/ m? per 48
hr during this major sedimentation event. The third phase at the end of the study includes the time
after the sedimentation event (days 45.5-55). POC, PIC, and BSi mass fluxes decreased considerably to
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Figure 4. Major zooplankton groups. (a) Microzooplankton, (b) adult copepods and copepodites, (c) nauplii, (d) forami-
nifera, (e) tunicates, and (f) hydrozoa. The green dashed line marks the day of the deep water addition. The green-shaded
and the gray-shaded backgrounds denote the time of the phytoplankton bloom and the diatom mass flux event,
respectively.

time-integrated averages of 11.34, 0.29, and 0.42 mmol/m? per 48 hr during the three phases,
respectively (Figures 5a-5c).

CaCOj relative to POC export (i.e., PIC:POC) was initially high (~0.4) but decreased exponentially to
reach an average ratio of 0.03 after the deep water addition (Figure 5d). Maximum BSi:POC export ratios
were considerably lower than PIC:POC and generally more variable (Figure 5e). BSi:POC averaged at
0.075 from days —3 to 1 and dropped to 0.05 thereafter until day 34. BSi:POC increased during the major
sedimentation event (average = 0.067), although with quite a large spread among mesocosms (Figure 5e).
BSi:POC was lowest after the sedimentation event, averaging at 0.04.

3.3. Particle SV, ESD, P;,,;, Cremin, and RLS

We measured SV, ESD, and P;,, of 62,481 particles during this study. The SVs of the six designated size
classes were 26 + 7.8 (SVio.00), 28.2 + 8 (SVgo.130), 30.8 + 10 (SVi20.150), 35.6 + 13.4 (SV}70.260), 43.5 +
16.8 (SV240.400), and 62.2 + 21.4 m/day (SVzgo.1000), When averaged over all mesocosms and for the entire
experiment. The development of SV over time was slightly different among the different size classes but fol-
lowed a similar overarching pattern (Figures 6a—6f). There was a quite pronounced decline in all size classes
after the first measurement day (day 1). Afterward, SV either remained stable (size classes <130 um) or
declined slightly until around day 15. There was a minor peak in SV around day 20 but not in all mesocosms.
SV declined from around day 20 until day 45. The decline in this period was particularly pronounced in some
size classes during the major bloom sedimentation event (days 34.5-45.5; e.g. 80-130 um). SV increased
thereafter in all size classes (Figures 6a-6f). The temporal development of SV calculated for the average in
situ particle size (SVinsitn) largely resembled the developments of the largest three size classes (i.e., >170
um; compare Figures 6d-6f with 7b).

BACH ET AL.

981



100 Global Biogeochemical Cycles 10.1029/2019GB006256

'AND SPACE SCiENCE

I
- M1 +M9|

60

-~ M5 - M3I

40

|

|

A A ,I

20 —h— :

BSi (mmol m248 h™") PIC (mmol m?48h") POC (mmolm™48h™)

=l

£

©

£

(@)

0

o

O

[a

= 0.10 '
g |
= 0.08 '
£

o 0.06

2

L 004

()]

om

0 10 20 30 40 50
Day of experiment

Figure 5. Mass flux of sinking organic material and ballast minerals into the
sediment trap. (a) POC, (b) PIC, (c) BSi, (d) PIC:POC, and (e) BSi:POC.
The green dashed line marks the day of the deep water addition. The
green-shaded and the gray-shaded backgrounds denote the time of the
phytoplankton bloom and the diatom mass flux event, respectively.

Mean ESDs of particles within the different size classes were 59 + 6 (40-
90 um), 101 + 3 (80-130 um), 145 + 4 (120-180 um), 208 + 8 (170-
260 um), 305 + 14 (240-400 um), and 532 + 52 wum (380-1,000 pm).
The mean values changed only marginally during the experiment
(Figures 6g-61). Thus, changes of mean particle ESD within a size bin can-
not explain the pronounced changes in SV of the corresponding size
classes. At this point it is important to emphasize that the particle size
spectrum determined during the SV measurements is not correctly repre-
senting the in situ particle size spectrum. This is because particles used to
determine SV have been recovered from the sediment traps through
vacuum pumps and have been treated several times before measuring
SV in the settling columns (discussed in detail in Bach et al., 2016). To cir-
cumvent this problem, we applied a profiling in situ camera system to
measure aggregate size spectra in the water column (Taucher, Aristegui,
et al., 2018). These measurements revealed that the average size of aggre-
gates between 125 and 3,000 um was within a range of 200-260 um for
most of the study except for the period of the major sedimentation event
where aggregates were larger (Figure 7a). SVi, ity Was affected only to a
very small degree by this size increase (Figure 7b).

