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SUMMARY
Hematopoiesis is amultistage process involving the differentiation of stem and progenitor cells into distinctmature cell lineages. Herewe

present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all themature lineages in

hematopoiesis.We include rare cell populations such as eosinophils, mast cells, basophils, andmegakaryocytes, and a broad collection of

progenitor and stem cells. We show that lineage branching andmaturation during hematopoiesis can be reconstructed using the expres-

sion patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages,

many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called

Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools

to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.
INTRODUCTION

Every day hematopoietic stem and progenitor cells in the

bone marrow differentiate under tight regulation into a

plethora of mature blood cells, with functions as diverse

as oxygen transport, wound healing, and immune re-

sponses. These stem cells can both differentiate to pro-

duce intermediate lineage-restricted progenitors, and can

replenish themselves via self-renewal, yielding a system

that can sustain cellular output over a lifespan of many

decades.

The transcriptional changes that underlie hematopoiesis

and result in functionally andmorphologically distinct cell

types are still only partially understood. Transcriptional

profiles of specific hematopoietic cell types have been

collated in both mouse (Chambers et al., 2007; Heng and

Painter, 2008; Seita et al., 2012) and human (Novershtern

et al., 2011; Rapin et al., 2014; Watkins et al., 2009) cells,

with a particular focus on lymphoid cells. There has not

yet been a mouse collection that covers all the major he-

matopoietic lineages.

We have generated a comprehensive set of tran-

scriptional profiles from the mouse, covering 54 diverse
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hematopoietic cell types from stem cells to terminally

differentiated hematopoietic lineages, and eight non-he-

matopoietic ‘‘outgroups’’ using Illumina BeadChips, which

we term Haemopedia—an encyclopedia of blood cell tran-

scription. The samples have been processed and hybridized

by a single facility, minimizing technical artifacts and re-

sulting in high reproducibility. This dataset can be viewed

in Haemosphere, an online data portal we have developed

that allows visualization of expression profiles, differential

expression analysis, and management of gene sets.

The mouse has been an extremely useful model organism

for studying hematopoiesis (Schmitt et al., 2014). Our data-

set demonstrates a high degree of concordance between

the transcriptional profiles seen in human and mouse he-

matopoietic cell types. This validates the utility ofHaemope-

dia for both understanding the transcriptomics of hemato-

poietic differentiation in a major model organism and

allowing for a comparisonofmouse andhumanhematopoi-

esis. We further show that the Haemopedia gene-expression

datacanbeusedto reconstruct the relationshipsbetweencell

types, to identify lineage-specificgene sets that includegenes

not previously associated with particular blood cell types,

and to identify new subpopulations of hematopoietic cells.
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Figure 1. Cells Included in Haemopedia
The 54 hematopoietic cell populations that
were purified by flow sorting from mouse
and then analyzed by gene-expression
profiling are shown here grouped in their
respective lineages. The colors associated
with each lineage are used throughout the
paper. See Figure S1 and Table S1 for sample
information, Table S2 for cell type infor-
mation including abbreviations used, puri-
fication protocols, and tissue of origin,
Table S3 for antibody information, Figure S1
for sorting information, Figure S2 for clus-
tering of replicate samples, and Figure S3
for a comparison of cell types with other
hematopoietic expression datasets.
RESULTS

Data Collection

Haemopedia contains transcriptional profiles for 169 he-

matopoietic samples that represent 54 hematopoietic cell

types from all major lineages including B cells, T cells,

natural killer (NK) cells, dendritic cells, macrophages, neu-

trophils, eosinophils, basophils, mast cells, erythrocytes,

and megakaryocytes, as well as progenitors and stem cells

(Figure 1 and Table S1). Cells were sorted by flow cytome-

try according to the markers shown in Table S2 and Fig-

ure S1A. In addition, for reference we also included some

‘‘outgroups’’ of other tissue types for comparison (Figure 1).

All primary hematopoietic samples were collected from

C57BL/6 mice. When aliquots of sorted samples were

re-analyzed they showed >95% purity. The identity of

representative cell types was further confirmed by micro-

scopic examinations of stained cytocentrifuge prepara-

tions and/or culture experiments (Figure S1B). At least

three replicates were included whenever possible (Table

S2). Samples were hybridized to the Illumina Mouse

WG-6 V2.0 BeadArrays.

