
Acc
ep

te
d 

M
an

us
cr

ipt

 

© American Journal of Hypertension, Ltd 2019. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 

Title: Determinants of increased central excess pressure in dialysis: role of dialysis modality and 

arteriovenous fistula 

 

Authors: Mathilde Paré
1,2

 , Rémi GOUPIL MD
3
, Catherine FORTIER PhD

1,2
, Fabrice MAC-

WAY MD
 1,2

, François MADORE MD
3
, Karine MARQUIS PhD

1
, Bernhard HAMETNER 

PhD
4
, Siegfried WASSERTHEURER PhD

 4
, Martin G. SCHULTZ PhD

 5
, James E. SHARMAN 

PhD
 5 

and Mohsen AGHARAZII MD
1,2

. 

 

1
CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Québec, QC, Canada  

2
Division of Nephrology, Faculty of Medicine, Université Laval, Québec, QC, Canada 

3
Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada 

4
Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria 

5
Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia. 

Correspondent:  

Mohsen Agharazii MD 

Division of Nephrology  

CHUQ- L’Hôtel Dieu de Québec 

11, Côte du Palais 

Québec, Québec 

G1R 2J6 

Tel: 418-691-5464 

Fax: 418-691-5562 

     mohsen.agharazii@crhdq.ulaval.ca 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ajh/advance-article-abstract/doi/10.1093/ajh/hpz136/5550866 by U

niversity of Tasm
ania Library user on 20 August 2019

mailto:mohsen.agharazii@crhdq.ulaval.ca


Acc
ep

te
d 

M
an

us
cr

ipt

 

2 
 

Keywords: end-stage renal disease, pulse wave velocity, reservoir-wave approach, excess 

pressure, wave separation analysis, arteriovenous fistula, dialysis 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/ajh/advance-article-abstract/doi/10.1093/ajh/hpz136/5550866 by U

niversity of Tasm
ania Library user on 20 August 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

3 
 

ABSTRACT 

Background: Arterial reservoir-wave analysis (RWA) - a new model of arterial hemodynamics - 

separates arterial wave into reservoir pressure (RP) and excess pressure (XSP). The XSP integral 

(XSPI) has been associated with increased risk of clinical outcomes. The objectives of the 

present study were to examine the determinants of XSPI in a mixed cohort of hemodialysis (HD) 

and peritoneal dialysis (PD) patients, to examine whether dialysis modality, and presence of an 

arteriovenous fistula (AVF) are associated with increased XSPI. 

Method: In a cross-sectional study, 290 subjects (232 HD, and 130 with AVF) underwent 

carotid artery tonometry (calibrated with brachial diastolic and mean blood pressure). The XSPI 

was calculated through RWA using pressure-only algorithms. Logistic regression was used for 

determinants of XSPI above median. Through forward conditional linear regression, we 

examined whether treatment by HD or presence of AVF is associated with higher XSPI. 

Results: Patients with XSPI> median were older, had a higher prevalence of diabetes and 

cardiovascular disease, had a higher body mass index and were more likely to be on HD. After 

adjustment for confounders, HD was associated with a higher risk of higher XSPI (OR=2.39, 

95%CI:1.16-4.98). In a forward conditional linear regression analysis, HD was associated with 

higher XSPI (standardized coefficient: 0.126, P=0.012), but upon incorporation of AVF into the 

model, AVF was associated with higher XSPI (standardized coefficient: 0.130, P=0.008) and HD 

was excluded as a predictor. 

