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Abstract 

Human performance in complex multiple-task environments depends critically on the interplay 

between cognitive control and cognitive capacity. In this paper we propose a tractable 

computational model of how cognitive control and capacity influence the speed and accuracy of 

decisions made in the event-based prospective memory (PM) paradigm, and in doing so test a 

new quantitative formulation that measures two distinct components of cognitive capacity (gain 

and focus) that apply generally to choices among two or more options. Consistent with prior 

work, individuals used proactive control (increased ongoing task thresholds under PM load) and 

reactive control (inhibited ongoing task accumulation rates to PM items) to support PM 

performance. Individuals used cognitive gain to increase the amount of resources allocated to the 

ongoing task under time pressure and PM load. However, when demands exceeded the capacity 

limit, resources were reallocated (shared) between ongoing task and PM processes. Extending 

previous work, individuals used cognitive focus to control the quality of processing for the 

ongoing and PM tasks based on the particular demand and payoff structure of the environment 

(e.g., higher focus for higher priority tasks; lower focus under high time pressure and with PM 

load). Our model provides the first detailed quantitative understanding of cognitive gain and 

focus as they apply to evidence accumulation models, which – along with cognitive control 

mechanisms – support decision-making in complex multiple-task environments. 

Keywords: cognitive control; cognitive capacity; prospective memory; selective attention; 

multi-tasking; Bayesian evidence accumulation model 

  



 

 

2 

Human performance in complex multiple-task environments depends critically on the 

interplay between cognitive control and cognitive capacity. Cognitive control refers to processes 

that adapt the cognitive system to meet specific task demands (Braver, 2012; Braver & Barch, 

2002; Miller & Cohen, 2001; Miyake et al., 2000). Cognitive capacity refers to a finite pool of 

cognitive resources involved in information processing (e.g., attention, working memory) that 

can be allocated to various features of the task environment and whose limited nature gives rise 

to resource bottlenecks (Kahneman, 1973; Navon & Gopher, 1979). In this paper we propose a 

computational model of how cognitive control and capacity influence the speed and accuracy of 

decisions made in the event-based prospective memory paradigm, and within that model 

introduce and validate a new quantitative formulation that identifies two distinct components of 

cognitive capacity that apply more broadly to making choices among two or more options.  

Event-based Prospective Memory (PM) refers to the ability to remember to perform 

deferred task actions when a particular stimulus or event is encountered in the future (Einstein & 

McDaniel, 1990). PM tasks often arise in complex, dynamic, and safety critical task 

environments such as aviation and healthcare (Dismukes, 2012; Grundgeiger, Sanderson, 

MacDougall, & Venkatesh, 2010; Loft, 2014), in which failures to manage PM demands can 

have dire consequences (e.g., an airline pilot forgetting to set the flaps before take-off; Dismukes 

& Nowinski, 2007; an emergency physician forgetting to check the patient’s heart rhythm; Soar 

et al., 2015). As such, there has been a significant effort to understand the cognitive processes 

involved in PM, and when and why those processes fail (e.g., Einstein & McDaniel, 2005; Hicks, 

Marsh, & Cook, 2005; Scullin, McDaniel, & Shelton, 2013; Smith & Bayen, 2004; Strickland, 

Loft, Remington, & Heathcote, 2018).  
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In a typical PM study, participants perform two tasks: a primary decision-making task 

(e.g., lexical decision), referred to as the ongoing task, and a secondary PM task (e.g., press an 

alternative key for an animal word; Einstein & McDaniel, 1990). In control blocks participants 

perform only the ongoing task. In PM blocks, participants perform the same ongoing task, but on 

some trials will encounter a PM target. Often, individuals are slower to respond to non-target 

ongoing task items in PM blocks than in control blocks, even when no PM response is required 

(e.g., Marsh, Hicks, Cook, Hansen, & Pallos, 2003; Smith, 2003). This slowing is referred to as 

PM cost to the ongoing task. The concepts of cognitive control and cognitive capacity have 

emerged as central to theories regarding the psychological mechanisms underlying costs and PM.  

To measure the cognitive control processes and cognitive capacity underlying PM, 

Strickland et al. (2018) developed a quantitative model, Prospective Memory Decision Control 

(PMDC). They found that, with a relatively simple ongoing task (lexical decision), PM was 

supported by proactive and reactive cognitive control mechanisms that delay ongoing decisions 

relative to PM decisions so that the former do not pre-empt the latter. PMDC indicated no role 

for capacity sharing between monitoring for PM targets and performing the ongoing task, a 

mechanism often proposed by verbally specified PM theories (e.g., Smith, 2003, Einstein & 

McDaniel, 2005). Recently, however, Boag, Strickland, Neal, Heathcote, and Loft (2019) 

applied PMDC to an air traffic control conflict detection task and did find evidence for capacity 

sharing between PM monitoring and ongoing task decisions, likely due to the high cognitive 

demands of the conflict detection paradigm.   

In the current manuscript we fit PMDC to a large-scale experiment in which almost 250 

participants attended two-hour sessions of an air traffic control conflict detection task where 
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demands of the PM and ongoing task approached the limit of human capacity. We introduce a 

formal theory of capacity that maps two features of the PMDC model – the quality and quantity 

of information processing – to two distinct components of cognitive capacity – gain and focus, in 

line with neurologically-inspired computational models and neurophysiological data (Carandini 

& Heeger, 2012). We manipulate gain and focus by varying PM demand, time pressure, and 

strategic payoffs, while holding bottom-up components of information processing constant (i.e., 

the task and stimuli have the same perceptual characteristics across experimental conditions). 

Our model provides the first detailed quantitative understanding of cognitive gain and focus as 

they apply to evidence accumulation models, which – along with cognitive control mechanisms – 

can support PM and ongoing task performance in complex dynamic task environments. 

Prospective Memory Decision Control 

PMDC belongs to the broad class of evidence accumulation models (e.g., Brown & 

Heathcote, 2008; Ratcliff, 1978), which assume that decisions are made by sampling evidence 

from the environment until an evidence threshold is reached. Evidence-accumulation models 

provide a comprehensive account of numerous empirical phenomena observed in simple 

decision-making tasks, including differences in the speed of correct and error responses, speed-

accuracy trade-offs, and response biases (see Rae, Heathcote, Donkin, Averell, & Brown, 2014, 

for perceptual-, lexical-, and memory-based examples). PMDC formalizes decision making as a 

process of evidence accumulation among independent racing linear ballistic accumulators (LBA; 

Brown & Heathcote, 2008). In PM paradigms three accumulators are required: two for the 

ongoing task responses and a third for the PM response. Correct PM responses (i.e., PM hits) 

occur on PM trials when the PM accumulator reaches threshold before either of the ongoing task 
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accumulators. Incorrect PM responses (i.e., PM misses) occur when one of the ongoing task 

accumulators reaches threshold before the PM accumulator (Strickland et al., 2018).  

Figure 1 shows the PMDC architecture applied to an air traffic control conflict detection 

task, in which participants decide whether pairs of aircraft will violate a minimum separation 

standard, with an additional PM requirement. There are three accumulators that correspond to 

deciding a stimulus is a conflict, a non-conflict, or a PM target. In each accumulator, evidence 

accrues linearly (arrows in Figure 1), from points on the uniform interval [0-A] (which represent 

random trial-to-trial biases), until the total in one accumulator reaches its threshold (b), 

triggering a response. Thresholds are assumed to be set prior to the trial without reference to the 

nature of the upcoming stimulus in order to avoid circularity (i.e., if thresholds could be altered 

contingent on the identity of the stimulus there would be no need to accumulate evidence). The 

rate of evidence accumulation corresponds to the strength of evidence for a response and varies 

normally from trial to trial with mean v and standard deviation sv. Accumulation rate is 

determined both by top-down processes (e.g., cognitive capacity devoted to processing the 

stimulus) and bottom-up factors (e.g., the sensory information available from the stimulus). The 

time for non-decision processes (e.g., stimulus encoding and motor response execution), ter, is 

the observed RT minus the decision (evidence accumulation) time.  
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Figure 1. An LBA model of a PM task with a concurrent conflict detection task. Evidence for each response is 
initially drawn from a uniform distribution on the interval [0, A]. Over time, evidence accumulates towards each 
response at rates drawn from independent normal distributions with mean v, and standard deviation sv. The first 
accumulator to reach its threshold, b, determines the overt response. We refer in our results to B, which is b – A, 
where B > 0 and so b > A. Total RT is determined by accumulation time plus non-decision time. 

 

The aim of fitting PMDC to data is to measure the psychological quantities that underlie 

performance, and to ascertain what those quantities suggest about cognitive control and cognitive 

capacity. PMDC instantiates the proactive and reactive cognitive control mechanisms specified 

by Braver’s (2012) dual-mechanisms theory. Key to the present work, it also provides measures 

of processing capacity and the degree to which capacity is shared between concurrent tasks. For 

example, the quantity of evidence accumulation is distinct from the quality of evidence 

accumulation. The quantity of accumulation is given by summing the rates for the ongoing-task 

accumulators, and it mainly determines the overall speed of responding. The quality of 

accumulation corresponds to the difference between the rates for the accumulator corresponding 

to the ongoing-task stimulus (the “matching” accumulator) and the accumulator corresponding to 
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the incorrect response (the “mismatching” accumulator), and it mainly determines accuracy. As 

will be formalized below, we propose a way in which these quantities can be mapped to two 

distinct components of cognitive capacity: a gain or signal-boost mechanism, which we call gain 

capacity, and a cognitive focus mechanism that improves the signal-to-noise ratio for the choice, 

which we call focus capacity. We now explain how PMDC instantiates these mechanisms and 

review several benchmark findings regarding proactive and reactive cognitive control in PM, 

before discussing recent results implicating cognitive capacity in PM. 

Proactive and Reactive Control 

Proactive control refers to top-down processes used to "bias attention, perception and 

action systems in a goal-driven manner" (Braver, 2012, p. 2) in advance of a goal-related event, 

so that they are already active when the event is encountered. According to PMDC, participants 

can proactively control ongoing task decisions by raising thresholds in PM blocks, so that on PM 

trials the ongoing-task accumulators are less likely to complete before the PM accumulator, 

thereby reducing the probability of a PM miss. This follows from the fact that in evidence 

accumulation models, thresholds are the locus of a priori strategies that drive mechanisms such 

as the speed-accuracy trade-off (Liu & Watanabe, 2012) and response biases (Donkin, Brown, & 

Heathcote, 2011; Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012).  

To date, every evidence accumulation modeling study that has compared ongoing task 

performance between control and PM blocks has found elevated thresholds in the latter, 

consistent with proactive control (Anderson et al., 2018; Ball & Aschenbrenner, 2017; Boag et 

al., 2019; Heathcote, Loft & Remington, 2015; Horn & Bayen, 2015; Horn, Bayen, & Smith, 

2011, 2013; Strickland et al., 2017, 2018). In Strickland et al. (2018), participants set even higher 
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ongoing task thresholds when instructed that the PM task was important. Participants also 

exerted control over PM thresholds (i.e., the evidence required to make a PM response) as a 

function of the importance of the PM task relative to the ongoing task: PM thresholds were 

reduced when the PM task was important (Strickland et al., 2018). 