To check how closely the replicate samples clustered, we

used t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Van der Maaten and Hinton, 2008). This showed

that, generally speaking, the replicates were very similar,

and that cells of the same lineages also clustered similarly

(Figure S2). As a further quality control test, we clustered

our cell types with two other hematopoietic datasets,

ImmGen (Heng and Painter, 2008) and GEXC (Seita

et al., 2012) (Figure S3). Despite these datasets using

different microarray platforms, the cells clustered well

by lineage rather than by batch, showing our expression

data are robust.
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Cell Relationship

There is a hierarchal relationship between hematopoietic

cells, with stem cells and progenitors producing immature

cells that are committed to a particular lineage, which then

differentiate further into mature blood cells (Seita and

Weissman, 2010). These relationships have been exten-

sively defined in the literature by in vitro or in vivo differ-

entiation studies. We sought to investigate whether these

relationships were recapitulated by our transcriptional

data.

Because the cellular differentiation relationships within

the hematopoietic system are conventionally represented

as a stepwise, branching process, we chose to useminimum

spanning trees (MST) (Prim, 1957), a type of analysis that

allows samples to be directly connected to each other

rather than by theoretical intermediates, such as in hierar-

chical clustering. We have constructed an MST using only

the probes with expression that varies most over hemato-

poiesis (Figures 2 and S4A). While unsupervised, this cap-

tures many of the expected relationships in the cell type

data, such that the stem cells and progenitors are placed

centrally in the plot while the more mature cells radiate

into distinct lineage-specific axes. The MST also compares

well with relationships observed in other datasets,

including H3K4me1 profiles, using different clustering

methods (Lara-Astiaso et al., 2014).Where we have a differ-

entiation series in the data, the tree captures the progres-

sive order of maturation; for example megakaryocytes of

increasing ploidy (Meg8N, 16N–32N) or T cell progenitor

maturation (CD4TThy1Lo [Thy1lo T cell progenitors],

TN1, TN2, TN3 to TN4) or B cell development (ProB, PreB

to ImmB). This shows that the Haemopedia dataset is

able to recapitulate known linear relationships during dif-

ferentiation from stem cells into mature progenitors of



Figure 2. Relationships of Cells Inferred
by Expression Data Recapitulate Known
Cellular Relationships
A total of 890 probes (719 genes) with
SD > 2 on a log2 scale across all cell types
were selected (Figure S4A). A minimum
spanning tree based on Euclidean distance
measurements was calculated using these
probes. Lengths of branches reflect the
distance between cell types. Colors are as
given in Figure 1. See Figure S4B for MST
based on only transcription factors or sur-
face markers (genes given in Table S4).
various lineages, along with separation of discrete cell

lineages.

Similarly to recent work showing a revised model of

myeloid commitment in which erythrocyte and megakar-

yocyte lineage committed progenitors are derived from

a multipotential progenitor rather than the common

myeloid progenitors (CMPs) (Paul et al., 2015; Perié et al.,

2015), our MST shows CD9Hi progenitors and megakaryo-

cytes as branching off short-term HSCs (STHSCs) rather

than CMPs. A similar phenomenon has been observed in

human hematopoiesis with single-cell studies suggesting

that megakaryocytes can be derived directly from HSCs in

the adult, rather than from an oligopotent progenitor

(Notta et al., 2015). An unexpected relationship shown

by the MST is that peripheral blood monocytes are placed

near to bone marrow eosinophils rather than granulocyte

macrophage progenitors (GMPs). This may have arisen

because of the relative paucity of data available in our atlas

for intermediate developmental stages for these lineages,

unlike for T and B cells, for which the intermediate stages

are very well characterized.

The cell type relationships displayed in Figure 2 were

created using the expression data from more than 700

genes; however, during hematopoiesis, lineage commit-

ment can be specified according to finely graded expression

of particular transcription factors, such asMyb or Pu.1 (De-

Koter and Singh, 2000; Emambokus et al., 2003). Similarly,

cell identity can be defined using a combination of a few

key cell surface markers (Akashi et al., 2000; Godfrey

et al., 1993). To see whether this held true for our dataset,
we created MSTs using only the most transcriptionally

variable cell surface markers or transcription factors (Fig-

ure S4B). After applying a cutoff of SD > 2.5 (log2 scale)

expression across all cell types, 59 surface markers (71

probes) and 45 transcription factors (53 probes) were left

(Table S4). This included some well-known regulators of

hematopoietic differentiation such as Cebpe (Lekstrom-

Himes, 2001),Mpl (Alexander et al., 1996), andGata family

members (Chlon and Crispino, 2012).