Mean P, (dimensionless) increased with size: 17.7 + 1.5 (40-90 um),
28.1 + 4.1 (80-130 wm), 37.3 + 7 (120-180 um), 48 + 10.2 (170-
260 pm), 64 + 15.7 (240-400 pum), and 99.6 + 25 (380-1,000 pm).
Accordingly, P;,; reproduces the expected increase of porosity with size
(Burd & Jackson, 2009; Logan & Wilkinson, 1990) due to the depen-
dency of P;,; on ESD (see equation (3)). P;,, was increasing in most size
classes until the major bloom sedimentation event (Figures 6m-6r). The
increase was larger in the smaller size classes, and hardly any change
was observed in the two largest size classes. P;,, increased rapidly at
the onset of the sedimentation event. Conversely to the trends prior to
this event, the increases were more pronounced in the larger size
classes. In this case, no increase was observed in the smallest size class.
P;,; decreased to a variable degree in all size classes after the bloom
sedimentation (Figures 6m-6r). SVs of all size classes were negatively
correlated with P;,; (Figure 9a).

POC remineralization (Cremin) Was determined on nine occasions during
the mesocosm experiment (Figure 7c). Unfortunately, technical problems
with the equipment prevented us from doing incubations before day 11.
The estimated Cyemin uncertainty of 35% (section 2.4) and the lower tem-
poral resolution of this data set complicated the detection of trends over
time since only very clear changes can be distinguished from noise
(Figure 7c). On average, Cremin Was higher during the first incubation with
the highest value in M9 (0.125 day), while the lowest Cremin Was observed
in M8 during the phytoplankton bloom (0.007 day). High values were also
measured during the major sedimentation event (days 37 and 41),
although only in M3, M5, and M7. Ciemin declined in almost all meso-
cosms after the sedimentation event (Figure 7c).

RLS ranged between 0.0002 and 0.004 m™", and the temporal develop-
ment largely resembled the development of Ciemin (compare Figures 7c
and 7d). The influence of Ciemin On RLS was dominant because its
changes during the study were approximately fifteenfold, while the
changes in SV;,, g, Were approximately threefold (compare Figures 7b
and 7¢). Nevertheless, SVin.siru had a noticeable influence on RLS due to
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Figure 6. Temporal development of sinking velocity (SV), ESD, and the porosity proxy Pj,. (a—f) SV of the different
particle size classes, (g-1) mean ESD, and (m-r) P;;,; of the corresponding size classes. Please note that the size classes
are reported at the top of each subplot. The black line on each plot is the daily average of all mesocosms and is shown to
facilitate the detection of general trends. The green dashed line marks the day of the deep water addition. The green-
shaded and the gray-shaded backgrounds denote the time of the phytoplankton bloom and the diatom mass flux event,
respectively.

the generally decreasing trend from initially ~50 to ~30 m/day at the end of the study. This decrease was
reflected in particularly high RLS during the major sedimentation event.

3.4. Estimated Transfer Efficiency and Mass Flux to the Deep Ocean

The degree of flux attenuation varied widely over the course of the study, largely driven by the fluctuations in
Cremin- Accordingly, the temporal pattern of T largely resembled the inverse of Cyemin (compare Figures 7c¢
and 8b). Tegr ranged from 0.6% to 74% with the majority of values between 0.6% to 20%. POCqgo ranged
between 0.01 and 4.8 mmol/m? per 48 hr and was generally higher during the mass flux event than during
oligotrophic conditions (Figure 8c).

4. Discussion
4.1. P;,,—A Useful Optical Proxy for Aggregate Porosity?

Porosity indicates the fraction of an aggregate not occupied by solid matter (Alldredge & Gotschalk, 1988). A
porous aggregate will usually have a lower density and therefore sink slower than a more compact one, given
that both have the same size, shape, and are made of solid matter of a similar density. Thus, porosity is an
important variable affecting aggregate SV and ultimately POC export (Burd & Jackson, 2009).
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Figure 7. Size, SVj;,siry, and remineralization of sinking material.

(a) Average size of particles >125 um inside the mesocosms as determined
with an in situ camera system. (b) SVj_situ calculated with daily ESD
versus SV relationships measured with the FlowCam using in situ

particle size as input data. (c) C-specific remineralization rate (Cremin)-
(d) Remineralization length scale. The green dashed line marks the day
of the deep water addition. The green-shaded and the gray-shaded
backgrounds denote the time of the phytoplankton bloom and the diatom
mass flux event, respectively.