Reactive control, in contrast, refers to automatic ‘stimulus-driven’ processes deployed to 

influence responding "only as needed, in a just-in-time manner" (Braver, 2012, p. 2). Thus, 

reactive control processes relevant to PM are expected to occur on PM-target trials. The model’s 

reactive control mechanism is depicted in Figure 2.  

 

Figure 2. Reactive control of accumulation rates in PMDC, using the example of an air traffic control conflict 
detection task in which participants have a concurrent PM task. The encoding process includes detectors 
(rectangles) for each possible response to the task: ‘conflict’, ‘non-conflict’, and ‘PM’. The detectors receive 
input from stimulus features. Output from the detectors can directly increase (solid lines) the input to the 
corresponding evidence accumulator (excitation) or reduce (dashed lines) the input to competing accumulators 
(inhibition). 
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As PM stimulus inputs are processed on PM trials, stimulus features consistent with PM 

excite the PM accumulator, increasing its accumulation rate, while inhibiting other accumulators 

in a feedforward manner (reactive inhibition), decreasing their accumulation rates. Thus, in 

addition to PM accumulation being faster on PM trials than non-PM trials, accumulation towards 

ongoing task decisions should be lower on PM trials than non-PM trials.1 Consistent with 

theoretical (Bugg, Scullin, & McDaniel, 2013) and neurological (McDaniel, LaMontagne, Beck, 

Scullin, & Braver, 2013) work implicating reactive control in PM, recent empirical work has 

demonstrated that reactive control is critical to PM responses being correctly made when 

individuals are concurrently making ongoing lexical decisions (Strickland et al., 2018) or while 

making demanding ongoing air traffic control conflict detections (Boag et al., 2019). 

Capacity for PM in Basic Paradigms 

Several early studies on capacity for PM in basic paradigms (e.g., Marsh et al., 2003; 

Smith, 2003) suggested that PM monitoring and retrieval processes can draw attentional focus 

away from the ongoing task, resulting in increased response latency and/or poorer accuracy for 

ongoing task responses when under PM load. Moreover, ongoing task performance was most 

negatively affected by PM tasks involving non-focal PM items (i.e., low overlap between the 

information that needs to be assessed to detect the PM target and the information that needs to be 

assessed to perform the ongoing task), tasks with multiple PM items to be remembered, and tasks 

                                                             
1 Reactive inhibition of rates on PM target trials may appear incompatible with the faster RTs observed in the 
intention superiority literature (e.g., Marsh, Hicks, & Watson, 2002). However, on PM target trials, accumulators for 
the ongoing task responses must compete with a much faster PM response accumulator. Overt ongoing task 
responses on PM trials are therefore more likely to be fast errors that outpace the PM accumulation process, a 
phenomenon known as statistical facilitation (Raab, 1962). As such, fast PM miss RTs are not incompatible with 
lower PM miss accumulation rates. 
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with weak PM item-PM response associations, thus suggesting some degree of capacity sharing 

between ongoing task and PM processing (Einstein et al., 2005; Marsh et al., 2003).  

This early work mostly used the term capacity in a narrative sense (but see Smith & 

Bayen, 2004), in which a limited capacity resource pool is assumed, and data interpreted based 

on its properties, without a strict formal justification of capacity or the underlying logical 

assumptions involved (see Navon, 1984, for a critique of this approach). PMDC takes a 

measurement approach, in which the accumulation rate parameters are used as a measure of 

capacity (as have other models for measuring ongoing task capacity in PM; Boywitt & Rummel, 

2012; Horn et al., 2011). Rates have been argued to measure capacity because they estimate 

processing speed, which the majority of attention theory assumes should vary in proportion to 

the capacity available (e.g., Bundesen, 1990; Gobell, Tseng, & Sperling, 2004; Kahneman, 1973; 

Navon & Gopher, 1979; Wickens, 1980).2 Most PM theories assume that PM cost to the ongoing 

task results from reduced ongoing task capacity, such that monitoring for PM targets draws 

cognitive resources away from the ongoing task (e.g., Einstein & McDaniel, 2005; Marsh et al., 

2003; Smith, 2003). Under this account, PM costs occur when cognitive resources are fully 

occupied, at which point concurrent tasks are forced to share resources, which is reflected in 

reduced ongoing task accumulation rates under PM load.  

To date, most evidence accumulation modeling of PM costs in basic paradigms has not 

found changes to the quality or quantity of evidence accumulation to non-PM items across PM 

                                                             
2 Empirical work also justifies this connection: rates converge with other measures of cognitive capacity (Donkin, 
Little, & Houpt, 2014; Eidels, Donkin, Brown, & Heathcote, 2010) and manipulations of capacity (e.g., adding a 
secondary task) have the expected effects on rates (Castro, Strayer, Matzke & Heathcote, 2018; Logan et al., 2014). 
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and control blocks, suggesting PM processing does not draw cognitive capacity away from the 

ongoing task (e.g., Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 2015; 

Strickland et al., 2017, 2018). Given this apparent lack of costs to concurrent processing in basic 

PM paradigms, a formally grounded theory of capacity for PM has not been explored further. 

However, as we discuss next, recent work has demonstrated that PM-induced costs to ongoing 

task information processing can occur in paradigms where the ongoing task is sufficiently 

demanding so as to fully occupy cognitive resources (Boag et al., 2019; Strickland, Elliott, 

Wilson, Loft, Neal, & Heathcote, 2019). These findings motivate the current article, in which we 

develop a formal framework for understanding cognitive capacity in PMDC.  

PM in Demanding Task Environments 

In a cognitively demanding simulation of air traffic control conflict detection, Boag et al. 

(2019) recently found robust evidence of PM costs to ongoing task accumulation rates. In their 

task, participants classified stimuli (pairs of aircraft on converging trajectories) as conflict or 

non-conflict depending on whether they would violate a 5 nautical mile minimum separation 

standard during their flight. In PM blocks, some aircraft stimuli were PM targets (aircraft with 

certain callsigns) that required a PM response. PMDC indicated that PM demands affected both 

the quantity and the quality of ongoing-task processing. The quantity of ongoing-task processing 

increased with both time pressure and PM demands, consistent with an increase in the overall 

availability of resources or cognitive capacity, possibly due to an increase in effort (e.g., 

Kahneman, 1973). The quality of processing for the ongoing and PM tasks, however, indicated a 

two-way trade off: ongoing-task quality decreased when PM demand was added (i.e., capacity 

was diverted from ongoing to PM), but as time pressure increased resources were diverted from 
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the PM task to the ongoing task to compensate for the extra capacity demands generated by 

working to a shorter deadline (i.e., capacity was diverted from the PM task to the ongoing task). 

There is currently no mathematical framework explaining the manner in which Boag et 

al. (2019) found that ongoing task capacity was affected by PM demands. However, the finding 

that PM demands induced costs to ongoing-task processing quality, but increased ongoing-task 

processing quantity, suggests that PM may affect two separable components of ongoing-task 

capacity. This aligns with current computational and neural theories of selective attentional 

modulation of information processing (e.g., Carandini & Heeger, 2012; Corbetta & Shulman, 

2002; Egner & Hirsch, 2005; Herrmann, Montaser-Kouhsari, Carrasco, & Heeger, 2010; 

Hillyard, Vogel, & Luck, 1998; Reynolds & Heeger, 2009), which instantiate variable attentional 

gain and focus mechanisms corresponding to a broadly-tuned gain or signal-boost mechanism, 

and a more finely-tuned attentional focus, within a single computational ‘normalization’ 

framework (e.g., Reynolds & Heeger, 2009; Schwartz & Simoncelli, 2001). These theories 

propose that capacity effects arise from the operation of canonical computations that modulate 

attention (as well as many other perceptual and cognitive processes) at the neural level (see 

Carandini & Heeger, 2012). This echoes early views of visual attention as a ‘spotlight’ with 

variable intensity and focus (called sensitivity and selectivity by Posner & Boies, 1971) that serve 

to ensure relevant information in the environment is detected and selected for processing (e.g., 

Broadbent, 1957; Kahneman, 1973; Posner & Boies, 1971). The key difference between the 

early non-neurological models and current neural models is that in the latter the canonical 

mechanisms are assumed to operate on neurons or populations of neurons (e.g., by scaling and 
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sharpening tuning curves that govern firing rate and amplitude; Busse, Wade, & Carandini, 2009; 

Carandini & Heeger, 2012; Heeger, 1992).  

Computer simulations of neural models of selective attention converge with current 

neurophysiological data on attentional control and modulation in implicating functionally distinct 

brain regions involved in attentional “amplification” (i.e., gain) and “selective control” (i.e., 

focus) (Hillyard, Vogel, & Luck, 1998; see also Carandini & Heeger, 2012, and Corbetta & 

Shulman, 2002). However, these models are currently limited to simulation by ‘hand-tuning’ 

parameters and are not easily fit to behavioural data. To bridge this gap between practical 

quantitative measurement and recent neurologically-inspired process approaches, we present a 

tractable evidence-accumulation framework for measuring two computational processes (gain 

and focus) that drive cognitive capacity effects. Our framework includes two components of 

cognitive capacity: one we term focus capacity (Cf), which is the sole determinant of the quality 

of resources allocated among tasks (e.g., ongoing vs. PM), and one we term gain capacity (Cg), 

which primarily controls the quantity of resources deployed, although quantity is also a function 

of focus capacity. In the next section, we provide a quantitative mapping of gain and focus to the 

quality and quantity of evidence accumulation. This mapping is generic to any accumulator-

based theory of decision making among any number of choices, but we exemplify it here in 

terms of PMDC’s three-choice architecture (i.e., a binary-choice ongoing task with one PM 

accumulator).  
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A Dual-Capacity Theory of Accumulator Models 

Gain and Focus 

Our general modeling architecture consists of a set of i = 1 … n accumulators, each of 

which receives a specific bottom-up input Ii ³ 0 that is monotonic increasing with the match 

between each accumulator’s preferred stimulus and the encoding of that stimulus, and a non-

specific input that adds the same amount 1/f, where f > 0, to the bottom-up inputs for all 

accumulators. Note that as 1/f increases, the ability of the accumulators to discriminate inputs 

decreases. The term f is proportional to top-down attention focus, so increased focus results in 

better discrimination. Finally, we assume that the sum of the specific and non-specific inputs is 

multiplied by a top-down cognitive-gain parameter, g, that is the same for all accumulators.  