Conclusion: This study suggests that higher XSPI in HD patients is related to the presence of 

AVF. 
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INTRODUCTION 

Patients with end-stage kidney disease are at increased risk of all-cause and cardiovascular 

mortality. 1,2
 Among non-traditional cardiovascular risk factors, aortic stiffness and increased 

wave reflection have been proposed to contribute to this increased risk of cardiovascular and 

over-all mortality. 
3,4

   Indeed, it is proposed - by the wave propagation model - that aortic 

stiffness leads to increased augmentation index (enhanced and earlier wave reflection) in the 

ascending aorta, resulting in increased cardiac workload and reduced coronary perfusion 

pressure. However, in an elderly dialysis cohort, aortic stiffness and augmentation index (AIx) 

were not significantly associated with increased risk of death upon adjustment for age and 

comorbidities. 
5,6

 Given that the wave propagation model does not consider the reservoir function 

of the arterial tree, a reservoir-wave approach (RWA) has been proposed to circumvent this 

limitation. 
7-11

 The RWA approach hypothesizes that the measured arterial pressure is the sum of 

a reservoir pressure wave (RP), which accounts for the dynamic storage and release of blood by 

the compliant arteries (the Windkessel effect), and an excess pressure wave (XSP), which is 

responsible for local changes in the pulse waveform. Theoretically, the aortic reservoir pressure 

is the minimum left ventricular work required to generate blood flow into the aorta, whereas the 

excess pressure provides information about the surplus of work performed by left ventricle and is 

believed to be analogous to flow. 
10-13

 

The added value of RWA has been demonstrated in patients with hypertension, in high risk 

patients, in patients with heart failure and in dialysis population. 
14-20

 Indeed, we and others have 

previously shown that higher excess pressure is associated with increase cardiovascular and all-

cause mortality in dialysis population. 19,20
 As XSPI is analogous to flow, and creation of an 

arteriovenous fistula (AVF: either native or graft) has been shown to increase stroke volume and 

increased myocardial contractility, we hypothesized that excess pressure should increase after 
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creation of AVF. 
21-23

. Therefore, the aim of the present study was 1) to identify the determinants 

of excess pressure in dialysis patients, 2) to examine whether the dialysis modality has an impact 

on excess pressure, and 3) to examine whether the presence of AVF is associated with a higher 

excess pressure.  

 

METHODS 

Patient population and study design 

In a cross-sectional study we aimed to study the determinants of excess pressure in a cohort of 

end-stage renal disease patients treated by chronic hemodialysis or chronic peritoneal dialysis.  

From August 2006 to June 2014, 328 patients underwent at least one extensive evaluation for 

medical history, laboratory data, pharmacological treatment and hemodynamic parameters of 

arterial stiffness. This cohort of patients was composed of adult patients on chronic dialysis (>3 

months), with single-pool KT/V >1.4 in hemodialysis patients and a weekly KT/V of >1.7 in 

patients on peritoneal dialysis, stable dry weight and blood pressure medication. Patients were 

excluded if they had an acute episode of illness (infection, recent cardiovascular events) or any 

clinical conditions that would hamper hemodynamic measurements (absence of femoral pulse, 

systolic blood pressure of <90 mmHg).  Coronary artery disease was defined as myocardial 

infarction, coronary artery revascularization or ischemic heart disease as shown by either a 

treadmill, echocardiography or thallium stress tests. History of atherosclerotic cardiovascular 

disease was defined by a history of non-hemorrhagic stroke, coronary artery disease, lower 

extremity amputation or revascularization. Hypertension was defined as brachial blood pressure 

≥140/90mm Hg or antihypertensive drug usage. 
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Hemodynamic measurements 

All measurements were performed in the same visit after 15 minutes of rest in a supine position. 

In hemodialysis patients, all assessments were performed prior to their mid-week dialysis 

session. Brachial artery blood pressure (BP) was recorded 6 times, with a 2-minutes interval 

using an automatic oscillometric sphygmomanometer BPM- 100 (BP-Tru, Coquitlam, Canada) 

by an experienced operator who was present in the room. In case of an AVF, measurements were 

performed on the contralateral arm. Immediately after BP measurements, radial and carotid pulse 

wave profiles were sequentially recorded in the same order by applanation tonometry 