The resulting trees demonstrate that these two indepen-

dent lists containing smaller numbers of genes capture the

relationships faithfully where we have a detailed differenti-

ation series, but show some variation where the distance

between cell types is large. This suggests that both the tran-

scription factors and surface receptors have fine gradients

of expression between cell types, which, in combination,

can resolve subtle differences in cellular maturity.

This analysis confirms that our MSTs are robust to gene

selection where we have detailed differentiation data along

linear pathways, but that small gene sets can influence the

branching points when the number of intermediates is

limited.

Lineage-Specific Genes

Commitment, maturation, and activity of specific he-

matopoietic lineages are regulated by transcription factors

and receptors that are expressed selectively. Since we have

covered many mature lineages in our dataset, we set out

to identify genes that are expressed selectively and highly

in specific lineages. To do this we looked for genes that
Stem Cell Reports j Vol. 7 j 571–582 j September 13, 2016 573



Figure 3. Identifying Lineage-Specific
Genes
(A) Expression of lineage-specific genes
across all mouse cell types. The heatmap is
colored by the absolute expression value
(log2) for each gene, where blue is low,
yellow intermediate, and red high expres-
sion. The number of genes specific for each
lineage is shown along the left of the
heatmap; for complete gene list see Table
S5. Mature cells are highlighted in black and
progenitor cells in gray. Lineages are
colored as in Figure 1. The expression of
lineage signature genes in their associated
lineage is highlighted in heavily lined
boxes.
(B) Selected gene signatures that are over-
represented within the lineage signatures
indicated; complete lists of gene signatures
associated with enriched signatures are
shown in Table S6. Lineage signatures
compared with other expression datasets
are shown in Figure S5.
had high expression in a single mature cell type and sub-

stantially lower expression in all other mature lineages.

We also looked for stem cell-specific genes using a similar

method, comparing gene-expression level in stem cell

populations with all of the mature cell lineages. By

applying these criteria to stem cells and each of the

mature lineages across all of the genes in Haemopedia,

we derived a signature set of genes for each lineage (Table

S5). The expression level of these signature genes across

all cell types is shown in Figure 3A. To confirm the gen-

eral application of these lineage signatures, we looked at

their expression in two other hematopoietic datasets,

ImmGen (Heng and Painter, 2008) and GEXC (Seita
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et al., 2012). The expression of these signatures was

largely conserved (Figure S5). Notable exceptions were

the erythrocyte and megakaryocyte signatures, which

are lowly expressed in the GEXC samples of those line-

ages. As we defined these signatures using mature cells

while the Gene Expression Commons only contains pro-

genitors from these lineages, the reduced degree of

concordance with the signatures can be expected. In

particular, the lack of expression of the erythrocyte signa-

ture in the GEXC preCFU-E (pre-colony-forming units -

erythrocyte) correlates well with the lack of expression

observed in our preCFU-E, showing that data from

different developmental stages can be very informative.



The erythrocyte lineage had the largest unique signature

with 1,461 probes. This results from this highly specialized

cell type having a function dramatically different to that of

all of the other hematopoietic cell types. The signature

included genes involved in heme biosynthesis such as

Urod, Uros, and Ppox. The eosinophil lineage displayed the

smallest signature with just 49 uniquely upregulated

probes, including genes encoding eosinophil granule pro-

teins such as Ear2 and Prg3, while sharing some common

pathways with the other granulocytes in the atlas.

On the whole, the mature cell signatures were foreshad-

owed in their lineage-restricted progenitors. For example,

the T cell signature was largely expressed from the TN3

stage of maturation, but this program was not yet highly

expressed in the earlier T cell progenitors. MEPs (megakar-

yocyte-erythroid progenitor cells) as defined by Lin�CKIT+

CD34� FcgRlo SCA-1� were named after their ability to

produce both megakaryocytes and erythrocytes in vitro

on a BCL2 transgenic background, but in C57BL/6 mice

with wild-type BCL2 expression overwhelmingly produce

erythrocytes in vivo (Akashi et al., 2000; Ng et al., 2011).

Interestingly, on our hematopoietic MST (Figure 2) they

lie between CFU-E and PreCFU-Es, express erythroid line-

age-specific genes, and do not show significant expression

of the megakaryocyte lineage genes, unlike other progen-

itor groups such as the STHSCs, CMPs, and BEMPs (bipo-

tential erythroid-megakaryocyte progenitor cells). This

supports their placement as predominantly erythroid pro-

genitor cells with limited bipotentiality.