We rescale these inputs into a set of relative bottom-up inputs, si = 1/f + Ii, which sum to 

one. Hence the overall input to accumulator i, is gsi ³ 0. Note that we have been working with 

input as a positive quantity in order to relate it to the idea of capacity, which we assume is a 

positive quantity with a zero-point defining the value below which capacity cannot be depleted 

(i.e., where capacity is exhausted). However, we assume that the mean rate of evidence 

accumulation, v, can range over the real line, and map it to overall input by a logarithmic 

transformation: vi = ln(gsi).3 

                                                             
3 Although the logarithmic transformation is a natural choice among smooth and monotonic increasing (i.e., order 
preserving) functions, and widely used for this purpose in mathematics (Bland, Altman, & Rohlf, 2013), we know of 
no empirical evidence bearing on the form of this transformation and acknowledge that other choices are possible. 
The logarithmic choice is responsible for gain having exactly the same effect on all accumulator rates, and hence not 
affecting rate differences among accumulators (i.e., quality) as ln(gsi) = ln(g) + ln(si). 
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Capacity Limitation 

Our model assumes that the two attention components, f and g, are limited in the sense 

that fn + F £ Cf and gn + G £ Cg, where Cf and Cg denote the maximum capacity available for 

focus and gain, and F and G are focus and gain demands from other cognitive processes. For 

example, the accumulator system under consideration might support decisions for a binary 

ongoing task. Suppose that FC and GC are the demands associated with a control condition and 

that having to maintain a PM intent increases these demands by additive amounts FP and GP (we 

note that ongoing and PM tasks are assumed to draw on the same pool of capacity). Suppose 

further that fn + FC < Cf and gn + GC < Cg. There are two scenarios when the PM load is added, 

either 

1) (fn + FC + FP) £ Cf and (gn + GC + GP) £ Cg, in which case ongoing task performance is 

unaffected, or  

2) (fn + FC + FP) > Cf and/or (gn + GC + GP) > Cg, in which case ongoing task performance 

is impacted.  

Assuming FP and GP are fixed under the same PM task load, then under (2) ongoing-task 

attention focus is reduced to f’= (Cf – FC – FP)/n, and attention gain to g = (Cg – GC – GP)/n, so 

that capacity usage equals Cf and Cg respectively.  

Testing Capacity Effects in Binary Accumulators 

In the binary case (i.e., a two-choice ongoing task) the difference between accumulator 

rates (i.e., quality), v1 – v2, is purely a function of attention focus, f, and unaffected by attention 

gain: 

v1 – v2 = ln(gs1) – ln(gs2) = ln(g) + ln(1/f + I1) – ln(g) – ln(1/f + I2) 
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= ln(1/f + I1) – ln(1/f + I2) 

In particular, if v1 is the rate for the matching accumulator and v2 the rate for the mismatching 

accumulator then I1 > I2 and exp(v1 – v2) = (1/f + I1) / (1/f + I2) is evidently a decreasing function 

of f, with a minimum at 1 (and hence a rate difference of zero) as f approaches zero and a 

maximum of I1/I2 as f increases (i.e., maximum focus). Hence, if we assume I1 and I2 are 

invariant over two conditions then the one with the larger value of v1 – v2 must have a larger f. 

Processing quality (i.e., the difference between matching and mismatching accumulation rates) is 

thus purely a measure of the cognitive focus directed to the task, with higher quality reflecting 

increased focus. Note that quality refers specifically to the information determining the ongoing 

task choice, which is binary. Thus, our derivation focuses on the two-accumulator case (i.e., it 

does not include the PM accumulator) in order to compare ongoing task processing in the control 

and PM conditions.  

The sum of accumulation rates (i.e., quantity), v1 + v2, is monotonic increasing in 

attention gain, g, but it is also a function of f:   

v1 + v2 = 2ln(g) + ln(s1) + ln(s2) = 2ln(g) + ln(1/f + I1) + ln(1/f + I2) 

In particular, exponentiating reveals the sum to be a decreasing function of f:  

exp(v1 + v2) = g2(1/f2 + (I1 + I2)/f + I1I2) 

Hence, if we assume I1 and I2 are invariant over two conditions then the one with the larger value 

of v1 + v2 must have a larger g and/or a smaller f.  

In summary, for a two-choice ongoing task, processing quality is purely a measure of the 

cognitive focus directed to that task, with higher quality reflecting greater focus. Processing 

quantity, in contrast, depends on both gain and focus; higher quantity could reflect increased gain 
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and/or reduced focus. Assuming that the ongoing and PM tasks draw on the same pool of 

capacity, this formulation allows us to assess the effect of PM demand on gain and focus for our 

(binary) ongoing task. The next section explains how we propose to test this formulation of gain 

and focus using PMDC, and it also introduces our predictions derived from the theory.  

Current Study 

We designed the experiment we report here to test our theory of cognitive gain and focus. 

To this end, we used the air traffic control conflict detection task that Boag et al. (2019) 

demonstrated imposed sufficient demands on cognitive capacity. In addition, we included three 

manipulations intended to affect focus and gain: PM demand, time pressure, and task 

importance, as discussed further below.  

In our task, participants made decisions about whether two aircraft would come into 

conflict at some point in the future. They were presented with aircraft pairs sequentially (i.e., 

only two aircraft on screen at a time), cruising at the same altitude and converging on a common 

intersection. Participants responded to each aircraft pair by pressing the conflict or non-conflict 

response key to indicate whether the aircraft would violate the 5 nautical mile (nm) lateral 

minimum separation standard in the future. In some blocks of trials, in addition to detecting 

conflicts, participants were required to press an alternative PM response key instead of a conflict 

or non-conflict ongoing task response for any aircraft with a callsign containing two of the same 

letter (e.g., APA169, RTR451). This is an ecologically representative PM target, since 

controllers may need to look out for a specific flight number to perform a deferred task action 

(e.g., put QF217 in a holding pattern after it reaches a specific waypoint; Loft, 2014). This PM 

target is non-focal to conflict detection (Einstein & McDaniel, 2005), meaning that the evidence 
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required to make PM decisions (i.e., assess aircraft callsign) is not required to make ongoing task 

(conflict/non-conflict) decisions (e.g., assess the relative airspeed and relative distance of the two 

aircraft from the common intersection; Vuckovic, Kwantes, Humphreys, & Neal, 2014).  

To impose time pressure, we manipulated the number of aircraft pairs that needed to be 

sequentially responded to (trial load), and the total time available to make that set of responses 

(trial duration). This combination was used to check whether trial load and time available both 

induced quantitatively similar time pressure effects, since this is not always the case in work 

contexts such as air traffic control (Loft, Sanderson, Neal, & Moiij, 2007) and other similar 

applied tasks (e.g., Hendy, Liao, & Milgram, 1997; Palada, Neal, Tay, & Heathcote, 2018).  

To test for differences in capacity for gain and focus we also included a between-subjects 

manipulation of task importance. Four experimental groups received one of four importance 

instructions (neutral, PM important, ongoing important, and ongoing-speed important) that 

indicated which task(s) outcomes were most important: the accuracy of both tasks equally, the 

accuracy of the PM task, the accuracy of the ongoing task, or the speed of the ongoing task. The 

latter instruction encouraged participants to avoid non-response misses (i.e., failing to respond to 

all pairs in the allocated time). The neutral importance condition was essentially a full replication 

of Boag et al.’s (2019) design,4 with the other three importance conditions differing only by 

incentive structure.  

                                                             
4 One difference is that in the current study the neutral group received specific instructions to treat each task equally. 
No such instruction was given in Boag et al. (2019) because there was only one experimental group.  
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 As outlined in our formulation above, we test for differences in cognitive gain in terms 

of the quantity (sum of matching and mismatching) of ongoing task accumulation rates. Quantity 

is an increasing function of gain, reflecting the overall amount of cognitive capacity involved in 

processing a given task, and has been shown to both increase and decrease to meet task demands 

(Boag et al., 2019; Rae et al., 2014). In line with previous results, we expect quantity to increase 

as time pressure increases and to be higher in PM blocks compared with control blocks. 

Consistent with Boag et al. (2019), we also expect ongoing-task quantity to trade off with PM 

accumulation rates across different levels of time pressure (i.e., capacity should be shunted from 

PM to ongoing processes as demands increase); such a trade-off is a critical indicator of capacity 

sharing (Navon & Gopher, 1979).  

The three importance manipulations were included to specifically test our new gain and 

focus formulation of cognitive capacity. We included the speed-important condition to test our 

formulation of gain. Our reasoning is that since quantity primarily controls the speed of 

responding rather than accuracy (which is more a function of quality), then we should expect 

quantity to be highest in the speed-important group compared with the other three importance 

groups (i.e., neutral, ongoing-important, PM-important). Further, a unique prediction of our 

framework is that because quantity is also a decreasing function of focus, we expect quantity to 

decrease for the most important task (i.e., where focus should be greatest). Emphasizing the 

ongoing task should thus lead to lower ongoing-task quantity relative to the other three groups. 

Emphasizing the PM task (i.e., shifting focus away from the ongoing task) should increase 

ongoing-task quantity, however, participants may repurpose any additional resources to PM 

processing, which would increase PM quantity at the expense of ongoing-task resources.  
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We test for changes in cognitive focus in terms of the quality of evidence accumulation 

(matching – mismatching accumulator ongoing task rates). Quality measures the cognitive focus 

directed to a given task and is negatively affected by increases in task demands including PM 

and time pressure (e.g., Boag et al., 2019; Palada et al., 2018; Rae et al., 2014). Consistent with 

previous work, we expect ongoing-task quality (focus) will decrease as time pressure increases, 

due to less time being available to processes the stimulus during the shorter response window, 

and to be lower in PM blocks compared with control blocks, due to focus being shared between 

the ongoing and PM tasks.  

Our importance manipulations were also intended to test our formulation of focus. The 

speed-important instruction was intended to increase ongoing task gain and hence reduce quality, 

consistent with speed emphasis negatively affecting processing quality (Rae et al., 2014). The 

ongoing- and PM-important instructions were aimed at selectively shifting focus between the 

ongoing and PM tasks, leading to higher quality processing for the emphasized task (relative to 

the neutral condition). Specifically, emphasizing the accuracy of the ongoing versus PM tasks 

should shift the focus of attention (which controls accuracy) between the ongoing and PM tasks 

without requiring a change in response speed (which is primarily controlled by quantity). 

Emphasizing the ongoing task should thus increase ongoing-task quality relative to the other 

three groups, whereas emphasizing the PM task should increase PM accumulation rates 

(reflecting the greater focus on the PM task) and lead to poorer ongoing-task quality.  

In terms of cognitive control mechanisms, we expect that participants will use proactive 

control of thresholds to manage demands associated with time pressure, setting lower ongoing 

task thresholds when trial deadlines are short to avoid misses (Boag et al., 2019), and higher 
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thresholds when deadlines are long to improve accuracy (Ratcliff & Rouder, 1998). Similarly, 

we expect that participants will set higher ongoing task thresholds in PM blocks than in control 

blocks (i.e., proactive control), and that the amount of proactive control will decrease as time 

pressure increases, because higher levels of time pressure induce a trade-off between raising 

thresholds to give the PM accumulator more time to finish and lowering thresholds to respond 

within the trial deadline (Boag et al., 2019). We also expect participants to set lower PM 

thresholds when under high time pressure in order to ensure that a PM response, if appropriate, is 

made before the response deadline. Following Strickland et al. (2018), we expect that increasing 

the importance of the PM task will lead participants to set higher ongoing task thresholds, and 

that participants will set lower PM thresholds in PM-important versus PM-unimportant 

conditions.  