(SphygmoCor system, AtCor Medical Pty. Ltd., Sydney, Australia). Three consecutive 

recordings were performed for each site. Central pressure parameters were obtained by radial 

artery tonometry through generalized transfer function from which central systolic pressure (SP), 

diastolic pressure (DP), pulse pressure (PP), and augmentation index adjusted for heart rate of 75 

bpm (AIx@75) were derived after calibration for brachial systolic and diastolic BPs. Carotid 

pressure wave forms were obtained by tonometry after calibration using brachial diastolic and 

mean arterial pressure, which was obtained by integration of the arterial pressure waveform. 
24

 

Immediately after pulse wave recordings, we determined carotid-femoral pulse wave velocity 

(cf-PWV) and carotid-radial pulse wave velocities (cr-PWV) in triplicate by Complior® SP 

(Artech Medical, Pantin - France), using the maximal upstroke algorithm and direct 

measurements as previously described. 
25,26

 We used the ratio of cf-PWV/cr-PWV as a measure 

of arterial stiffness gradient (PWV ratio). 

 

Reservoir-wave parameters were obtained using the pressure wave approach as previously 

described.
14,27

 Reservoir pressure (RP), its integrals (RPI), excess pressure (XSP) and its integral 

(XSPI), diastolic rate constant (DC) and systolic rate constant (SC) were acquired from carotid 
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pressure waveforms. Accordingly, SC is the rate of system filling which is inversely proportional 

to the product of characteristic impedance (Z0) and compliance (C), whereas DC is the rate of 

system emptying, which is inversely proportional to the product of peripheral vascular resistance 

(R) and compliance (C). RP was derived based on pressure alone and XSP was defined as the 

difference between total measured pressure and RP. A reservoir pressure analysis was considered 

valid with RP>0, XSPI>0, a numerical SC and DC, DC>0 and P∞ >0. RP proportion and XSP 

proportion were respectively the ratio of RPI or XSPI to total pressure integral x 100. The 

XSP:RP is the ratio of XSP proportion to RP proportion. Figure 2 summarizes the key 

parameters of RWA of the carotid artery.  

 

Wave separation analysis was conducted to derive central pressure forward (Pf), pressure 

backward (Pb), and reflection magnitude (RM = (100 x Pb)/Pf) and reflection index (RI=(Pb x 

100)/(Pb+Pf)) were calculated. This was performed on the central pressure waveform after 

application of a generalized transfer function on the radial artery pressure waveform. 
28,29

 

 

Biochemical analysis 

All routine laboratory tests were performed on the mid-week hemodialysis session for patients 

on hemodialysis and in the morning in patients on peritoneal dialysis. The PTH was measured 

with the PTH stat assay from Roche diagnostics using two antibodies reactive with epitopes in 

the amino acid regions 26-32 and 37-42 (normal: 15-90 ng/L), and C-reactive protein was 

measured by an immunoturbidimetric method (normal <10 mg/L) as previously described. 25
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Statistical analysis 

Results were reported as mean ± standard deviation or median [25
th

-75
th

 percentiles] where 

appropriate. To identify the determinants of XSPI, we separated the population according to the 

median value of XSPI. Differences in characteristics parameters between groups were evaluated 

using Fischer’s exact test, Mann-Whitney U or independent Student t tests. To examine if 

dialysis modality was associated with increased risk of high XSPI, we used multivariable logistic 

regression analysis and adjusted for age, diabetes status, cardiovascular disease, mean arterial 

pressure, BMI, heart rate and cf-PWV. After log transformation of XSPI, we used a multiple 

linear regression analysis in a forward conditional manner by using the following parameters as 

independent: age, CVD, diabetes status, BMI, cr-PWV, cf-PWV, PWV ratio, heart rate, mean 

blood pressure. To examine whether any effect of hemodialysis is related to the presence of an 

AVF, we conducted the same regression analysis by adding this information into the list of 

independent parameters. As part of sensitivity analysis MBP was replaced by brachial diastolic 

and then systolic BP, and again with forced entrance of age and CVD into the model. Finally, we 

conducted an additional forward conditional multivariable analysis by restricting our population 

to hemodialysis patients only. We also conducted adjusted model by including clinically 

important parameters into the model (age, CVD, diabetes, dialysis vintage, heart rate, BMI and 

mean blood pressure).  All statistical analyses were performed using IBM SPSS version 25.0 