Porosity can be measured directly by embedding aggregates in resins or
gels and thin slicing them to determine their structure microscopically
(Chu et al., 2004; Flintrop et al., 2018; Leppard et al., 1996). These mea-
surements provide an unprecedented level of detail of the aggregate
matrix but are too time-consuming and expensive to apply to the thou-
sands of aggregates investigated here. Alternatively, porosity can be calcu-
lated from dry weight measurements or density estimations, but these
calculations are associated with numerous assumptions and must be
regarded with care (Alldredge & Gotschalk, 1988; Engel et al., 2009;
Logan & Wilkinson, 1990; Helle Ploug et al., 2008). Here we derive size-
normalized particle intensity (P;,;) as an independent and easily measur-
able proxy for porosity. The underlying assumption is that aggregates
within a narrow size range appear brighter when they are more porous
because more of the light passes through the back-light-illuminated
aggregate (section 2.6).

The best way to assess the value P;,, would be a comparison to an indepen-
dent porosity approximation. In similar data set from the Norwegian
coast, we estimated porosity from calculated aggregate excess densities
and solid matter density of sediment trap material using Stokes' law
(Bach et al., 2016). Unfortunately, Stokes' law was not applicable in the
present experiment because SV (and therefore Reynolds numbers) were
too high so that most particles did not sink in a laminar flow regime
(McNown & Malaika, 1950). Thus, at this stage we can only argue that
Py, is a useful proxy without independent validation. Perhaps the
strongest support for its usefulness comes from the pictures shown in
Figure 1. These were taken randomly from measurements in M3 and show
that aggregates with higher P;,,; values on the right side of Figure 1 do
indeed appear to be more porous. The porous aggregates were filmed
mostly during the mass flux event where concentrations of TEP were con-
siderably higher (Figure 2h). TEP serves as glue within the aggregate
matrix, and high concentrations should increase the probability to find
loosely attached phytoaggregates, which have not experienced much (re)
packaging (Burd & Jackson, 2009). However, P;,, could also be affected
by the chemical composition of the aggregate matrix, which, like porosity,
influences the intensity (i.e., the brightness) of a particle. For example,
interstitial space in aggregates could be filled with CaCOj3 or TEP, and this
would in both cases reduce the porosity. However, CaCO3 absorbs more
light than TEP and therefore affects P;,, differently. The problem of mate-
rial transparency could be circumvented to some extent by staining trans-
parent components within the aggregate matrix (Cisternas-Novoa et al.,
2015), but this has not been done here. Thus, the unknown chemical
composure of aggregates must be considered as confounding factor for
the porosity approximation with P;,,;.

The temporal development of P;,, reveals distinct features that further
strengthen our confidence in this proxy. For example, there was a sudden
increase of P;,,; at the onset of the mass flux event (see Figures 6m-6r, par-

ticularly the larger size classes). We observed exactly the same kind of sudden increase during the onset of
mass flux event in a mesocosm study at the Norwegian coast where porosity was assessed differently
(Bach et al., 2016). Thus, the similarity in the response patterns with two independent porosity approxima-

tions supports both of them.

Furthermore, the mesocosm-specific development of P;,, during the mass flux event provides additional
support. The major bloom formers after the deep water addition were diatoms, but these were less
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Figure 8. Transfer efficiency (Tegr) and mass flux to the deep ocean based on
SVin-situ @nd Cremin using model equations (4) and (5). (a) Calculated flux
attenuation profiles of organic material collected in the mesocosm sediment
traps while sinking to depth. Each of the 73 thin lines represents one
attenuation profile as calculated with equation (5) using one of the 73
measured Cremin vValues and the 73 corresponding SVin ity values, respec-
tively (Cremin values from Figure 7c and corresponding SV, sjty from
Figure 7b). The color code corresponds to the mesocosms where the
SVin-situ and Cremin COmbination was measured. The thick black line is
the attenuation profile calculated with the average of all 73 Cremin values
(i.e., 0.054 day) and the average of the corresponding 73 SVj, sity Values
(37.5 m/day). The horizontal dashed black lines mark the 15- (bottom of
mesocosm) and 1,000-m depths, respectively. (b) Tegr between 15 and

1,000 m derived from calculations with equation (5). These are the intercepts
where the individual profiles from plot (a) cross the 1,000-m depth level.
(c) Mass flux at 1,000-m depth as calculated with equation (8). The green-
shaded and the gray-shaded backgrounds in (b) and (c) denote the time of
the phytoplankton bloom and the diatom mass flux event, respectively.

abundant in M8 than in the other mesocosms at the day of deep water
addition (Figure 2g). Accordingly, the diatom bloom was delayed by 2-4
days in M8 relative to the other mesocosms as is reflected in all Si data
sets (Figures 2c, 2g, and 5g). Interestingly, this delay in diatom bloom
formation is also reflected in Py, for particles >120 um (Figures 60-
6r) and in the in situ particle size data set recorded with the underwater
camera system (Figures 7a). The most plausible explanation for such a
consistency in three entirely independent measurements is that Py,
increases due to the formation of highly porous diatom aggregates, com-
bined with the lack of microzooplankton and mesozooplankton grazers
during this period (check Figure 4 for zooplankton). This adds addi-
tional confidence to the value of P;,, as porosity proxy.