In terms of reactive control, we expect ‘reactive excitation’ in which PM accumulation 

rates are higher on PM target trials than on non-PM trials. We also expected inhibition of 

ongoing task accumulation rates on PM target trials (Strickland et al., 2018). That is, 

accumulation rates for conflict and non-conflict decisions should be lower on PM target trials, as 

compared with non-PM trials in PM blocks. Previous work suggests that reactive control is not 

affected by time pressure (Boag et al., 2019), but that it can be adjusted in line with the relative 

importance of the PM and ongoing tasks, as Strickland et al. (2018) found that reactive inhibition 

increased when the importance of the PM task was emphasized compared with when the ongoing 

task was emphasized. This is also in line with fMRI data showing that motivating participants via 

rewards can increase the strength of reactive response inhibition (Boehler et al., 2014).   
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Method 

Participants 

Two-hundred and forty-six people participated across four between-subject conditions 

(see Table 1). Age ranged from 18 to 57 years. Participants completed one two-hour testing 

session. All procedures were approved by the University of Western Australia Human Research 

Ethics Office. 

Table 1 

Participant summary 

 N participants Mean (SD) age 

Neutral Condition  62 (47 female) 20.94 (3.99) 

Ongoing-important Condition  60 (41 female) 22.20 (7.41) 

Speed-important Condition 60 (49 female) 22.85 (5.28) 

PM-important Condition 64 (48 female) 24.24 (10.28) 

 

Air Traffic Control Conflict Detection Task 

The conflict detection task (Fothergil, Loft, & Neal, 2009) was designed using principles 

of representative design to achieve a balance of task fidelity, generality, and experimental 

control. The task has been used previously to study PM (Loft, 2014) and to develop and test a 

performance theory and computational model of expert conflict detection in air traffic control 

(Loft et al., 2009). As illustrated in Figure 3, each trial of the air traffic control conflict detection 

task presented a single pair of aircraft traversing a fictitious en-route sector. The total area of the 

airspace was 180 nm (nautical miles) by 112.5 nm. A data block next to each aircraft displayed 

the callsign, the aircraft type, the flight level, and the speed in knots (i.e., nautical miles per 



 

 

23 

hour). Aircraft appeared within a circular air traffic control sector with a neutral grey background 

and flew straight orthogonal paths (indicated by black lines) that converged at the centre of the 

display. Aircraft position was updated every 20 ms. Participants could not alter the flight levels, 

velocities, or headings of the aircraft.  

 
Figure 3. Air traffic control simulator display. Information blocks next to each aircraft show callsign (e.g., 
UQJ363), aircraft type (B737), current and cleared altitude (e.g., 320>320), and airspeed (e.g., 54). Note that the 
airspeed indicator omits the ending zero of the true speed (e.g., ‘54’ stands for 540 knots). The countdown timer 
indicates that there are 15 seconds remaining in the trial. 

 

Participants’ primary (ongoing) task was to classify each pair of aircraft as either 'conflict' 

or 'non-conflict' depending on whether the aircraft would violate a 5 nm minimum separation 

distance at some point during their flight. On some trials one of the two aircraft would also 

contain a PM target feature which required participants to make a PM response instead of the 

conflict or non-conflict ongoing task response. Pairs of aircraft were presented sequentially and 
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disappeared from the screen once a response was made. A countdown timer showed the seconds 

remaining in each trial. Trials ended when the timer reached zero. Any remaining aircraft not 

responded to would disappear and be recorded as non-responses. A probe vector line on each 

aircraft indicated the aircraft's heading and predicted position one minute into the future. A 10 

nm by 20 nm (approximately 2 cm by 4 cm on screen) scale marker was fixed on the left side of 

the display for use as a reference for judging relative aircraft distance.  

Experimental Stimuli and Design  

Table 2 gives the range of values for the features of aircraft pairs and the distribution they 

were drawn from. We fixed the angle of approach between aircraft at 90 degrees to avoid 

interactions between angle and perceived conflict status (e.g., Vuckovic, Kwantes, & Neal, 

2013). The flight level for all aircraft was fixed at 37,000 feet. To create the different conflict 

and non-conflict stimuli, each aircraft pair was assigned a miss distance (dmin: the distance 

between the aircraft at their point of closest approach) either less than or greater than the 5 nm 

separation standard. For conflict stimuli, dmin values were drawn from the uniform distribution 

[0,3] nm. For non-conflict stimuli, dmin values were drawn from the uniform distribution [7,10] 

nm. We allowed the speed, direction of approach, time to minimum separation (tmin), and order 

of passing at the crossing (i.e., faster aircraft first vs. slower aircraft first) to vary randomly 

(within the ranges specified in Table 2) from trial to trial to ensure participants could not learn to 

use these features as predictive cues (Bowden & Loft, 2016; Loft, Humphreys, & Neal, 2004). 
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Table 2 

Range of spatial variables of aircraft stimuli 

Spatial variable Lower Upper Units 

dmin (Conflicts) 0 3 nm 

dmin (Non-conflicts) 7 10 nm 

Airspeed 400 700 knots 

Direction of approach 0 360 degrees 

tmin 120 210 seconds 

Order of passing 0 1 0 = fastest first, 1 = slowest first 

 

Aircraft with callsigns containing two of the same letter (e.g., APA169, RTR451) were 

PM targets. On PM target trials only one of the aircraft on screen ever contained a PM target, 

never both. Participants were instructed to respond to PM targets by pressing an alternate PM 

key (e.g., ‘j’ or ‘d’) instead of the ongoing task (conflict/non-conflict) keys.  

As illustrated in Table 3, participants performed four sets of trials, each containing a 

block of control trials and a block of PM trials. Block order (control- or PM-first) was 

counterbalanced between participants. In control blocks, participants were presented with a 

randomized sequence of 80 aircraft pairs (40 conflict and 40 non-conflict), with no PM targets. 

In PM blocks, participants were presented with a randomized sequence of 240 aircraft pairs (120 

conflict and 120 non-conflict). Of these, a random 48 (24 conflict and 24 non-conflict) contained 

a PM target. Thus, 20% (48/240) of PM block stimuli were PM targets. As raised in the General 

Discussion section, this is a higher ratio of PM target trials to ongoing task trials than is 
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traditionally used in PM studies, but gives us more PM trials, which serve to reliably constrain 

our model, and increase the accuracy and precision of fitting PMDC to data.  

Table 3 

Details of experimental blocks with number of control and PM stimuli presented 

Trial load 
(decisions per trial) 

Trial duration (s) 
(overall time available) 

Time pressure (s) 
(average time available per 

decision) 

Control block 
trials 

PM block 
trials 

2 12 6 80 240 

2 8 4 80 240 

5 20 4 80 240 

5 10 2 80 240 

 

To create time pressure (average available time per conflict detection decision), we 

manipulated trial load (decisions per trial) and trial duration (total time available to respond to all 

decisions within a trial). Each trial had a load of either 2 or 5 aircraft pairs presented with an 

associated trial duration (see Table 3). This resulted in 4 unique trial-load by trial-duration 

combinations; one with 6s per decision, two blocks with 4s per decision and one block with 2s 

per decision. The order in which blocks were presented was counterbalanced across participants. 

We note that trial load and trial duration were not crossed orthogonally. This was done 

intentionally to ensure trial load and trial duration remained at a reasonably engaging level of 

demand while also not becoming impossibly difficult. Participants were informed of the trial 

load and trial duration before each block and could thus adjust their strategies accordingly.  

In addition, we included a between-subjects manipulation of task importance. The four 

conditions received one of four importance instructions (neutral, ongoing-important, speed-
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important, PM-important) that indicated which task to focus on (e.g., the accuracy of both tasks 

equally, PM task accuracy, ongoing task accuracy, ongoing task speed) and the associated 

incentive structure (see Procedure for more details).  

Procedure 

Our procedure was identical to Boag et al. (2019), except that we included an additional 

between-subjects manipulation of task importance. Each testing session comprised a training 

phase and a test phase, which took 2 hours in total to complete. During the training phase 

participants received verbal task instructions, watched an on-screen demonstration of the task, 

and completed 40 training trials that included feedback after each response. The PM task was not 

included in training. During the experimental phase participants completed eight blocks of 

experimental trials without feedback. 

Participants responded to each aircraft pair by pressing either the conflict or non-conflict 

key. Participants were informed that each aircraft pair would be presented sequentially and 

contain two aircraft moving towards each other on converging flight paths with a crossover point 

at the centre of the display. They were told that several spatial properties of the aircraft would 

vary from trial to trial, including their starting distance from the central crossing point, relative 

speed, and distance of minimum separation. Before each block of trials, participants saw visual 

instructions reminding them of the trial load and trial duration for that block. Depending on the 

block, participants then received either control or PM instructions. Before control blocks, 

participants were instructed that they only needed to make conflict and non-conflict responses. 

Before PM blocks, participants were instructed to press a PM response key instead of the conflict 

or non-conflict keys when they detected a PM target.  
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In addition, each condition received one of four task importance instructions (neutral, 

ongoing-important, speed-important, PM-important). The neutral condition was instructed to 

“place equal importance on performing all aspects of the task accurately” and shown a points 

table in which correct (incorrect) ongoing task and PM responses were rewarded (penalized) 

equally. The ongoing-important condition was told to “place primary importance on performing 

the conflict detection task accurately” and shown a points table in which ongoing task rewards 

and penalties were double those of the PM task. The speed-important condition was instructed to 

“place primary importance on avoiding non-response misses” and shown a points table in which 

the penalty for non-responses was double the penalty for ongoing task and PM errors. The PM-

important condition was told to “place primary importance on performing the ‘call-sign’ (PM) 

task accurately” and shown a points table in which PM task rewards and penalties were double 

those of the ongoing task. The relevant importance instruction was also displayed on a sign on 

the participant’s desk as a reminder. As an additional incentive to follow the instructions, 

participants were told they could win up to $5 based on their score (all participants were given 

$5 upon completing the task regardless of score). Participants completed a short distractor task 

and saw a final reminder to respond as quickly and accurately as possible before commencing 

the block.  

Using a standard QWERTY keyboard, four response key assignments were 

counterbalanced across participants; 1) s = conflict, d = non-conflict, j = PM, 2) d = conflict, s = 

non-conflict, j = PM, 3) k = conflict, j = non-conflict, d = PM, and 4) j = conflict, k = non-

conflict, d = PM. Participants were instructed to rest their fingers on their particular response key 

combination throughout the task so that we could assume equal motor response time in our 
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modeling (see Voss, Voss, & Klauer, 2010). Each trial was preceded by a screen with the text 

'Press [Space] to continue', pressing the space-bar initiated the trial. Trials ended when the trial 

deadline expired (i.e., when the timer reached zero). Any aircraft pairs not responded to within 

the deadline were recorded as non-responses. Besides the training trials, participants received no 

further feedback about their performance. Participants took self-paced breaks between each 

block of trials and were permitted short breaks at any point between trials as needed.  