(SPPS Inc., Chicago, ILL, USA). 
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RESULTS 

From the 328 subjects that were eligible, 38 subjects (12%) were excluded because of 

unavailable or unreliable measurements of carotid pulse waveforms, leaving 290 subjects in the 

study (Figure 1). There were 58 (20%) patients on PD and 232 (80%) on HD. Among patients on 

HD, 130 (56%) had an AVF. Table 1 shows the clinical, biochemical and pharmacological 

characteristics of the subjects. 

 

Determinants of higher excess pressure integral 

Patients with XSPI above median were older and had a higher body mass index, had a higher 

prevalence of diabetes and cardiovascular disease, were treated more frequently by hemodialysis, 

and had a higher rate of aspirin, beta-blockers and calcium channel blockers use (Table 2). As 

expected, patients with higher XSPI had a higher cf-PWV, systolic and pulse pressures, with a 

slightly lower heart rate. Table 2 also shows the detailed hemodynamic parameters obtained 

through wave separation analysis of central pressure waveform after application of generalized 

transfer function of the radial pressure waveform. 

 

Dialysis modality and excess pressure integral 

In multivariable logistic regression analysis (enter mode) adjusted for age, diabetes status, 

cardiovascular disease, mean arterial pressure, BMI, heart rate and cf-PWV, patients on 

hemodialysis had a higher risk of having an XSPI above median (OR= 2.39, 95%CI:1.16-4.98). 

In a forward conditional regression analysis using age, diabetes, CVD, mean arterial pressure, 

heart rate, cf-PWV, cr-PWV, PWV ratio, type of dialysis and BMI, treatment by hemodialysis 
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was independently associated with a higher XSPI (Table 3: Model 1). Figure 3A shows that 

XSPI is higher in HD patients after adjustment for PWV ratio, heart rate, diabetes status, MBP 

and BMI.  As part of sensitivity analysis, we used diastolic blood pressure instead of mean blood 

pressure (Table 3: Model 2), which still showed that hemodialysis was associated with increased 

excess pressure. In further sensitivity analysis, where MBP was replaced by brachial systolic 

blood pressure, hemodialysis was not independently associated with increased excess pressure 

(Table 3: Model 3). 

 

Arteriovenous fistula and excess pressure integral 

Since excess pressure integral was higher in hemodialysis patients (even after adjustment for 

potential confounders), we examined to see whether this difference was due to presence of an 

AVF. Indeed, by means of a forward conditional regression analysis we added presence of an 

AVF to the same model (i.e. a model which included age, diabetes, CVD, mean arterial pressure, 

heart rate, cf-PWV, cr-PWV, PWV ratio, type of dialysis, and BMI). As shown in Table 3, the 

addition of AVF into the analysis, resulted in a model where AVF was associated with a higher 

excess pressure and the dialysis modality was no longer statistically significant (Table 3: Model 

4). Figure 3B shows that XSPI is higher in patients with AVF after adjustment for PWV ratio, 

heart rate, diabetes status, MBP and BMI. Further sensitivity analysis was performed by 

replacing MBP by brachial diastolic and systolic blood pressure (Table 3: Model 5 and 6 

respectively), and both consistently showed that AVF was independently associated with higher 

excess pressure. In addition, we forced entered age and CVD (enter mode), variables which were 

eliminated from the final forward conditional model, and the results pertaining to the association 

of AVF and excess pressure remained similar (Standardized coefficient: 0.126; P=0.011).  
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Finally, as part of sensitivity analysis, we excluded patients with peritoneal dialysis and 

conducted the analysis only on HD patients with and without fistula. In patients on HD without 

AVF the median number of antihypertensive drugs was higher (2 [1-3]) compared to HD patients 

with AVF (1 [0 -1], P=0.005). Using a similar forward conditional approach, there was a signal 

that an AVF was associated with a higher XSPI (standardized coefficient = 0.096, P=0.091), but 

it failed to reach a statistical level of significance (Figure 3C). 