Cells of specific lineages enact transcriptional programs

that produce the cellular components required for their

phenotype as mature blood cells. To identify regulators

governing development of these gene-expression pro-

grams, we looked through gene sets associated with genetic

perturbations, chemical stimulations, and conserved motif

binding (Liberzon et al., 2011), and identified those that

were significantly over-represented in our lineage-specific

gene sets (Figure 3B and Table S6). As would be expected,

target genes for transcription factors or signaling pathways

known to play key lineage-specific roles were found to be

upregulated within the corresponding cells. For example,

Klf1 was found within the erythrocyte gene signature,

and its targets genes were also within the erythrocyte

lineage signature (Pilon et al., 2008), and B cell receptor

signaling is upregulated in the B cell lineage signature

(Schaefer et al., 2009). The stem cell signature included

six Hox genes, a family implicated in stem cell self-renewal

and leukemia (Argiropoulos and Humphries, 2007), as well

as the targets of the NUP98-HOXA9 fusion protein that is

found in acutemyeloid leukemia (Takeda, 2006). This anal-

ysis confirms that the lineage signatures are related to

known lineage functions, and novel gene sets may suggest

new regulators of particular lineages.
Similarity between Mouse and Human Expression

Data

The human D-MAP compendium includes transcriptional

data from 38 types of human hematopoietic cells, which

can be separated into ten major lineages as well as progen-

itor cells (for details of cells see Novershtern et al., 2011). To

explore transcriptional similarities and differences between

the mouse and human datasets, we identified homologous

genes (i.e., those with one-to-one orthologs in both mouse

and human). Where there were multiple probes for either

species, we selected only the probe that had the highest

variance in expression across each dataset. This resulted

in 9,294 one-to-one orthologs found in both species.

To compare the human and mouse data, we separately

mean-centered probes in each species to remove platform-

and species-specific batch effects, using only the probes

that had a dynamic range ofmore than 8 (3 on a log2 scale)

across both human and mouse cell types. This gave a set of

2,189 genes.We then clustered the cell types usingmultidi-

mensional scaling (Figure S6). Thus, after normalization

the cell types were grouped based on their lineage, rather

than their species, with clear clusters for the erythrocyte

lineage, the T cell lineage, and a cluster for the granulo-

cyte/monocyte lineages.

To examine these relationships in more detail, we

excluded cell types that were not profiled in both species

(see Experimental Procedures for details). Many of the

same surface markers were used to define and sort the

equivalent populations in mouse and human, further sup-

porting their similarity. We then correlated each human

cell type with each mouse cell type to identify the closest

relationships (Figure 4). The erythrocyte, megakaryocyte,

and B and T cell lineages each correlated well with the cor-

responding lineage in the other species; however, granulo-

cyte/macrophage lineages correlated highly with other

myeloid lineages, rather than having their strongest corre-

lation with their orthologous lineage.

To test whether the murine lineage-specific genes

(Figure 5) retain their lineage-specific expression in hu-

mans, we again looked at the list of one-to-one orthologs.

Of the 2,731 lineage-specific genes that we identified

(excluding mast cell-specific genes in the absence of an

orthologous human cell type in this dataset), 1,208 (44%)

had a one-to-one ortholog in humans. Of those, we found

that 385 (40%) were still most highly expressed in the or-

thologous lineage (Figure 5A and Table S7). The erythroid

cells, for which there were a high number of lineage-spe-

cific genes in the mouse signature set (Figure 3), retained

a high number of genes specifically expressed in human

erythroid cells, with 51% of their one-to-one orthologs to

the lineage-specific signature (256/500) maintaining high-

est expression in the human erythroid lineage. However,

few of the myeloid lineage orthologs were most highly
Stem Cell Reports j Vol. 7 j 571–582 j September 13, 2016 575



Figure 4. Similarity of Expression Patterns in Mouse and Hu-
man Cells
Heatmap of correlations between mouse and human cell types after
mean normalization of expression for one-to-one orthologs be-
tween the species. Genes with SD > 0.8 on a log2 scale were chosen,
leaving 2,026 genes. Heatmap scale is according to Pearson cor-
relation of cell types, with no correlation (dark blue) through to
highly correlated (dark red). Lineages are colored as in Figure 1.
Lineages that are equivalent between species are highlighted by
heavily lined boxes. Multidimensional scaling plot of mouse versus
human cell types is shown in Figure S6.
expressed in their human equivalents. This correlated with

the lack of specificity of correlation between different

myeloid cell types (Figure 4).