Results 

We first report conventional statistical analyses to check whether our experimental 

manipulations had the expected effects on RT, accuracy, and non-response (miss) rate. Excluded 

data are summarized in Table S1 in the supplementary materials. We excluded trials with 

outlying RTs, defined as less than 0.2s or greater than 3 times the inter-quartile range / 1.349 (a 

robust measure of standard deviation) above the mean, censoring outliers separately by time 

pressure and importance instruction. We also excluded non-response misses and PM responses to 

control-block ongoing-task stimuli (Table S1). Incorrect ongoing task responses to PM items 

(~1% of responses) were included in model fitting but are not analysed further. For each 

importance condition, conventional statistical analyses compare mean accuracy and RT by 

stimulus type (conflict, non-conflict, PM), PM block (control, PM), and time pressure. Because 

trial load and trial duration were not crossed orthogonally, time pressure is compared separately 

for each level of trial load. At low trial load (2 decisions per trial) we compared time pressures of 

6 and 4 seconds per decision; at high trial load (5 decisions per trial) we compared time pressures 

of 4 and 2 seconds per decision. Between-subjects analyses are used to assess the effects of our 

importance manipulation. 
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We used generalized linear mixed models with a probit link function in our significance 

testing for accuracy effects. We used general linear mixed models with a Gaussian link function 

in our significance testing for mean correct RTs. Analyses were conducted using the R package 

lme4 (Bates, Machler, Bolker, & Walker, 2015). Significance was assessed using Wald's chi-

square tests (Fox & Weisberg, 2011) with a two-tailed alpha level of .05. Post hoc tests applied 

Bonferroni’s correction for alpha inflation. The results of our analyses are tabulated in the 

supplementary materials (Tables S2-S8). All standard errors reported in text and displayed in 

graphs were calculated using Morey’s (2008) within-subject bias-corrected method. 

Conflict Detection (Non-PM Stimuli) Trials 

For all four importance groups, conflict detection accuracy was lower for conflicts 

compared with non-conflicts and slightly lower under PM load compared with control (Table 4). 

Conflict detection accuracy decreased as time pressure increased, under both low trial-load and 

high trial-load (Table 5). We note that this effect did not reach significance for the ongoing-

important group when under low-load. That this effect disappears when the ongoing task was 

prioritized suggests higher capacity for the ongoing task that is modulated by importance (we 

explore this effect further in the Model Summary section below). When comparing cells with 

equal time pressure, conflict detection accuracy was not significantly affected by trial load for 

any of the importance groups.  
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Table 4 

Mean (SE) ongoing task accuracy (%).  

 Stimulus PM Block Time Pressure/Trial Load 

Most Important Task Conflict Non-conflict Control PM A B C D 

Neutral 71.1 (2.2) 83.2 (2.1) 77.4 (2.4) 76.9 (2.5) 80.4 (1.8) 78.1 (1.8) 78.5 (2.0) 71.7 (2.1) 

Ongoing 75.0 (2.3) 80.0 (2.3) 78.4 (2.3) 76.6 (2.5) 79.5 (2.0) 78.5 (1.7) 79.1 (1.9) 72.9 (2.0) 

Speed 71.8 (2.3) 77.3 (2.3) 75.9 (2.3) 73.2 (2.4) 78.0 (1.9) 74.9 (1.9) 75.6 (1.8) 69.6 (1.9) 

PM 73.4 (2.6) 80.1 (2.6) 78.1 (2.4) 75.4 (2.8) 80.2 (2.1) 77.2 (2.1) 78.2 (1.9) 71.5 (2.3) 

A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 

 

Table 5 

Ongoing task accuracy (%) time pressure contrasts  

 A-B B-C C-D 

Most Important 
Task 

Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Neutral 2.29 3.12 61 .003 0.40 -0.34 -0.47 61 0.64 0.06 6.71 8.84 61 <.001 1.12 

Ongoing 0.98 0.94 59 0.35 0.12 -0.58 -0.82 59 0.41 0.11 6.23 7.07 59 <.001 0.91 

Speed 3.10 4.13 59 <.001 0.53 -0.60 -0.80 59 0.43 0.10 5.96 6.35 59 <.001 0.82 

PM 2.98 4.29 63 <.001 0.54 -0.96 -1.24 63 0.22 0.16 6.62 8.18 63 <.001 1.02 

Bold values indicate significance at alpha = .05 (two-tailed). A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; 
C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 

 
There was a significant interaction between PM block and time pressure on conflict 

detection accuracy, such that the cost to accuracy in PM blocks (as compared to control blocks) 

was greatest when trial load and time pressure were high (Table 6). We note that this effect was 

most pronounced in the PM-important group. Conflict detection accuracy did not differ 

significantly by importance (Tables 14 & 15).  
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Table 6 

Ongoing task accuracy (%) and RT (s) cost contrasts 

 Difference between PM and control blocks during high time pressure and high load 

 Accuracy (%) RT (s) 

Most Important Task Mean Diff. t df p d Mean Diff. t df p d 

Neutral 3.18 3.81 61 <.001 0.48 -0.29 -10.68 61 <.001 1.36 

Ongoing 3.47 3.90 59 <.001 0.50 -0.29 -9.05 58 <.001 1.18 

Speed 3.81 3.91 59 <.001 0.50 -0.25 -7.48 59 <.001 0.97 

PM 5.00 5.74 63 <.001 0.72 -0.39 -13.35 62 <.001 1.68 

Bold values indicate significance at alpha = .05 (two-tailed). 

 

In general, mean RT was slower for conflicts compared with non-conflicts, slower for 

errors compared with correct responses, and slower during PM blocks than control blocks 

(Tables 7 & 8). Mean RTs were significantly faster under higher time pressure for both low trial-

load and high trial-load conditions (Table 9). Mean RTs were also slower under high trial load 

compared with low trial load when comparing cells with equal time pressure, although this effect 

was small and did not reach significance for the ongoing- and speed-important groups. For the 

neutral and speed-important groups there was as significant interaction between PM block and 

time pressure on mean ongoing task RT (Table S3), such that the cost to PM block RT became 

smaller as time pressure increased. This effect was not significant for the ongoing- and PM-

important groups. Mean RT was fastest in the speed-important group; RTs were around 180ms 

faster on average than the other three importance groups (Tables 14 & 15).  
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Table 7 

Mean (SE) ongoing task RT (s) 

 Stimulus PM Block Time Pressure/Trial Load 

Most Important Task Conflict Non-conflict Control PM A B C D 

Neutral 2.91 (0.15) 2.51 (0.13) 2.49 (0.13) 2.93 (0.14) 3.45 (0.11) 2.67 (0.07) 2.84 (0.08) 1.89 (0.06) 

Ongoing 2.94 (0.15) 2.67 (0.13) 2.60 (0.14) 3.01 (0.13) 3.57 (0.10) 2.80 (0.07) 2.93 (0.08) 1.91 (0.06) 

Speed 2.77 (0.15) 2.52 (0.13) 2.43 (0.13) 2.87 (0.14) 3.35 (0.11) 2.65 (0.08) 2.78 (0.08) 1.80 (0.06) 

PM 2.97 (0.14) 2.68 (0.12) 2.58 (0.13) 3.07 (0.13) 3.58 (0.10) 2.76 (0.06) 2.98 (0.08) 1.98 (0.06) 

A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 

 
Table 8 

Ongoing task correct and error RT contrasts 

 Ongoing Task PM Task 

 Mean RT (s)     Mean RT (s)     

Most Important Task Correct Error t df p d Correct Error t df p d 

Neutral 2.80 2.93 -10.26 21436 <.001 0.10 1.74 2.56 -34.21 3391.9 <.001 0.95 

Ongoing 2.89 3.01 -8.22 20264 <.001 0.09 1.83 2.63 -33.56 4545.8 <.001 0.83 

Speed 2.75 2.77 -1.71 25599 .088 0.02 1.79 2.46 -29.56 4445.4 <.001 0.73 

PM 2.91 3.01 -7.77 23104 <.001 0.08 1.69 2.59 -33.46 2773.4 <.001 1.07 

Bold values indicate significance at alpha = .05 (two-tailed). 
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Table 9 

Ongoing task RT (s) time pressure contrasts 

 A-B B-C C-D 

Most 
Important 
Task 

Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Neutral 0.78 9.88 61 <.001 1.25 -0.17 -3.15 61 .003 0.40 0.95 15.78 61 <.001 2.00 

Ongoing 0.78 9.98 59 <.001 1.29 -0.13 -2.09 59 .041 0.27 1.02 16.63 58 <.001 2.17 

Speed 0.71 6.96 59 <.001 0.90 -0.14 -1.69 59 0.10 0.22 0.98 15.65 59 <.001 2.02 

PM 0.82 14.99 62 <.001 1.89 -0.20 -3.43 62 .001 0.43 0.99 14.98 62 <.001 1.89 

Bold values indicate significance at alpha = .05 (two-tailed). A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; 
C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 

 

To summarize, the addition of PM load resulted in slower (Mean Difference = 0.45s) and 

slightly less accurate (Mean Difference = 1.93%) conflict detection, while increased time 

pressure led to faster (Mean Difference = 0.99s) but less accurate (Mean Difference = 4.39%) 

conflict detection. Importance affected mean RT, such that conflict detection RT was fastest with 

speed-important instructions, but there were no reliable effects of importance on accuracy. 

PM Trials 

PM responses were scored correct if the participant pressed the PM response key instead 

of an ongoing task (conflict/non-conflict) response key on PM target trials. For all four 

importance groups, PM accuracy decreased as time pressure increased, during both low trial-load 

and high trial-load conditions (Tables 10 & 11). Except for the neutral group, PM accuracy was 

not significantly affected by trial load when comparing cells with equal time pressure. PM 

accuracy was highest (by around 10%) in the PM-important group and lowest in the ongoing- 

and speed-important groups (Tables 14 & 15). As will be discussed further in the Model 
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Summary section below, this suggests higher capacity for the PM task when it was emphasized, 

indicating that importance directs how resources are allocated between tasks. 

Table 10 

Mean (SE) PM accuracy (%) 

 Stimulus Time Pressure/Trial Load 

Most Important Task PM (Conflict) PM (Non-conflict) A B C D 

Neutral 77.4 (2.6) 74.3 (2.6) 84.7 (1.5) 76.0 (1.9) 80.9 (1.5) 61.7 (1.9) 

Ongoing 68.5 (3.0) 67.3 (3.1) 78.2 (1.9) 71.6 (1.7) 72.7 (1.5) 49.0 (2.2) 

Speed 70.6 (2.8) 69.2 (2.8) 78.3 (1.8) 73.1 (1.7) 72.7 (2.1) 55.4 (1.9) 

PM 80.2 (2.0) 77.7 (2.2) 86.5 (1.2) 79.6 (1.4) 81.1 (1.3) 68.6 (1.7) 

A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 

 
Table 11 

PM accuracy (%) time pressure contrasts 

 A-B B-C C-D 

Most 
Important Task 

Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Neutral 8.63 5.14 61 <.001 0.65 -4.90 -2.73 61 .008 0.35 19.20 10.90 61 <.001 1.38 

Ongoing 6.64 2.79 59 .007 0.36 -1.18 -0.63 59 0.53 0.08 23.72 9.92 59 <.001 1.28 

Speed 5.19 2.48 59 0.016 0.32 0.41 0.17 59 0.87 0.02 17.31 6.76 59 <.001 0.87 

PM 6.90 5.50 63 <.001 0.69 -1.52 -0.95 63 0.34 0.12 12.52 7.81 63 <.001 0.98 

Bold values indicate significance at alpha = .05 (two-tailed). A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; 
C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 

 

Mean RT was slower for PM errors compared with correct PM responses (in PM blocks) 

(Table 12). Mean RT for correct PM responses was significantly faster at higher levels of time 

pressure during both low trial-load and high trial-load conditions (Tables 12 & 13). PM RT was 
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not significantly affected by trial load when comparing cells with equal time pressure. There 

were no significant differences in PM accuracy or PM RT between conflict PM targets and non-

conflict PM targets. PM false alarms (i.e., PM responses to non-PM stimuli in PM blocks) 

occurred on around 0.6% of PM block trials in each importance group (see Table S1) with mean 

RTs around 2.30s (Neutral: 2.27s, Ongoing-important: 2.16s, Speed-important: 2.33s, PM-

important: 2.39s). PM false alarms were most common in the PM-important group and least 

common in the neutral group (Mean Difference = 0.55%) t = 1.88, df = 63.96, p = .065, d = 0.33. 