 

Dialysis modality, AVF and wave reflection 

Based on wave-propagation model, as part of sensitivity analysis, we examined the impact of 

dialysis modality and AVF on heart rate adjusted augmentation index using the same variables as 

for excess pressure. In this model, only age, cardiovascular disease and mean arterial pressure 

were associated with higher AIx@75, but dialysis modality and AVF were excluded as important 

predictors of AIx@75. 

In a similar manner, we examined the impact of dialysis modality and AVF on reflection 

magnitude and reflection index. In these models, only age, heart rate, cardiovascular disease and 

mean arterial pressure were associated with reflection magnitude and reflection index, but 

dialysis modality and AVF were excluded as significant predictors. 
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DISCUSSION 

In this cross-sectional analysis of prevalent dialysis population, we showed that comorbid 

conditions were associated with increased excess pressure. Moreover, hemodialysis patients had 

a higher excess pressure after adjustment for comorbid conditions, but this increase in excess 

pressure was mostly related to the presence of an arteriovenous fistula after adjustment for 

confounding factors.   

RWA is a new model of arterial pressure that incorporates the reservoir function with wave-

propagation. The RWA approach is based on the assumption that the measured arterial pressure 

is the sum of a reservoir pressure wave, which results from the dynamic storage and release of 

blood by the compliant vessel, and an excess pressure wave, which is responsible for local 

changes in the pulse waveform. Theoretically, the aortic reservoir pressure is the minimum left 

ventricular work required to generate blood flow into the aorta, whereas the excess pressure - 

analogous to flow - provides information about the surplus of work performed by left ventricle. 

10-13
 Given that previous studies have shown increased stroke volume and increased myocardial 

contractility after a creation of AVF, it is reasonable to expect that excess pressure should 

increase after creation of AVF. 
21-23

  

AVF is the vascular access of choice for hemodialysis. 
30

 In a recent meta-analysis, it was shown 

that creation of dialysis AVF reduced SBP, DBP and MBP by estimated average of 8.7, 5.9 and 

6.6-mm Hg respectively. 31
 This observation is also in line with the use of ROX arteriovenous 

coupler, which is used to create an AVF between distal external iliac vein and artery, and which 

has been shown to reduce the ambulatory SBP by an average of 13.5 mm Hg in a group of 

patients with resistant hypertension 
32

. Indeed, epidemiological observational studies using 

administrative databases show that hemodialysis with an AVF gives a better survival advantage 
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over the use of central venous catheters. 
33-36

 However, this view has recently been challenged as 

the survival advantage of native AVF is more likely related to general better health of patients 

referred for AVF creation and who develop a functioning AVF. 
37-39

 While it could be proposed 

that AVF may have potential protective effects through reduction in blood pressure, AVF also 

bypasses part of the blood flow that is destined to organ perfusion, increases heart rate, 

myocardial contractility and stroke volume and cardiac output. 
21-23,40-42

 Given the association 

between increased XSPI and clinical outcomes, this reduction in blood pressure by AVF may 

potentially have adverse effects through disturbances in flow dynamics. 
18-20

 In our study, 

restricting the analysis to HD patients, after adjustment for other determinants of XSPI, subjects 

with AVF had a numerically higher XSPI. While this difference failed to reach the statistical 

level of significance (P=0.091), one would have expected a lower XSPI in patients with AVF 

because of a better general state of vascular health in this population. Indeed, patients with AVF 

may have a strong selection bias because not all subjects develop a functioning AVF due to 

cumulative stress of co-morbidities on peripheral arteries and veins. These cumulative co-

morbidities lead to both arterial disease (stenosis and calcification) and scarcity of veins that 

results from multiple venous punctures required over the life course of chronic disease. We know 

from our previous study that high XSPI is associated with increased risk of both cardiovascular 

and overall mortality. Accordingly, one would have expected to have a higher XSPI in patients 

without AVF, who are generally sicker.  Therefore, the association of high XSPI with AVF are 

more likely related to changes in flow dynamics due to AVF. 