Vertical particle profiles determined with in situ camera systems are
becoming an increasingly important tool to estimate carbon export fluxes
(Boss et al., 2015; Guidi et al., 2008; Iversen et al., 2010). Camera-based
mass flux calculations utilize particle abundance data and a theoretical size
versus SV relationship (Guidi et al., 2008). However, Figure 6 illustrates that
size alone is insufficient to predict SV as it changes approximately threefold
in the course of the study, while aggregate sizes remain largely constant.
The utilization of the P;,,; versus SV relationships shown in Figure 9a may
therefore help to improve the determination of mass flux, at least with
back-light-illuminated camera systems where P;,,; could be determined.

4.2. Influence of Ballast Minerals and Plankton Community
Structure on SV

The development of SV over time reveals distinct patterns that can be
linked to processes in the plankton community. SV was relatively high
during the first 2 weeks of the experiment, particularly in the size classes
>170 um (Figures 6a-6f). One likely reason for this was the initially high
ballasting with CaCO5 (Figure 5d), but the question is what generated this
ballast? The two calcifying groups that were found in relevant quantities
were coccolithophores and foraminifera (Lischka et al., 2018; W. Guan,
personal communication). Coccolithophores were present only until the
deep water addition in abundances fluctuating between below detection
limit and 1.5 cells per milliliter (W. Guan, personal communication). If
we assume a per cell PIC content of a heavily calcified species (25 pmol
per cell for Coccolithus pelagicus; Bach et al., 2015), we would in the high-
est possible case (1.5 cells per milliliter) reach a coccolithophore PIC of
0.04 umol/L. Hence, if such an amount sank out in 48 hr (i.e., 0.43
mmol/m? per 48 hr), it could explain the initial PIC flux to the sediment
traps (Figure 5b). However, since the 0.04 mmol/L is an upper bound,
we consider coccolithophores to contribute generally much less CaCOj;
ballast. Foraminifera were represented by very small (50-200 um)
Globigerinidae species (Lischka et al., 2018). The highest measured sedi-
mentation flux was 0.14 individual per liter per 48 hr (~1,500 individuals
per square meter per 48 hr) but generally well below this value (Lischka
et al., 2018). Based on published size to weight relationship for the two
Globigerinidae species (Lombard et al., 2010), we estimate that a
200-um individual would have contained less than 10-ug CaCO;
(~0.1-umol PIC). Thus, the PIC flux by foraminifera tests could maximally
have been 0.15 mmol/m? per 48 hr, but likely much lower most of the

time. Furthermore, foraminifera shells do not integrate particularly well into aggregate matrices so that
their accelerating effect on SV should be minor (Schmidt et al., 2014).
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Figure 9. Correlations between SV, P;;,;, and the ratio of picophytoplankton
to nanophytoplankton and microphytoplankton (P/NM). The different
colors from warm to cold represent the six different particle size classes:
orange = 40-90 pm, yellow = 80-130 um, turquoise = 120-180 um, blue-
green = 170-260 um, blue = 240-400 um, and dark blue = 380-1,000 pm
(see also the legend in the top panel). All correlations shown here are
significant (p < 0.01). (a) SV is negatively correlated with P;,, in all size
classes; R240,90 =0.09, R280—130 =0.12, R2120—180 =0.21, R217O—260 =0.38,
R2240_400 =0.34, R2380-1000 =0.27. (b) SV is positively correlated with
P/NM in all size classes; R240,90 =0.14, R280—130 = 0.04, Rzlzo,lgo =0.14,
R2170-260 =0.27, R2240_400 =0.31,R 380-1000 = 0.15. (C) Pint is negatively
correlated with P/NM in all size classes; R24O_90 =0.18, R230_130 = 0.47,
R*120-180 = 049, R*170.260 = 041, R*240.400 = 0.30, R*380-1000 = 0.14.
Please note that the x axis scaling in b and c is log10 transformed and the
numbers on the axis show the exponent (e.g., —1 = 107 =01 chla:chla).
Regression equations are provided in Table S1.

Based on the above mentioned assessments, it seems unlikely that bio-
genic CaCOs; is fully accountable for the PIC mass flux observed in the
mesocosm sediment traps. Lithogenic carbonates could enter the meso-
cosms at the surface via airborne dust influx, which regularly occurs in
the Canary Island region (Gelado-Caballero et al., 2012; Neuer et al.,
2004; Nowald et al., 2015), although dust dry deposition was not particu-
larly high during the first week of the study when PIC:POC was highest
(D. Gelado-Caballero, personal communication). Alternatively, resus-
pended carbonate sediments enclosed initially may have started to sink
out as soon as the mesocosms were closed and the turbulence declined.
The exponentially decreasing PIC:POC ratio in the sediment traps lends
some support for this hypothesis (Figure 5d).