We also identified genes that were lineage specific in

mice, but with an expression pattern that was not

conserved in humans. We selected all one-to-one ortholo-

gous lineage signature genes, which hadmaximum expres-

sion in a different lineage, andwere expressed 8-fold higher

(3 on a log2 scale) than the mean expression across all lin-

eages. This left us with 38 genes (Figure 5B). Some genes

have extremely different expression patterns in humans,

such as Spon2, which is highly expressed in specific progen-

itor cells and megakaryocytes in mice, yet is highest in NK

cells and CD8+ T cells in humans. Other genes retain

expression in the lineage of interest, but are more broadly

expressed in humans. One example is Ptgs2, which retains

in humans the neutrophil expression that is observed in

mice, but is also highly expressed in other myeloid cells

in humans, with high expression detected in monocytes

and dendritic cells as well as granulocytes.
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Haemosphere: AWeb Portal to Hematopoietic

Expression Data

To make the data in Haemopedia widely accessible and

useful, we have developed a web portal that is publicly

accessible at haemosphere.org. Named Haemosphere, this

web portal is designed for researchers without significant

bioinformatics expertise to access and analyze data in an

intuitive way, providing interactive plots for expression

profiles, multidimensional scaling, and heatmaps.

In addition to providing access to Haemopedia, Haemo-

sphere includes a selection of other published datasets

considered as hematopoietic ‘‘atlases.’’ These are datasets

focused on the blood and contain a range of wild-type/

healthy hematopoietic cells that can serve as reference

data. The strength of these datasets combined with Hae-

mopedia is their utility in supporting rapid testing of exper-

imental hypotheses in silico. Hence, enhanced ease of

access and exploration by researchers with diverse exper-

tise will greatly increase their value.

At the time of publication, there are four murine (Cham-

bers et al., 2007; Heng and Painter, 2008; Seita et al., 2012)

(including Haemopedia) and three human (Novershtern

et al., 2011; Rapin et al., 2014; Watkins et al., 2009) expres-

sion datasets included in Haemosphere, which provides a

convenient single point of entry with a consistent interface

to the data, and also enables analyses and comparisons

across different datasets. There are other existing data

portals that allow exploration of hematopoietic expres-

sion data, including GEXC (Seita et al., 2012), Bloodspot

(Bagger et al., 2016), ImmGen (Heng and Painter, 2008),

and InnateDB (Breuer et al., 2013). Haemosphere differs

significantly to these data portals by providing a unique

set of functions for analysis and access to several indepen-

dent datasets.

Some of the key features of Haemosphere include:

d Interactive expression profile plots for genes of interest

d Analysis of gene set expression in a selected dataset

through the generation of an interactive heatmap

d Interactive multidimensional scaling plot enables visual-

ization of relationships between cell types within a data-

set

d Identification of differentially expressed genes between

two cell types or lineages within a dataset using well-

established methods (limma from R/Bioconductor)

(Ritchie et al., 2015)

d Finding correlated and negatively correlated genes

d Linking genes to their orthologs
Discovering Hematopoietic Genes Using

Haemosphere

Haemopedia includes transcription profiles from rare

hematopoietic cells types such as eosinophils, for which

http://haemosphere.org


Figure 5. Expression of Mouse Lineage
Signature Genes in Human Hematopoietic
Cells
Genes shown are from murine hematopoi-
etic lineage signatures as in Figure 3 and
have one-to-one human orthologs in human
hematopoietic cells. Heatmap is colored
according to mean normalized expression.
Lineage colors are as given in Figure 1.
(A) Lineage signature genes that have their
highest expression level in the orthologous
human lineage, with their expression in the
lineage of interest highlighted by a heavily
lined box.
Numbers (left side) show the number of
lineage signature genes with maximum
expression in the equivalent human lineage
as a proportion of lineage signature genes
with a one-to-one human ortholog. Details
of genes are given in Table S7.
(B) Lineage signature genes that do not
have their highest expression level in the
orthologous human lineage. Only genes
that are expressed in at least one cell type at
least 8-fold (3 on a log2 scale) higher than
the mean expression are shown.
published transcription datasets are relatively scant. To

illustrate the combined power of Haemopedia and Haemo-

sphere, we performed an example analysis using the tools

we provide in Haemosphere, which yielded an eosino-

phil-specific transcription factor, Mkx.