The study has several strengths as it provides detailed analysis of a large sample size using 

RWA, wave separation analysis, vascular stiffness, and the use of various comorbidities and 

statistical procedures to perform various sensitivity analysis, which consistently show that AVF 

is associated with increased XSPI. There are also limitations that need to be mentioned. First, 
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while physiologically appealing and various sensitivity analyses support the robustness of our 

findings, the study only shows an association between AVF and XSPI and the causality is not 

demonstrated by this study. Second, we do not have any information regarding the extent of 

access blood flow at time of vascular assessment. Third, the pressure-only approach for 

calculation of reservoir-pressure waves assumes that the resultant excess pressure is proportional 

to the volume flow rate out of the left ventricle. However, the validation of this assumption in 

humans has recently been performed by Michail and colleagues. 
43

  

In conclusion, our study shows that patients on HD have higher excess pressure that is mainly 

related to the presence of an AVF. These observations need to be confirmed in dialysis patients 

by directly examining excess pressure before and after creation of an AVF, as the potential 

benefits of an AVF may be outweighed by increase in excess pressure. 
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FIGURE LEGENDS 

Figure 1: Study flow chart. Study flowchart shows the number of patients excluded for lack of 

carotid pressure waveform and unreliable reservoir-wave analysis (RWA), the number of 

patients on hemodialysis (HD), peritoneal dialysis (PD), with and without arteriovenous fistula 

(AVF). 

Figure 2: Reservoir-wave parameters. The panel shows artery pressure waveform (⸺○⸺) 

decomposed into reservoir pressure (⸺) and excess pressure waveforms (⸺●⸺), systolic and 

diastolic constant rates.  

Figure 3: Adjusted excess pressure integral according to dialysis modality and 

arteriovenous fistula. Panel A shows a higher level of adjusted excess pressure integral (XSPI) 

in patients on hemodialysis (HD) compared to patients on peritoneal dialysis (PD). Panel B 

shows a higher adjusted XSPI in patients with arteriovenous fistula (AVF) compared to dialysis 

patients without AVF. Panel C shows the adjusted XSPI in HD patients with or without AVF 

using a forward conditional approach. Bars represent 95% confidence intervals. 
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Table 1: Demographic, biochemical and pharmacological characteristics 

Parameter N=290 

Age (y) 64.8 ± 14.9 

Male 173 (60) 

Diabetes 124 (43) 

CVD 151 (52) 

Smoking 115 (40) 

BMI (Kg/m
2
) 27.2 ± 5.5 

Weight (Kg) 74.0 ± 16.6 

Peritoneal dialysis 58 (20) 

Hemodialysis access  

Arteriovenous fistula* 130 (56) 

Catheter* 102 (44) 

Dialysis vintage (y) 1.5 [0.5-3.3] 

stdKt/v 2.28 ± 0.26 

Biochemical  

Hb (g/l) 113.0 ± 11.6 

Albumin (g/l) 37.6 ± 3.5 

Calcium (mmo/l) 2.20 ± 0.17 

Phosphate (mmol/) 1.51 ± 0.38 

PTH (ng/l) 285 [187-450] 

Cholesterol (mmol/) 3.85 ± 0.98 

TG (mmol/) 1.94 ± 1.08 

CRP (mg/L) 6.2 [2.5-14.4] 

Medication  

ASA 185 (64) 

Warfarin 54 (19) 

Statin 182 (63) 

ACEi/ARB 131 (45) 

B-blockers 167 (58) 

Calcium channel blockers 103 (36) 

Diuretics 132 (46) 

Nitrates 49 (17) 

Values are mean±SD, n (%), or median [25
th

-75
th

 percentile] 

CVD: cardiovascular disease, std Kt/V: standardized Kt/V, ACEi: angiotensin-converting-

enzyme inhibitor, ARB: angiotensin receptor blockers, ASA: acetylsalicylic acid, CRP: C-

reactive protein, Hb: hemoglobin, PTH: parathyroid hormone, TG: triglyceride.  