The plankton size structure was likely another important reason for gen-
erally higher SV during the first half of the study. P;,,, our proxy for por-
osity, was generally lower during the first 2 weeks indicating that the
plankton community produced relatively compact detritus when oligo-
trophic conditions prevailed (Figures 1 and 6m-6r). Oligotrophy is usually
characterized by the dominance of picophytoplankton and small nano-
phytoplankton (Chisholm, 1992), which provide small aggregate building
blocks allowing little interstitial space between them when they aggregate
(Burd & Jackson, 2009). Furthermore, organic biomass is considered to be
recirculated more intensely through the food web under stable oligo-
trophic conditions thereby generating higher aggregate compactness than
in more unstable environments (Fischer & Karakas, 2009; Francois et al.,
2002; Lam et al., 2011). However, we consider this second mechanism not
to be relevant in our study because the enclosure of the phytoplankton
communities destabilized the oligotrophic food web as will be argued in
section 4.5.

The deep water addition on day 24 initiated a phytoplankton bloom,
which quickly ran into nitrogen limitation and peaked around day 29
(Figures 2a, 2e, and 2g; Taucher, Stange, et al., 2018). TEP concentrations
increased sharply after the chl-a peak and promoted the initiation of an
aggregation event that lasted for 10 days until aggregates reached their
maximum size and sank down during the mass flux event between days
35 and 48 (Figures 2h and 5a; Stange et al., 2017; Taucher, Aristegui, et al.,
2018). The diatom bloom and the simultaneous formation of increasingly
large aggregates coincided with a considerable reduction of SV, even
though opal ballast increased during the mass flux event (Figures 6a—6f
and 5e). Thus, the accelerating influence of opal ballast on aggregate
excess density must have been overcompensated by reduced compactness.
There are four lines of evidence supporting this conclusion. First, nutrient
injections into the prevailing oligotrophic conditions shifted the phyto-
plankton size structure toward larger species (Figure 3). Larger species
should form more porous aggregates because (i) they provide more

interstitial space within the aggregate matrix and (ii) they are transiently relieved from biotic repackaging
because they outgrew copepod grazers (compare Figures 2e and 4b). Indeed, P;,,, increases substantially dur-
ing the mass flux event which is not only very clear in the data (Figures 6m-6r but with the exception of
40-90 um) but also obvious when comparing pictures of aggregates from the mass flux event with those
photographed during the oligotrophic phase (Figure 1). Second, relatively high concentrations of TEP after
the bloom (Figure 2h) may have decelerated sinking because TEP is positively buoyant and, due to its sticki-
ness, causes a more porous aggregate structure, which further reduces their excess density (Azetsu-Scott &
Passow, 2004; Engel & Schartau, 1999; Mari, 2008; Mari et al., 2017). Third, we have made the identical
observation during diatom blooms in the mesocosm study in Norway and came to the same porosity-based
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Table 1
C-Specific Remineralization (Cyepmin) Measurements From the Literature

Reference Aggregate Depth (m) Collection Method RQ T (°C) (R (d_l) Aggregate origin
Belcher et al. (2016) FP 0-200 Net haul 0, diffusion 1 3-5 0.010-0.065 Southern Ocean
Cavan and Boyd (2018)) Detritus 30 Mesh 0O, decline 1 12 0.97 + 0.10* Southern Ocean
Cavan et al. (2017) Detritus 50-350 MSC 0O, decline 1 24 0.35-13.7° Equatorial Pacific
Collins et al. (2015) Detritus 50-300 Trap 0, decline 1.45 in situ 0.007-0.173 North Atlantic
Goldthwait et al. (2005) Detritus 13-20 Diver POC decline 18 0.1-0.63 NE Pacific
Iversen et al. (2010) RT® 0, diffusion 1.2 18-20.4 0.13 + 0.07 NE Atlantic
Iversen and Ploug (2010) RT 0O, diffusion 1.2 15 0.13 + 0.13

Iversen and Ploug (2013) RT 0, diffusion 1 12 0.12 + 0.03

Iversen and Ploug (2013) RT 0, diffusion 1 4 0.03 + 0.01

Iversen et al. (2017) FpY Salp 0, diffusion 1.2 3 0.05 + 0.5 Southern Ocean
Le Moigne et al. (2013)° RT POC decline 15 0.03-0.05