Starting with a known regulator of eosinophils, Ccr3 (the

receptor for eotaxin) (Ponath et al., 1996), which is highly

expressed on the surface of eosinophils, Haemosphere was

used to view its expression profile across hematopoiesis

(Figure 6A). This shows distinctive high expression in eo-

sinophils and basophils, as expected. The ‘‘find similar’’

function available on the expression profile page of Hae-

mosphere was then used to find genes in which expression

is correlated to Ccr3. The resulting table of genes, sorted by

Pearson correlation value (Table S8), contained some
known eosinophil-specific genes such as Siglecf (Stevens

et al., 2007), Il4 (Piehler et al., 2011), and Epx (Horton

et al., 1996) as well as genes that have not previously

been associated with the eosinophil lineage. These

includedMkx, which was one of themost highly positively

correlated genes. The Mkx expression profile is shown in

Figure 6B, illustrating its similarity to Ccr3 expression.

Mkx is an IRX family-related homeobox gene with

known roles in tendon formation (tenogenesis), but no

previously reported function in hematopoiesis (Ito et al.,

2010). To further examine Mkx expression during hemato-

poiesis, we generated an Mkx-driven GFP reporter mouse,

MkxGFP (see Experimental Procedures). Consistent with

Haemopedia expression profiles, GFP fluorescence was

greatest in eosinophils in comparison with other lineages
Stem Cell Reports j Vol. 7 j 571–582 j September 13, 2016 577
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Figure 6. Haemosphere: A Web Portal to
Hematopoietic Expression Data
haemosphere.org is an online data portal
and analysis tool that contains Haemopedia
as well as other hematopoietic datasets of
relevance. Among other features, Haemo-
sphere can be used to discover pathways
and genes involved in an aspect of hema-
topoiesis. An example is shown here.
(A) Expression profile of eosinophil marker
gene Ccr3 as shown in Haemosphere (the
plot used here has been downloaded from
Haemosphere as a pdf, which is one of the
features of Haemosphere). Genes positively
correlated to Ccr3 are given in Table S8.
(B) Expression profile of Mkx, a transcrip-
tion factor with high expression correlation
to Ccr3.
(Figure 7A). We next examined Mkx expression in eosino-

phils isolated from different hematopoietic compartments

(Figure 7Bi). The high expression ofMkx observed in eosin-

ophils was derived from an Mkx-positive subpopulation.

Peritoneal cavity eosinophils were shown to have the

largest proportion of Mkx-positive cells, followed by eosin-

ophils from the spleen and peripheral blood, and then the

bonemarrow (Figure 7Bii). This suggests a possible gradient

of Mkx expression within the bulk eosinophil population

or, alternatively, a subset of Mkx-expressing eosinophils

in each compartment. Thus these results confirm that

Haemopedia can be used as a powerful tool to screen for po-

tential hematopoietic regulators with hitherto unknown

hematopoietic functions with a high degree of specificity.
DISCUSSION

The major strengths of Haemopedia are the breadth and

the quality of the data: the data are all collected from a

single strain of mice and the expression data are processed

at a single facility. It covers all of the mature lineages of

hematopoiesis in mice and includes a diverse collection

of progenitors.

The range of cell types in Haemopedia makes identifica-

tion of lineage-specific genes more rigorous. The genes

that we have identified as lineage signatures are highly spe-

cific to each lineage and are lineage specific in other data-
578 Stem Cell Reports j Vol. 7 j 571–582 j September 13, 2016
sets (Figure S5). This provides a powerful resource for

identifying new regulators and markers of particular

lineages. In our analysis of the most variable genes across

hematopoiesis, we identified pathways and transcription

factor targets over-represented in the lineage signatures.

Any novel pathways and transcription factors associated

with each lineage may therefore provide new insights

into the regulation of those cell types and the perturbations

that may lead to disease.

Wewere able to use gene-expression information to orga-

nize the cell types into MST (Figure 2). These showed a

maturation hierarchy from progenitors and stem cells to

mature cells and identified the major lineages and subtle

stages in developmental trajectories. However, the relation-

ship between progenitors or the placement of some

myeloid lineages was not as clear. This can be observed

by the variable placement of mast cells and basophils de-

pending on which genes are selected to construct the tree

(Figures 2 and S4). This may be because the distances be-

tween those cell populations and their progenitors are

too large to allow their accurate placement without

further intermediate populations. Where the relationship

between the progenitors is unclear, this may be due to

the heterogeneity of sorted populations or because multi-

ple pathways to maturity may exist. Single-cell analysis

shows that there are evenmore subtle distinctions between

progenitors and stem cells than have been traditionally

defined (Drissen et al., 2016; Wilson et al., 2015; Zhou

http://haemosphere.org
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Figure 7. In Vivo Exploration of Mkx, an
Eosinophil-Specific Gene
(A) The Mkx-GFP levels (median fluores-
cence intensity) in cells in MxkGFP/GFP re-
porter mice. Eosinophils and B cells were
taken from bone marrow, neutrophils, and
monocytes from peripheral blood. Data
represent mean ± SEM with replicates shown
as individual points (n = 4–6 mice).
(B) (i) Comparison of GFP expression in
different eosinophil populations from the
MxkGFP/GFP mouse. Negative control is pe-
ripheral blood eosinophils from an Mkx+/+