*: percentage based on hemodialysis patients only. 
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Table 2: Clinical and hemodynamic parameters according to excess pressure integral 

 Excess pressure integral  

 Below median 

(n=145) 

Above median 

(n=145) 

P 

Clinical characteristics    

Age (y) 60.7 ± 16.0 69.0 ± 12.4 <0.001 

Male 85 (59) 88 (61) 0.811 

Cardiovascular disease 53 (37) 98 (68) <0.001 

Diabetes 40 (28) 88 (58) <0.001 

Smoking 65 (45) 50 (34) 0.093 

Dialysis vintage (y) 1.7 [0.5 – 3.7] 1.2 [0.5-3.2] 0.281 

Weight (kg) 72.9 ± 15.6 75.1 ± 17.6 0.254 

BMI (kg/m
2
) 26.4 ± 4.9 28.0 ± 5.9 0.014 

Hemodialysis 106 (73) 126 (87) 0.005 

Arteriovenous Fistula 60 (41) 70 (48) 0.288 

HR 71.2± 10.2 65.0± 10.0 <0.001 

Brachial BP    

SBP (mmHg) 123.0 ± 20.0 142.1± 26.5 <0.001 
DBP (mmHg) 73.9 ± 12.7 68.2 ± 12.8 <0.001 

MBP (mm Hg) 90.9 ± 15.0 93.5 ±17.7 0.180 

Carotid BP    

SBP (mmHg) 114.6 ± 20.7 135.3 ± 27.0 <0.001 
DBP (mmHg) 73.6 ± 12.8 67.3 ± 13.0 <0.001 

PP (mmHg) 41.0 ± 14.3 68.0 ± 20.5 <0.001 

Carotid Reservoir-Wave    

XSPI (kpa.s) 0.26 [0.20-0.31] 0.56 [0.45-0.74] <0.001 
XSP (mm Hg) 13.8 ± 3.1 26.9 ± 9.0 <0.001 
Time at XSP (ms) 41.0 ± 14.3 68.0 ± 20.5 <0.001 
RPI (kpa.s) 1.38[1.16-1.85] 2.29 [1.63-2.94] <0.001 
RP (mm Hg) 33.3 ± 12.9 50.2 ± 19.0 <0.001 
Time at RP (ms) 30.6 ± 3.6 33.0 ± 3.9 <0.001 
Proportion of XSPI (%)  15.1 ± 4.8 22.4 ± 8.8 <0.001 
XSPI:RPI 0.18 ± 0.07 0.31 ± 0.17 <0.001 
Systolic constant rate (x10

-2
) 19.8 [15.8-25.5] 16.6 [10.8-21.4] <0.001 

Diastolic constant rate (x10
-2

) 2.9 [2.1-4.4] 3.4 [2.8-4.2] 0.041 

Pulse wave velocity    

cf-PWV (m/s) 12.6 ± 3.9 14.8 ± 3.9 <0.001 
cr-PWV (m/s) 9.1± 1.6 8.6 ± 1.8 0.031 

PWV ratio 1.42 ± 0.49 1.76 ± 0.49 <0.001 

Central wave separation (GTF)    

AIx@75 (%) 24.1 ± 11.6 28.7 ± 9.2 <0.001 

Forward wave (mmHg) 28.0 ±8.3 42.9 ± 11.8 <0.001 

Backward wave (mmHg) 14.0 ± 5.4 23.3 ± 8.0 <0.001 

Reflection Magnitude 49.6 ± 9.2 53.7 ± 9.4 <0.001 

Reflection Index 32.9 ± 4.2 34.7 ± 3.7 <0.001 

Medication    

ASA 76 (52) 109 (75) <0.001 

Warfarin 23 (16) 31 (21) 0.291 

ACEi/ARB 57 (39) 74 (51) 0.059 

Beta-Blockers 73 (50) 94 (65) 0.017 

Calcium channel blockers 37 (26) 66 (46) 0.001 
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Nitrates 19 (13) 30 (21) 0.116 