Le Moigne et al. (2017)° Detritus 40-180 Trap POC decline 12 0.002-0.05 Baltic Sea
Mcdonnell et al. (2015) Detritus 200-500 Trap RESPIRE 1.45 in situ 0.4 +0.1 Sargasso Sea
Mcdonnell et al. (2015) Detritus 50 Trap RESPIRE 1.45 in situ 0.01 + 0.02 Southern Ocean
Ploug and Bergkvist (2015) RT 0, diffusion 1 10 0.065°

Ploug and Grossart (2000) RT 0, diffusion 1 16 0.2-0.03

Ploug et al. (1999) Detritus 0-15 Diver 0, diffusion 1.2 17 0.11-0.13 NE Pacific
This study Detritus 15 Trap O, decline 1 22 0.007-0.1 NE Atlantic

Note. Aggregate describes whether detritus or fecal pellets (FP) were collected or whether aggregates were produced using roller tanks (RT). Depth
indicates where in the water column they were collected. Collection describes how they were collected (Net haul = collected with vertical net hauls or trawls;
Mesh = pumped onto a 200-pum mesh; MSC = Marine Snow Catcher; Trap = collected with sediment traps; Diver = collected in situ by divers; Salp = fecal pellets
formed in vitro by salps). Method indicates how respiration was measured: (1) O, diffusion in flow chamber, (2) assay incubation measuring O, decline,
(3) change of aggregate POC over time, and (4) in situ incubations with REspiration of Sinking Particles In the subsuRface ocean RESPIRE sediment traps
(Boyd et al., 2015). RQ is the applied respiratory quotient (mol O,: mol CO,). T is the incubation temperature of the respiration measurements.

#Up to 5.25 days for future ocean temperature simulations. ~0.13-5 days when correcting for offset between incubation and in situ temperature; high values
only in small/slow sinking particles. “Natural source water and aggregates generated with roller tanks. “Natural source water was offered to salps
collected on site who then generated fecal pellets in vitro. Values recalculated from the original data set be F. Le Moigne to C-specific remineralization in
d™ (F. Le Moigne personal communication, 2019) "Hypoxic conditions.

conclusion for the reduction in SV even though porosity was estimated in a different manner (Bach et al.,
2016). Fourth, several field studies reported that mass fluxes of coagulated diatom aggregates are associated
with relatively high flux attenuation, which points toward decelerated sinking despite high ballast
availability (Fischer & Karakas, 2009; Francois et al., 2002; Guidi et al., 2009; Henson, Lampitt, et al.,
2012; Kigrboe et al., 1998; Lam et al., 2011; Lam & Bishop, 2007; Lutz et al., 2007; Maiti et al., 2013;
Puigcorbé et al., 2015). Hence, in line with earlier studies, we conclude that the high porosity of TEP-rich
diatom aggregates reduces SV.

To further explore the influence of the phytoplankton size structure on sinking, we computed the biomass
ratio of picophytoplankton to nanophytoplankton and microphytoplankton (P/NM) as an ecosystem
indicator using the fluorescence data shown in Figure 3. The idea is that a high P/NM prevails under oligo-
trophic conditions where small primary producers enable the formation of compact particles (see above).
Nutrient injections provide resources for larger phytoplankton to grow thereby driving the close coupling
between small autotrophs and associated heterotrophs out of equilibrium. Hence, in a low P/NM regime,
porous aggregates may enter the export pathway before significant repackaging by heterotrophs has
occurred. Indeed, P/NM has previously been useful to predict export flux attenuation (Guidi et al., 2009,
2015) and SV (Bach et al., 2016). As in Bach et al. (2016), we find significant positive correlations between
SV and P/NM (Figure 9b). Furthermore, we provide independent evidence for a key mechanism driving this
correlation—that is, the decrease of aggregate porosity with an increasing dominance of picophytoplankton
(Figure 9¢). P/NM is readily measured by flow cytometry (section 2.2), can be estimated for the surface ocean
with satellite data (Mouw et al., 2017), and is accessible in biogeochemical models with size-structured food
webs (Ward et al., 2012). Thus, accounting for the dependency of SV on P/NM could improve our ability to
estimate export fluxes with optical tools and in biogeochemical models (Guidi et al., 2015; Siegel et al., 2014).
Ultimately, this may be a significant step toward a better predictability of BCP strength and efficiency in a
future ocean where picophytoplankton could become more dominant (Bach et al., 2017; Boyd, 2015).
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4.3. Comparison of Carbon-Specific Remineralization (Cpemin) With Values Reported in
the Literature

Cremin determined here is within the range of previously reported values but on the lower end of the
spectrum (Table 1). The relatively low values are somewhat surprising as our incubation temperature (T)
of 22 °C was high compared to other studies (Table 1). For instance, Cremin Was at least an order of
magnitude higher for particles collected at the Southern Ocean Time Series, even though T was 10 °C lower
(Table 1; Cavan & Boyd, 2018). Likewise, our values were at least 4 times lower than Cjey,;, measured in situ
at the Bermuda Atlantic Time-series Study (Table 1; Mcdonnell et al., 2015) even though the oceanographic
setup is relatively similar.