mouse. Data shown are normalized to the
mode. (ii) Percentage of eosinophils that are
GFP+ in tissues given in (Bi) in MkxGFP/GFP

mice. Data represent mean ± SEM with repli-
cates shown as individual points (n = 6mice).
et al., 2016). This has led to identification of novel path-

ways of hematopoietic development (Drissen et al., 2016)

and should assist in clarifying the pathways to lineage

commitment.

There has been great interest in comparing mouse

and human transcriptomes, with the interpretation being

sensitive to the normalization strategy used (Gilad and

Mizrahi-Man, 2015; Lin et al., 2014). However, major

developmental pathways are conserved between these spe-

cies, and both similarities and differences between cell-spe-

cific gene-expression profiles across species can be highly

informative (Brawand et al., 2011; Pishesha et al., 2014).

We observed that while many of our lineage-specific genes

were conserved between species, the granulocyte/macro-

phage lineages in particular had less conserved signature

genes. These cell types also did not separate into distinct

lineages when clustered into an MST or by multidimen-

sional clustering (Figures 2 and S4). There are several poten-

tial reasons for these observations. There are a range of

known differences between mouse and human myeloid

cells (Mestas and Hughes, 2004). For instance, CD33,

which binds sialic acid, is expressed onmouse granulocytes

but is found on humanmonocytes, while CD4 is expressed

on human monocytes and granulocytes but not on mouse

macrophages. This supports the important point that

studies using mouse models need to validate the specificity

or presence of the human gene or pathway of interest in

mice.

Large datasets, such as Haemopedia, can be difficult to

navigate, particularly for non-bioinformaticians. For this

reasonwe have createdHaemosphere as a web portal allow-

ing direct access to hematopoietic data from the Haemope-

dia collection as well as other hematopoietic transcription

datasets. The combination of Haemopedia and Haemo-

sphere provides a powerful data-mining tool with broad
application. We plan to add appropriate new datasets to

Haemosphere at the request of our users, in particular

including RNA-sequencing expression profiles. We are

also developing new tools to enable, for example, inte-

grated gene-ontology analysis and dynamic gene clus-

tering. We identified a transcription factor, Mkx, which

had no known role in hematopoiesis, as having highly

eosinophil-specific expression by correlation with known

eosinophil genes using the Haemopedia and Haemosphere

functionality. We validated this gene by in vivo analysis of

expression to define a subset of eosinophils in the periph-

eral blood, spleen, and peritoneal cavity, showing the po-

wer and utility of this approach.

In conclusion, Haemopedia is a comprehensive collec-

tion of gene-expression data covering all hematopoietic

lineages, which, along with Haemosphere (a web portal

and suite of analysis tools), will enable improved under-

standing of the molecular and genetic regulation of blood

cell function and production.
EXPERIMENTAL PROCEDURES

Cell Purification and Quality Assessment
All cells were purified fromwild-typeC57BL/6mice, between7 and

12 weeks of age, except Pre and Pro B cells, which were collected

from 5- to 7-week-old mice. Bone marrow was collected from fe-

murs and tibiae, and in some instances, hips. Lymph node cells

were collected from the inguinal, axillary, brachial, mesenteric,

and superficial cervical lymph nodes. Peritoneal cells were isolated

by peritoneal lavage. Peripheral bloodwas collected from the retro-

orbital plexus into Microtainer tubes containing EDTA (BD Biosci-

ences). All procedures involving animals were approved by The

Walter and Eliza Hall Institute of Medical Research Animal Ethics

Committee. Cells were purified according to the combination of

monoclonal antibodies outlined in Tables S2 and S3 and then
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isolated on a fluorescence-activated cell sorter. Except for

extremely rare populations, a portion of the sample was resorted

to confirm the final purity of the sample. In some experiments,

sorted cell populations were transferred onto slides using a cyto-

spin centrifuge and subsequently stained with May-Grunwald/

Giemsa staining (Sigma-Aldrich) for morphological examination.

RNA Isolation, Amplification, and Hybridization
Total RNAwas isolated frompurified cell populations using RNeasy

Micro/Mini kits (Qiagen). Each purified RNA sample was assessed

for quality and integrity using the 2100 Bioanalyzer (Agilent

Technologies).