Diuretics 63 (43) 69 (48) 0.556 

Statin 88 (61) 94 (65) 0.544 

Value are mean ± SD, n (%) or median [25th-75th percentile].  P value obtained by Fisher’s 

exact test, Student t-test or Mann-Whitney U tests as appropriate.  

RP, reservoir pressure; RPI, reservoir pressure integral; XSP, excess pressure; XSPI, excess 

pressure integral; cf-PWV, carotid-femoral pulse wave velocity; cr-PWV, carotid-radial pulse 

wave velocity; PWV ratio, ratio of cf-PWV-to-cr-PWV; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; MBP, mean blood pressure; PP, pulse pressure; ACEi, angiotensin-

converting-enzyme inhibitor; ARB, angiotensin receptor blockers; ASA, acetylsalicylic acid, 
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Table 3: Determinants of excess pressure integral according to dialysis modality and 

presence of arteriovenous fistula 

 Without AVF in the model   With AVF in the model 

Parameters 
Standardized 

coefficient 
P 

Adjusted 

R2 
 Parameters Standardized 

coefficient 

P Adjusted 

R2 

Model 1   0.315  Model 4   0.316 

PWV ratio 0.294 <0.001   PWV ratio 0.304 <0.001  

Heart rate -0.282 <0.001   Heart rate -0.288 <0.001  

Diabetes 0.203 <0.001   Diabetes 0.222 <0.001  

MBP 0.176 <0.001   MBP 0.172 0.001  

Hemodialysis 0.126 0.012   Hemodialysis* - -  

BMI 0.108 0.036   BMI 0.101 0.050  

   
 

 AVF 0.130 0.008 

 
 

Model 2   0.282  Model 5   0.285 

PWV ratio 0.280 <0.001   PWV ratio 0.289 <0.001  

Heart rate -0.264 <0.001   Heart rate -0.269 <0.001  

Diabetes 0.247 <0.001   Diabetes 0.261 <0.001  

Hemodialysis 0.100 0.050   Hemodialysis* - -  

DBP* - -   DBP* - -  

   
 

 AVF 0.114 0.023 

 
 

Model 3   0.398  Model 6   0.407 

SBP 0.409 <0.001   SBP 0.406 <0.001  

cr-PWV -0.179 0.002   cr-PWV -0.170 0.003  

Heart rate -0.235 <0.001   Heart Rate -0.239 <0.001  

Diabetes 0.203 <0.001   Diabetes 0.201 <0.001  

PWV ratio 0.142 0.014   PWV ratio 0.155 0.007  

Hemodialysis* - -   Hemodialysis* - -  

     AVF 0.109 0.018  
Parameters presented in the table are those that were included in the final model. 

 * no value for standardized coefficient provided as the parameters was not included in the final model. 

Model 1 was built using forward conditional regression analysis by using age, diabetes status, 

cardiovascular disease, body mass index (BMI), heart rate, mean blood pressure (MBP), Dialysis 

modality, carotid-femoral pulse wave velocity (PWV), carotid-radial PWV, the ratio of cf-PWV to cr-

PWV (PWV ratio). 

Model 2: Same as model 1 except MBP was replaced by brachial Diastolic Blood Pressure 

Model 3: Same as model 1 except MBP was replaced by brachial Systolic Blood Pressure  

Model 4: Same as in Model 1 + presence of arteriovenous fistulae (AVF) 

Model 5: Same as in Model 2 + presence of arteriovenous fistulae (AVF) 

Model 6: Same as in Model 2 + presence of arteriovenous fistulae (AVF) 
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Figure 1 
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Figure 2 
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Figure 3 
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