The exact reasons for observed differences are difficult to determine as there is no obvious pattern in relation
to T or location (Table 1). Clearly, the biodegradability of POC will vary widely between particles. Thus, a
large spread is not necessarily unexpected. Also, a variable degree of DOC leakage from sinking POC may
create uncertainty because DOC leakage is typically not quantified (but see Goldthwait et al., 2005).
Furthermore, methodological differences will play an important role. Cremin has been determined using
different approaches, all of which involve assumptions and measurements with considerable uncertainties
(Table 1). The RQ, for example, is a large source of uncertainty. It is typically assumed to be constant and
somewhere between 1 and 1.5 (Table 1), but deviations of +0.2 or more are frequently observed due to
changes in POC quality and community characteristics (Berggren et al., 2012; Robinson & Williams,
1999). In our approach we assumed an RQ uncertainty of +20%, which could perhaps be eliminated in future
studies by using CO, instead of O, optode measurements.

Interestingly, measured Ciemin S€€ms to converge to a narrower range when similar protocols were applied.
Our Cremin values compared well with the range reported by Collins et al. (2015) who used O, consumption
bioassays in an almost identical setup. Cremin reported by Cavan et al. are generally on the higher end of the
spectrum (Table 1). Cyemin determined with the diffusion method often yields values around 0.1 day unless
assays are performed with fecal pellets, in very cold water, or hypoxic conditions where Cyemin tends to
be lower (Table 1). Thus, while the natural variance of Ciemin is certainly high, some of the spread may also
be due to different methodology and assumptions (e.g., different RQ). It may therefore be worthwhile to
intercompare methods and establish common protocols since Cremin iS a parameter of highest
biogeochemical relevance.

4.4. Influence of Plankton Community Structure on Cyemin, RLS, Tetr, and Estimated Deep Ocean
Carbon Flux

Our simultaneous measurements of Cyemin and SV showed that Cremin is much more sensitive to changes in
the plankton communities than SV. The maximum difference in Cyemin Was approximately fifteenfold, while
SV changed merely approximately threefold (compare Figures 7b and 7c). Thus, the plankton community
controls RLS and also T primarily by influencing Ciemin-

Unfortunately, determining Cremin iS relatively labor-intensive leading to a lower temporal resolution than
what is available for the SV data set. Additionally, we estimated a comparatively high uncertainty of ~ + 35%,
which further complicated the detection of trends over time. Thus, only particularly pronounced changes
were sufficiently clear and consistent to distinguish them from noise and link them to processes in the
plankton community.

Cremin Was high during days 11 and 19 leading to high RLS and low Tg (Figures 7c, 7d, and 8b). These results
suggest that the BCP is rather inefficient under oligotrophic conditions, which disagrees with findings from
numerous previous studies (Buesseler & Boyd, 2009; Guidi et al., 2009, 2015; Henson, Sanders, et al., 2012;
Lam et al., 2011; Mouw et al., 2016; but see also Marsay et al., 2015; Weber et al., 2016). However, we argue
that our measurements are influenced by mesocosm-specific developments in the plankton communities,
which differ from the typical oligotrophic regime. Oligotrophic conditions outside the mesocosms are char-
acterized by relatively stable phytoplankton communities (Figure 3), suggesting a close coupling between
autotrophs and heterotrophs where significant blooms do not occur. The enclosure inside the mesocosms
clearly destabilized the oligotrophic community and gave room for fluctuating bloom developments as seen
in all phytoplankton groups (Figure 3). The phytoplankton size structure remained dominated by smaller
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groups (Figure 3), which conserve relatively low P;,, and high SV (Figure 6) probably by providing small
aggregate building blocks (section 4.2). Yet, fluctuating conditions likely reduce the recycling of biomass
through the food web and allow a higher fraction of fresh and less degraded material to sink out (Giering
et al., 2017; Henson et al., 2015). The C:N ratio of the sinking material supports this hypothesis as it was low-
est during days 11-19 (10.8 + 1.1 versus 13.3 = 2.1 between days 21 and 53; Stange et al., 2018). In contrast,
the field-based evidence that led to a prevailing view of high BCP efficiency under oligotrophic conditions
(Sarmiento & Gruber, 2006) argues on the basis of stable conditions where biomass recycling within the food
web should be more intense. Thus, Cremin, RLS, and T determined during days 11 and 19 may not be repre-
sentative for the stable oligotrophic regime with a close coupling between autotrophs and heterotrophs but
for one that is out of equilibrium.