RNA was amplified according to the manufacturer’s instructions

with the Illumina Total Prep RNA Amplification Kit (Ambion). The

quality of the labeled product was again ascertained using the

Agilent Bioanalyzer 2100. Labeled cRNA was then hybridized to

Illumina MouseWG-6 V 2.0 Expression BeadChips according

to the manufacturer’s instructions at the Australian Genome

Research Facility.

Processing of Gene-Expression Data
The microarray intensities were normexp background corrected

and quantile normalized using control probes (Shi et al., 2010). Af-

ter normalization, we restricted to a curated selection of probes

that were supported by an Ensembl transcript (Barbosa-Morais

et al., 2009). This resulted in 34,031 probes covering 19,699 genes.

Data Availability
All data can be viewed and are available for download on

haemosphere.org. The dataset is also available in the Gene Expres-

sion Omnibus under the accession number GEO: GSE77098.

Bioinformatics Analyses

Minimum Spanning Trees
When clustering cell types, the data were averaged for each cell

type and then probes of interest were selected with an SD cutoff

to select only the genes with the most varied expression pattern

across cells. Initially the 889 probes (covering 717 genes) with

SD > 4 (2 on a log2 scale) were selected. For the cell surface marker

and transcription factor sets a cutoff of SD > 6.25 (2.5 on a log2

scale) was used. The Euclidean distance between each cell type

was calculated with these probes, and this value was used to deter-

mine the minimum spanning tree with the vegan package in R

(Oksanen et al., 2015).

Multidimensional Plots
Multidimensional scaling plots of distances between cell types

were made using the plotMDS function in the limma package in R

(Ritchie et al., 2015).

t-Distributed Stochastic Neighbor Embedding Plots

t-SNE plots (Van der Maaten andHinton, 2008) weremade in R us-

ing standard parameters in the package Rtsne.

Identification of Lineage-Specific Genes

Lineage-specific genes were selected with criteria that ensured they

weremost highly expressed in a single lineage. Themature cells (as

marked in Figure 3) of all lineages were selected. Differential

expression was then assessed using linear modeling and empirical
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Bayes t statistics to find false discovery rate (FDR)-corrected

p values with the limma package in R (Ritchie et al., 2015; Smyth,

2004). For each mature lineage, we performed separate pairwise

comparisons between the samples of the lineage of interest and

the samples in every other lineage. Genes were considered upregu-

lated in the lineage of interest if they had an FDR after Benjamini-

Hochberg correction of <0.01 and were >2-fold (1 on a log2 scale)

higher expressed in the lineage of interest. Then probes were iden-

tified as ‘‘lineage specific’’ if they met this criteria in every compar-

ison with another mature lineage. A similar test was done for the

stem cell-specific genes, with stem cell samples compared with

every mature lineage, to find genes that were highly expressed in

stem cells compared with every mature lineage. If a gene was

stem cell specific, but also fell into a lineage-specific list, it was

left only in the stem cell list.

Human-Mouse Comparison

Transcriptional profiles from human hematopoietic cells were

obtained from Novershtern et al. (2011) by downloading the pub-

lished data from the GEO with accession number GEO: GSE26014.

The collection of data was quantile normalized, and probes associ-

ated with Ensembl gene IDs by BioMart (www.biomart.org) were

then filtered for those that were only associated with a single

Ensembl ID. To link mouse and human orthologs, we used the

Mouse Genome Informatics (MGI; www.informatics.jax.org) re-

ports and selected for those thathad a one-to-onemapping between

species. In caseswere geneswere represented bymultiple probes, we

selected the probe with the highest mean expression across the

species. This left 9,294 orthologous genes. The data for each gene

was thenmean-centered at zero separately for each species.

For later comparisons we removed cell types that were not repre-

sented in both species. This included several progenitor popula-

tions and mast cells, as they were only represented in mice. We

also removed the human plasmacytoid dendritic cell DENDa1

from the human collection, as there is no equivalent in the mouse

collection and the human mature NKa1 cell (CD56� CD16+

CD3�), which is more similar to the human monocytes than the

NK cells, as there is no equivalent in the mouse collection.

The heatmap comparing mouse with human cells was colored

based on correlations of genes which had an SD of >0.8 on a

log2 scale in both species, leaving 2,026 genes.

ACCESSION NUMBERS

The dataset is available in theGene ExpressionOmnibus under the

accession number GEO: GSE77098.
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