PM RT was fastest in the PM-important group and slowest in the ongoing-important group 

(Tables 14 & 15).  

To summarize, as with the ongoing task, increased time pressure led to faster (Mean 

Difference = 0.27s) but less accurate PM performance (Mean Difference = 12.51%), whereas 

PM-importance instructions led to faster and more accurate PM performance.  

Table 12 

Mean (SE) PM RT (s) 

 Stimulus Outcome Time Pressure/Trial Load 

Most Important 
Task 

PM (Conflict) PM (Conflict) Correct Error A B C D 

Neutral 1.76 (0.06) 1.76 (0.06) 1.75 (0.07) 2.75 
(0.16) 

1.99 
(0.05) 

1.74 
(0.03) 

1.79 
(0.05) 

1.49 
(0.04) 

Ongoing 1.87 (0.07) 1.87 (0.07) 1.85 (0.08) 2.75 
(0.16) 

2.06 
(0.05) 

1.85 
(0.04) 

1.90 
(0.04) 

1.60 
(0.05) 

Speed 1.81 (0.06) 1.81 (0.06) 1.82 (0.07) 2.60 
(0.16) 

2.06 
(0.04) 

1.82 
(0.04) 

1.86 
(0.04) 

1.52 
(0.04) 

PM 1.72 (0.05) 1.72 (0.05) 1.72 (0.07) 2.81 
(0.18) 

1.96 
(0.05) 

1.69 
(0.03) 

1.73 
(0.03) 

1.51 
(0.04) 

A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 
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Table 13 

PM RT (s) time pressure contrasts 

 A-B B-C C-D 

Most Important 
Task 

Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Neutral 0.27 5.34 60 <.001 0.68 -0.05 -1.24 61 0.22 0.16 0.25 5.66 60 <.001 0.73 

Ongoing 0.21 4.32 56 <.001 0.57 -0.07 -1.59 56 0.12 0.21 0.30 4.95 55 <.001 0.66 

Speed 0.24 5.02 57 <.001 0.66 -0.04 -0.76 57 0.45 0.10 0.33 5.84 57 <.001 0.77 

PM 0.28 5.35 61 <.001 0.68 -0.05 -1.56 60 0.12 0.20 0.21 7.50 59 <.001 0.97 

Bold values indicate significance at alpha = .05 (two-tailed). A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; 
C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 

 

Table 14 

Mean (SE) accuracy (%), RT (s), and non-response proportions (%) by importance 

 Most Important Task 

Most Important Task Neutral Ongoing Speed PM 

Ongoing Accuracy 77.2 (1.0) 77.5 (1.0) 74.5 (1.0) 76.8 (1.1) 

PM Accuracy 76.2 (0.4) 68.4 (0.2) 70.3 (0.2) 79.2 (0.3) 

Ongoing RT 2.71 (0.06) 2.80 (0.06) 2.65 (0.06) 2.83 (0.06) 

PM RT 1.75 (0.03) 1.85 (0.03) 1.82 (0.02) 1.72 (0.02) 

Non-response % 4.3 (0.5) 5.45 (0.5) 3.77 (0.4) 5.67 (0.6) 
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Table 15 

Accuracy (%), RT (s), and non-response proportion (%) importance contrasts 

 Task Importance Contrast 

 PM-Ongoing PM-Speed Ongoing-Speed 

Measure Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Ongoing 
Accuracy 

-0.7 0.58 121.92 .57 0.10 2.2 -1.60 117.29 .11 0.29 2.9 -2.13 114.49 .035 0.39 

PM 
Accuracy 

10.8 -3.02 118.93 .003 0.54 9.0 -2.65 121.64 .009 0.48 -1.8 0.51 116.68 .61 0.09 

Ongoing 
RT 

0.02 -0.30 119.90 .77 0.05 0.18 -2.37 120.63 .019 0.43 0.16 -2.14 116.92 .035 0.39 

PM RT -0.15 2.75 92.62 .007 0.52 -0.12 2.69 108.43 .008 0.49 0.02 -0.45 104.04 .65 0.09 

Non-
response % 

0.7 -0.09 112.86 0.93 0.02 1.7 -2.10 108.53 .038 0.37 1.6 -2.45 117.3 .016 0.45 

Bold values indicate significance at alpha = .05 (two-tailed). 

 

Non-responses 

We examined the effects of PM block and time pressure on non-response (miss) 

proportions using a linear mixed effects model with a probit link function (Table S7 in the 

supplementary materials). Non-responses included non-responses to PM and ongoing task 

stimuli. In all four importance groups, non-responses were slightly more frequent in PM blocks 

compared with control blocks and became more frequent as time pressure increased during both 

low trial-load and high trial-load conditions (Tables 16 & 17). The proportion of non-responses 

was higher during low trial load versus high trial load when comparing cells with equal time 

pressure. There was a significant interaction between PM block and time pressure on non-

responses, such that the increase in non-responses from control to PM blocks was greatest when 
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trial load and time pressure were both high. Non-responses were least frequent in the speed-

important group (3.8%) and most frequent in the ongoing- and PM-important groups (5.5% and 

5.7%) (Tables 14 & 15).  

Table 16 

Mean non-responses (%) by PM block, time pressure and importance 

 PM Block Time Pressure/Trial Load  

Most Important Task Control PM A B C D Total % 

Neutral 3.84 4.46 1.48 3.17 1.77 10.80 4.30 

Ongoing 4.66 5.71 1.54 4.67 2.54 13.04 5.45 

Speed 3.32 3.92 1.38 3.59 1.40 8.71 3.77 

PM 4.64 6.01 1.44 4.59 3.13 13.53 5.67 

A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 

 
Table 17 

Non-response (%) time pressure contrasts 

 A-B B-C C-D 

Most 
Important 
Task 

Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d Mean 
Diff. 

t df p d 

Neutral -1.31 -4.02 61 <.001 0.51 1.13 3.14 61 .003 0.40 -8.50 -7.92 61 <.001 1.01 

Ongoing -2.81 -6.13 59 <.001 0.79 1.97 3.76 59 <.001 0.49 -10.10 -8.23 59 <.001 1.06 

Speed -1.89 -3.30 59 .002 0.43 1.82 3.14 59 .003 0.41 -6.78 -5.31 59 <.001 0.69 

PM -2.63 -4.17 63 <.001 0.52 1.02 2.30 63 .025 0.29 -9.66 -7.24 63 <.001 0.91 

Bold values indicate significance at alpha = .05 (two-tailed). A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; 
C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 
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Model Analysis 

We fit PMDC using a conventional parameterization in terms of separate mean rate (v) 

estimates for each accumulator. We could have directly parameterized mean rates as functions of 

gain and focus, but rather than imposing this framework we sought instead to test its implications 

using the conventional rate estimates to calculate quality (i.e., the difference in mean rates 

between matching and mismatching accumulators for the ongoing task) and quantity (i.e., the 

sum of mean rates over matching and mismatching accumulators).       

Within-subjects (i.e., within each importance condition), model parameters were allowed 

to vary over latent response (i.e., the conflict, non-conflict, and PM accumulators that lead to 

each response) and three manifest factors: stimulus type, time pressure/trial load, and PM block. 

Note that the latent response factor corresponds to the accumulators, not the observed response, 

meaning that the observed response is predicted by the model, not included in it. There were four 

stimulus types: non-PM conflict, non-PM non-conflict, PM conflict, and PM non-conflict. There 

were four levels of time pressure, created by manipulating trial load (2 vs. 5 decisions per trial) 

and trial duration: 6s per decision (2 decisions per trial), 4s per decision (2 decisions per trial), 4s 

per decision (5 decisions per trial), 2s per decision (5 decisions per trial). There were two levels 

of PM demand: control (i.e., no PM demand) and PM.  

To reduce model complexity, we applied a number of theoretically sensible restrictions 

on which experimental factors each parameter could vary over. As is common practice, we 

estimated one common A parameter for all accumulators and conditions. We allowed the sv 
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parameter to vary by stimulus and accumulator but not by time pressure or PM block.5 Since one 

accumulator parameter must be fixed to an arbitrary value as a scaling parameter (Donkin, 

Brown, & Heathcote, 2009), we fixed the sv parameter for PM responses to non-PM items at 0.5. 

Since our design minimized any potential differences in the motor movement required to 

make each response (i.e., participants kept their fingers positioned above the response keys), one 

non-decision time (ter) parameter was estimated for each participant. Moreover, previous 

research has suggested that non-decision time does not play a role in PM cost for the LBA (e.g., 

Anderson et al., 2018; Heathcote et al., 2015; Strickland et al., 2017, 2018). Owing to very low 

numbers of PM false alarms (PM responses to non-PM stimuli in PM blocks), estimates of both 

accumulation rate and variance (v and sv) were pooled across time pressure and PM blocks to 

give one PM rate for PM responses to non-PM items and one corresponding sv parameter (which 

was used as a fixed scaling parameter as mentioned above) for each importance group. These 

constraints resulted in an 89 parameter most flexible 'top' model with one A, one ter, 20 B, 57 v, 

and 10 sv parameters. We compared this top model against several simpler variants that we 

outline below (see Model Selection). 

                                                             
5 We note that this approach is more flexible than most prior LBA modeling, in which sv is typically only allowed to 
vary as a function of whether the latent accumulator is a ‘match’ or a ‘mismatch’ to the stimulus (but see Heathcote 
& Love, 2012; Osth, Bora, Dennis, & Heathcote, 2017; Strickland et al., 2018, for exceptions). We used this more 
flexible approach because in our model there are two types of 'correct' response for PM trials (i.e., correct PM and 
correct ongoing task decision). A version of the model constrained to have only one sv parameter (75 parameters in 
total) produced visually similar fits and either preserved or exaggerated the direction of all effects found in the more 
flexible model. 
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Sampling 

Model parameters were estimated via Bayesian estimation using Heathcote et al.’s (2018) 

DMC software, which gives probability distributions that reflect the degree of certainty 

surrounding parameter values. Because of the large number of participants in our sample and the 

complexity of our models, hierarchical methods proved too computationally expensive to fit 

(estimated at several months of multi-core server time per fit), so we estimated parameters 

separately for each participant.  

In Bayesian analysis, the researcher is required to specify prior beliefs about the 

probabilities of parameters and the form of their distributions before observing the data. 

However, because of our large sample sizes and use of inference based on posterior probability 

distributions, the influence of our particular choice of priors on the final parameter estimates was 

negligible as we used relatively non-informative priors (Table 18), identical to Boag et al. 