Cremin and RLS were lowest during days 29 to 37 in M8 and to a lesser extent in M2 (Figures 7c and 7d). This
period coincided with the bloom of the toxic algae V. globosus, which disrupted trophic transfer by inhibiting
zooplankton growth (Figures 3f and 4; Riebesell et al., 2018). The toxicity of V. globosus has very likely
reduced POC degradation by bacteria and/or zooplankton where the latter were considerably less abundant
in M8 and M2 (Figure 4; Riebesell et al., 2018). Importantly, the harmful algal bloom (HAB) co-occurred
with a pronounced diatom bloom in M2, while the diatom bloom was much weaker and delayed relative
to the HAB in M8 (Taucher, Stange, et al., 2018). Thus, the sinking material in M2 contained a higher frac-
tion of nontoxic detritus, which explains why Cyemin and RLS were relatively higher in M2 than in M8 during
the HAB (Figure 7c). The lowest RLS values in M8 lead to the highest modeled T values (equations (4) and
(5)) during the experiment with ~74% of the sinking material reaching 1,000 m (Figure 8b). This suggests
that HABs are particularly efficient in injecting carbon into the deep ocean. However, the mass flux to
1,000 m was still relatively small since the export production at 15 m was low during the HAB (Figure 8c).

RLS and Cremin had temporal maxima (and Teg temporal minima) during the mass flux event albeit at dif-
ferent days and in some mesocosms much more pronounced than in others (Figures 7c, 7d, and 8b). We attri-
bute the decreasing T during this period to the enhanced availability of fresh and TEP-rich aggregates,
which formed during the bloom (Taucher, Stange, et al., 2018). These should be more easily degradable
because the turnover of TEP is about twice as high as the turnover of the associated cellular POC (Mari
et al., 2017). However, it is important to note that relatively high TEP concentrations also led to 35%
increased C:N ratios of the sinking material (POC:PON =~ 10 on days —3 to 29 versus =13.6 on days
31-55; Stange et al., 2018), which counteracts the reduction of T by the same percentage because sinking
POC carries more carbon. POCyqgg, and thus the strength of the BCP, increased during the mass flux event
because the massive increase in export production overcompensated the reduction in Teg. This agrees well
with repeated observations of high mass flux at relatively low Tog during diatom blooms (e.g., Fischer &
Karakas, 2009; Henson, Sanders, et al., 2012; Lam et al., 2011).

5. Summary and Outlook

In this study we used in situ mesocosms to investigate the influence of a subtropical plankton community
structure on POC SV and C-specific remineralization rates (Cremin)- In accordance with earlier studies, we
find that SV is accelerated by CaCO; ballast, while the influence of BSi ballast was less obvious. This could
either be due to the relatively low concentrations of BSi relative to POC and/or because the positive BSi bal-
last effect on aggregate density was overcompensated by a negative effect of increased aggregate porosity
which co-occurred during the diatom bloom after the deep water addition.

We propose P;,; as potentially useful optical proxy for porosity and find that aggregates have on average a
lower P, (i.e., they are less porous) when the phytoplankton community is dominated by smaller species,
which form smaller aggregate building blocks. Thus, our results provide new evidence for previous findings
that the phytoplankton size structure can serve as a useful proxy to estimate export efficiency (Guidi et al.,
2009) and for the first time provide data that allow us to mechanistically link this observation directly
to porosity.

The key finding of our study is that plankton community structure seems to have a considerably larger
influence on Cremin than on SV. Ciemin tended to be higher when relatively fresh material from an
ongoing/decaying phytoplankton bloom sank out. The highest Ciemin values were observed during blooms
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of the picocyanobacteria Synechococcus in the first half of the study where oligotrophic conditions prevailed.
Relatively high values were also observed during the mass flux event of a decaying diatom bloom although
only in some mesocosms. The variability between mesocosms points toward additional but unknown factors
driving Cremin Of sinking material, which have yet to be revealed. Lowest Cyemin Values were measured dur-
ing a HAB, suggesting that POC formed by toxic algae could be particularly efficient in transferring carbon
into the deep ocean.

The efficiency of the BCP varies widely on spatial and temporal scales, but there is insufficient mechanistic
understanding of the processes causing this variability so that export models show a wide range of predictive
skill (Burd et al., 2016). A recent comparison of export flux observations in the subtropical Atlantic with pre-
dictions from state-of-the-art export models found that the one model including simple plankton interac-
tions was better suited to predict regional variabilities in export fluxes than those lacking this aspect
(Estapa et al., 2019). Our results strongly suggest that significant room for improvement of these ecosystem
components lies in the parameterization of Cyemin as a function of plankton community structure, as well as
autotrophic to heterotrophic coupling. Thus, future studies should aim to include measurements of Cremin
alongside plankton community structure to provide the mechanisms that lead to a more complete predictive
understanding of the biological carbon pump.
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