(2019). All prior values were the same over control and PM blocks, the same over time pressure, 

and the same for each importance group. 
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Table 18 

Prior distributions 

Parameter Distribution Mean SD Lower Upper 

A Truncated normal 3 1 0 10 

B Truncated normal 2 1 0 None 

v (Matching ongoing task response) Truncated normal 1 2 None None 

v (Mismatching ongoing task response) Truncated normal 0 2 None None 

v (PM hit) Truncated normal 1 2 None None 

v (PM false alarm) Truncated normal 0 2 None None 

sv Truncated normal 0.5 1 0 None 

ter Uniform  1 0.1 1 

 

We estimated posterior parameter distributions using the differential evolution Markov-

chain Monte-Carlo (DE-MCMC) algorithm (Turner, Sederberg, Brown, & Steyvers, 2013). DE-

MCMC is especially adept at handling models with highly correlated parameters, as is common 

in accumulate-to-threshold modelling. The number of chains used by the sampler was three times 

the number of parameters (e.g., for an 84-parameter model there were 252 chains per parameter). 

Chains were thinned by 20 (i.e., one iteration out of every 20 was kept) and sampling continued 

until a Gelman's (2014) multivariate potential scale reduction factor less than 1.1 indicated 

convergence, stationarity, and mixing. Convergence, stationarity, and mixing were verified via 

visual inspection. For each participant, the posterior distribution for each parameter consisted of 

30,240 samples (i.e., 252 chains with 120 iterations each). 



 

 

45 

Model Results 

Model Fits: Accuracy and RT 

To evaluate fit, we sampled 100 posterior predictions for each participant and then 

averaged over participants. The model provided good fits to both ongoing task and PM accuracy 

(Figures S1 & S4 in the supplementary materials) and gave a good account of the entire 

distribution of RTs (Figures S2-S4). The model provided a close fit to the differences in manifest 

accuracy and RT observed across PM and control blocks and across different levels of time 

pressure for each importance group. The model also provided accurate out-of-sample predictions 

of non-response proportions across all experimental factors (Figure S5).  

Model Selection 

To assess whether we could justify constraining model parameters over experimental 

factors (e.g., PM block, time pressure) to obtain a simpler model with fewer parameters, we used 

the Deviance Information Criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). 

The DIC measure considers both the complexity of a model (i.e., the number of parameters) and 

its goodness of fit. Models with smaller DIC values are typically to be preferred. The number of 

parameters for each model and its DIC value are shown in Table 19. 

Using the fully flexible top model as a starting point, we built several simpler variants by 

systematically constraining ongoing task threshold and ongoing task rate parameters over time 

pressure and PM block. We could thus establish whether it was necessary to vary ongoing task 

thresholds and/or rates to account for the observed effects of time pressure and PM demand. We 

compared four simpler variants to the top model: a model in which rates could vary across PM 

and control blocks but thresholds could not; a model in which thresholds could vary across PM 
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and control blocks but rates could not; a model in which rates could vary by time pressure but 

thresholds could not; and a model in which thresholds could vary by time pressure but rates 

could not. 

Table 19 

DIC model selection. Lower DIC indicates more preference for the model. 

  DIC – minimum DIC 

Model Parameters Neutral Ongoing Speed PM 

Top model 89 303 178 491 495 

Selected model 84 0 0 0 0 

Thresholds fixed over PM block 81 5668 4371 4988 6821 

Rates fixed over PM block 73 1549 1644 1674 2267 

Thresholds fixed over time pressure 74 4008 4380 5819 4234 

Rates fixed over time pressure 47 5925 6616 6188 5822 

The DICs for the selected model were: Neutral = 238899, Ongoing = 247298, Speed = 246239, PM = 247860. 

 

As illustrated in Table 19, the fully flexible top model was preferred over each simpler 

variant, which suggests that it is necessary to allow both ongoing task threshold and ongoing task 

rate parameters to vary over time pressure and PM demand factors. That is, both parameters play 

an important role in explaining the empirical effects of time pressure and PM demand.  

To further explore whether we could simplify the top model, we tested an additional 

model (the selected model) that – like the top model – allowed both ongoing task thresholds and 

ongoing task rates to vary over both time pressure and PM demand factors, but contained a slight 

simplification in which the PM rate parameter was constrained to not vary by stimulus type (i.e., 
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the same PM rate was estimated for PM conflicts and PM non-conflicts). This simplification 

makes sense because the evidence used to make PM decisions was independent of the evidence 

used to make either conflict or non-conflict ongoing task decisions. This model obtained the 

smallest DIC value of all the models tested and was thus selected as our preferred model for 

further analysis. The results of model selection thus implicate both rates and thresholds in 

explaining why ongoing task and PM accuracy and RT differ by time pressure and PM load.  

Model Summary 

In order to summarize the parameters at the group level, we created a subject-average 

posterior distribution. To obtain this distribution, we computed the mean of each posterior 

sample across participants for each parameter. In terms of theory, our main interest was in the 

accumulation rate and threshold parameters for the ongoing and PM tasks (explored in detail in 

the following sections). All other parameters had reasonable values consistent with prior studies. 

The sv posterior means and SDs are summarized in Table S9 in the supplementary materials. For 

non-PM stimuli, ongoing task sv parameters were lower for the matching accumulators than the 

mismatching accumulators, consistent with other LBA modelling (e.g., Heathcote et al., 2015; 

Heathcote & Love, 2012). PM sv was generally more variable than ongoing task sv, likely due to 

the smaller number of PM observations. Table S10 shows the means of the subject-average 

posterior distribution for non-decision time, A, and the PM accumulation rate for PM responses 

to non-PM items for each importance group. We note that non-decision time was reliably faster 

in the speed-important group compared with the other three importance groups and slowest in the 

PM-important group. As will be addressed further in the discussion, this is consistent with some 

modulation of encoding and motor responses by task importance. 
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We tested the direction and magnitude of differences in ongoing task and PM threshold 

and rate parameters for the selected model between conditions to assess how consistent the 

effects were with our theoretical predictions concerning time pressure, PM demand, and task 

importance. To this end, we calculated posterior distributions of the differences between 

experimental conditions. To test the proactive control account of PM costs, for example, we took 

the difference between ongoing-task thresholds in control blocks and ongoing-task thresholds in 

PM blocks for each posterior sample, which gives the posterior probability distribution of the 

effect of PM load on ongoing task thresholds.  We calculated differences for each participant 

independently, before averaging over participants to produce a subject-averaged posterior 

difference distribution. To assess significance of the differences we report Bayesian p-values 

(Klauer, 2010) for each subject-averaged difference distribution that give the one-tailed 

probability that the effect does not run in the most sampled direction. 

Because of the high ratio of trials per participant in our design, most of the observed 

differences between parameters had p-values close to zero, suggesting a very high probability of 

an effect being present. To compare the magnitude of the effects, however, we report the 

standardized difference between parameters (i.e., M / SD of the posterior difference distribution). 

Our posterior parameter distributions were approximately normal in shape, so this value can be 

interpreted analogously to a Z-score. As such, we refer to this statistic as Z herein. Tables S11-

S21 in the supplementary materials display the Z-score effect sizes and p-values for all parameter 

comparisons. 
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Proactive Control 

Figure 5 shows ongoing task thresholds (averaged over accumulators) plotted by PM 

block and time pressure for each importance-instruction group. Ongoing task thresholds were 

higher in PM than control blocks for both conflict and non-conflict accumulators (Table S11). In 

both control and PM blocks, average ongoing task thresholds decreased as time pressure 

increased, under both low trial-load and high trial-load conditions (Table S12). Average ongoing 

task thresholds also tended to be slightly lower in high trial-load compared to low trial-load 

conditions when comparing cells with equal time pressure, although the opposite trend occurred 

in the speed-important control block, and the effect was not reliable for the PM-important group. 

These effects suggest that participants use thresholds adjustments to adapt to PM and time 

pressure demands, consistent with proactive cognitive control.  

Time pressure affected the amount that participants increased their ongoing task 

thresholds by when under PM load. That is, the size of ongoing task threshold adjustments 

between control and PM blocks became smaller as time pressure increased. As shown in Figure 

4, the average size of PM block-control block threshold differences tended to be smaller under 

high time pressure versus low time pressure during both low trial-load and high trial-load 

conditions, although this effect sometimes did not reach significance at low time pressure (see 

Table S13). PM block-control block ongoing task threshold differences also tended to be smaller 

during high trial load versus low trial load when comparing cells with equal time pressure. The 

amount of proactive control was also affected by task importance, such that the PM-important 

group used the largest amount of proactive control, while the ongoing- and speed- important 
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groups used the least (all between-subjects importance effects are summarized in Figure 8 and 

Table 20 below). 

Figure 4 also shows PM thresholds under different levels of time pressure for low trial-

load (2 decisions per trial) and high trial-load (5 decisions per trial) conditions for all four 

importance groups. As can be seen, PM thresholds decreased substantially under high time 

pressure relative to low time pressure during both low trial-load and high trial-load conditions, 

but tended to not differ much by load when comparing cells with equal time pressure (Table 

S14). Consistent with the increase in PM false alarms in the PM-important group, PM thresholds 

were lower during PM-important instructions compared with the other three importance 

conditions (Figure 4; see also Figure 8), particularly under high time pressure and high load 

(Table 20). Overall, these shifts in PM thresholds with time pressure support a proactive control 

account in which participants set thresholds strategically in order to manage responses as a 

function of time pressure as well as to increase the probability of responding to high- versus low-

importance stimuli. However, as noted, this strategy can reduce PM accuracy (under high time 

pressure) and increase PM false alarms (when PM is important). 
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Capacity Effects (Quantity and Quality) 

Quantity. As Figure 5 shows, ongoing task accumulation rates increased as time pressure 

increased. To assess changes in processing quantity with time pressure, we compared the sum of 

matching and mismatching ongoing task rates in lower time pressure blocks with the sum of 

matching and mismatching rates in higher time pressure blocks. Processing quantity (matching + 

mismatching rates) increased from lower to higher time pressure blocks under both low trial-load 

 
Figure 4. Average ongoing task and PM thresholds by time pressure and PM block for each importance group. 
Central symbols represent posterior means. Error bars represent +/- 1 posterior standard deviation. 
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and high trial-load conditions (Table S15). Quantity decreased, however, from low to high trial 

load when comparing cells with equal time pressure. 

We also investigated how PM demands affected ongoing-task quantity. Ongoing task 

quantity (matching + mismatching rates) increased from control to PM blocks (Table S16), 

suggesting that more resources were deployed to the ongoing task under PM demand. Adding 

PM load thus had a similar effect to increasing time pressure, such that participants deployed 

more resources under PM load and as the time available to complete the task decreased.  

Confirming our framework’s prediction that quantity should be a decreasing function of 

focus, quantity was lowest in the ongoing-important group (where ongoing task focus was 

highest) and highest in the speed-important group (where ongoing task focus was lowest) (Figure 

8 & Table 20). The latter effect is consistent with quantity being primarily related to the speed of 

responding (in contrast to quality, which represents the signal-to-noise ratio of the evidence and 

thus determines accuracy). 

As shown in Figure 5, the PM accumulation rate decreased with time pressure under both 

low trial-load and high trial-load conditions, although this was not significant for the speed- or 

PM-important group at low trial load (possibly reflecting the overall emphasis on task response 

speed in the first case, and the extra resources shunted to the PM task in the second) (Table S17). 

PM accumulation rates tended to be lower during high versus low trial load when comparing 

cells with equal time pressure, although this trend only reached significance for the neutral 

group. Overall, the PM rate effects suggest a time-pressure modulated trade-off in how resources 

were allocated between the ongoing and PM tasks: as the ongoing task consumes more resources 
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to cope with additional time pressure demands, it draws on resources that would have otherwise 

been allocated to the PM task.  

 

Importance also affected PM accumulation rates, such that PM rates were reliably higher 

in the PM-important group compared with the other three importance conditions (Table 20). PM 

rates were reliably lower in the ongoing- and speed-important groups compared with neutral and 

PM-important (Figure 8). As will be discussed, this is consistent with participants directing more 

 
Figure 5. Average ongoing task and PM accumulation rates by time pressure and PM block for each importance 
group. Central symbols represent posterior means. Error bars represent +/- 1 posterior standard deviation. 



 

 

54 

resources to PM when the PM task is important and less resources to PM when the ongoing task 

or response speed is more important.  

Quality. We tested for changes in ongoing-task processing quality at different time 

pressure by comparing the difference between matching and mismatching ongoing task 

accumulation rates in lower time pressure blocks with the difference between matching and 

mismatching rates in higher time pressure blocks. Ongoing task rates (i.e., rates for conflicts and 

non-conflicts that were not PM targets) at different time pressure are illustrated in Figure 5 for 

each importance group. Except for conflicts presented in low trial-load blocks, the quality of 

ongoing-task processing was lower in higher time pressure blocks compared with lower time 

pressure blocks during both low trial-load and high trial-load conditions (Table S18). Increased 

time pressure thus reduced the quality of ongoing-task processing. This effect was also evident 

between-subjects, such that overall ongoing-task quality was reliably lower in the speed-

important group compared with the other three importance conditions (Figure 8). Processing 

quality was, in general, not reliably affected by trial load when comparing cells with equal time 

pressure.  

We also tested how ongoing-task quality varied with PM demands. Consistent with 

capacity-sharing, the difference between matching and mismatching rates was smaller under PM 

load compared with the control condition (Table S19). That is, the quality of ongoing-task 

processing was poorer in PM blocks compared with control blocks. There was no significant 

interaction between time pressure and PM block on ongoing-task quality. In contrast to 

processing quantity, which was highest in the speed-important group, ongoing-task quality was 

highest in the ongoing-important group and lowest in the speed-important group (Figure 6). As 
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will be discussed, this is consistent with our conceptualization of quality as a measure of 

selective cognitive focus that serves to increase accuracy (which we would expect to be shifted 

around based on task importance) and quantity as measuring a more general gain mechanism that 

serves to increase speed (which is less easily directed towards individual task components).  

Interestingly, when comparing ongoing-task quality between neutral and PM-important 

groups, quality tended to be lower under PM-important instructions, but this effect only 

approached reliability in PM blocks (Table 20). This is also consistent with importance-

modulated selective attention and demonstrates selective influence for this model mechanism 

(i.e., we would only expect PM-importance instructions to take effect in PM blocks). As 

summarized in Figure 6, together these results suggest that resources are flexibly allocated 

between competing task goals based on the time pressure, PM load, and relative importance 

characteristics of the task environment, and provide further support for the idea that capacity 

involves distinct selective cognitive focus and gain mechanisms.  
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Figure 6. Quality (top) and quantity (bottom) of ongoing-task processing by time pressure and PM block for each 
importance group (shown as separate lines). Central symbols represent posterior means. Error bars represent +/- 1 
posterior standard deviation. A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 
4s per decision, 5 decisions per trial; D: 2s per decision, 5 decisions per trial. 

 

Reactive Control (PM vs. Non-PM Trial Accumulation) 

As illustrated in Figure 7, ongoing task rates were lower for stimuli containing a PM 

target compared with stimuli that did not contain a PM target (Table S20). This is consistent with 
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reactive inhibition in which accumulation rates for competing ongoing task responses are 

suppressed in the presence of a PM target.  

In general, the strength of the reactive control effect did not interact with time pressure, 

with a mixture of positive, negative, and non-significant effects (see Table S21). Overall, 

however (and considering the small effect sizes involved) it appears that reactive control 

processes were mostly unaffected by changes in time pressure.  

In contrast, the strength of reactive control was affected by task importance. As 

illustrated in Figure 8, the average amount of reactive control (i.e., the strength of inhibition of 

ongoing task stimuli) was highest under PM-important instructions (replicating Strickland et al., 

2018) and lowest under ongoing-important instructions (Table 20). This suggests that importance 

modulates the strength with which irrelevant task information is inhibited.  

 

 
Figure 7. Ongoing task accumulation rates with PM item present versus absent for each importance group. 
Central symbols represent posterior means. Error bars represent +/- 1 posterior standard deviation. 

  



 

 

58 

Table 20 

Between-subjects importance contrasts 

  Task Importance Contrast 

  PM-Neutral PM-Ongoing Ongoing-Speed Ongoing-Neutral 

Measure Condition Z p Z p Z p Z p 

Mean Proactive 
Control 

A 4.57 <.001 5.52 <.001 -2.01 .02 -1.11 .13 

 B -2.15 .02 3.33 .001 -2.22 .01 -5.29 <.001 

 C 1.94 .03 6.22 <.001 0.26 .40 -4.30 <.001 

 D 6.65 <.001 11.75 <.001 0.68 .25 -5.62 <.001 

Mean Reactive Control A 0.44 .33 2.59 .005 -2.72 .004 -2.18 .01 

 B 1.07 .14 3.23 .001 -3.08 .001 -2.23 .01 

 C 2.46 .006 2.97 .001 -0.34 .37 -0.61 .27 

 D 0.97 .17 5.11 <.001 -3.8 <.001 -4.34 <.001 

Mean PM B A -1.41 .08 -2.04 .02 1.63 .05 0.62 .27 

 B 1.05 .15 -0.90 .18 -1.12 .13 1.83 .03 

 C -1.75 .04 -0.99 .16 1.60 .06 -0.72 .23 

 D -5.76 <.001 -4.34 <.001 0.04 .48 -1.12 .13 

Mean PM v A 1.81 .03 5.45 <.001 2.56 .005 -3.62 <.001 

 B 5.61 <.001 8.82 <.001 -1.77 .04 -3.47 <.001 

 C 0.56 .29 7.65 <.001 -1.48 .07 -6.97 <.001 

 D 1.00 .16 7.62 <.001 -2.63 .005 -6.26 <.001 

Mean Quantity Control -3.87 <.001 -3.29 .001 -3.37 .001 -0.50 .31 

 PM -2.18 .02 2.06 .02 -4.70 <.001 -4.16 <.001 

Mean Quality Control 0.38 .35 -1.65 .049 4.93 <.001 2.03 .02 

 PM -1.54 .06 -3.90 <.001 7.51 <.001 2.36 .008 

Non-decision time  3.08 .002 -3.29 .001 -3.37 .001 -0.50 .31 

Bold values indicate reliable effects (ps denote the Bayesian one-tailed probability that the effect does not run in the most sampled direction). 
A: 6s per decision, 2 decisions per trial; B: 4s per decision, 2 decisions per trial; C: 4s per decision, 5 decisions per trial; D: 2s per decision, 5 
decisions per trial. 
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Figure 8. Summary of between-subjects importance effects. The panels on the left show capacity (PM v, 
ongoing-task quantity, ongoing-task quality) and non-decision time effects. The panels on the right show 
cognitive control effects (PM thresholds, mean proactive control, mean reactive control).  

 

Relative Effects 

We assessed the individual contribution to observed accuracy and RT of key model 

parameters and mechanisms to gain insight into their relative influence on observed behaviour. 

Our method involved comparing posterior predictions for all time pressure and PM effects for 
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the selected model with the predictions generated from models with parameters averaged over 

either PM or time pressure blocks (see the Supplementary Materials for full details). The model 

exploration indicated that ongoing-task accumulation rates explained more of the effect of time 

pressure on ongoing-task RT than did ongoing-task thresholds, whereas thresholds explained 

more of the effect of time pressure on PM RT than did rates (Figures S6-S8). Ongoing-task 

thresholds explained more of the PM-induced cost to ongoing-task RT than did ongoing-task 

accumulation rates (Figure S9). Proactive control explained more of the effects on PM accuracy 

and PM RT than did reactive control (Figure S10).  

General Discussion 

We used a cognitive model of event-based Prospective Memory (PM) based on an 

evidence-accumulation decision processing framework, Strickland et al.’s (2018) PM Decision 

Control (PMDC) model, to investigate how cognitive control and cognitive capacity mechanisms 

interact and enable participants to adapt to the demands of a complex and demanding air traffic 

control conflict detection task. We proposed a new quantitative approach to formalize the idea of 

cognitive capacity in evidence-accumulation models in general, and PMDC in particular, in 

terms of gain, a broadly-tuned amplification mechanism, and focus, a more finely-tuned relative 

modulation mechanism controlling signal-to-noise ratios, consistent with both early conceptions 

of visual attention (e.g., Posner & Boies, 1971) and more recent computational neuroscience 

divisive normalization approaches (e.g., Busse, et al. 2009; Carandini & Heeger, 2012; Heeger, 

1992; Reynolds & Heeger, 2009; Schwartz & Simoncelli, 2001).  

The conflict detection task manipulated time pressure and PM load (i.e., whether or not 

participants had to remember to perform a deferred task action) within subjects, with a between 
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subjects task priority manipulation using instructions to emphasise either the accuracy or speed 

of the ongoing (conflict detection) task, the accuracy of the PM task, or neutral instructions that 

replicated Boag et al. (2019). Our experimental design had the low measurement error necessary 

to precisely characterize individual performance (Kolossa & Kopp, 2018; Smith & Little, 2018), 

with each participant performing more than one thousand decisions that each took several 

seconds, and also included a large number of participants, 60 or more in each instructional 

condition, required to support powerful between-subjects inferences and the generality of our 

results across individuals. Hence, this design allowed the use of approximately 80 estimated 

model parameters per participant to provide a fine-grained description of performance in terms 

of a detailed characterisation of cognitive processes, revealing a complex interplay between 

cognitive control and our new conception of cognitive capacity. 

We found that cognitive control flexibly allocated cognitive capacity in order to manage 

the competing demands of time pressure, PM load, and task priority. Focus, as measured by the 

quality of the mean rate of evidence accumulation (i.e., the difference between rate for the 

accumulator that matches the ongoing task stimulus and the accumulator that mismatches it) was 

primarily influenced by task importance. Cognitive gain, which selectively determines the 

quantity of evidence accumulation (i.e., the sum of the mean rates for matching and mismatching 

accumulators) was primarily influenced by time pressure and PM load. Further, in a comparison 

across instructional manipulations, we confirmed a specific prediction of the new cognitive 

capacity framework, that increased focus not only increases quality, but also decreases quantity.  

In some cases, our results supported trade-offs between ongoing and PM tasks that 

implicate capacity sharing (Navon & Gopher, 1979), a key marker of human performance being 
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determined by a limited pool of cognitive capacity. In other cases, participants were able to 

mobilize extra capacity, and in general the greatest capacity was allocated to the highest priority 

task (see Walter & Meier, 2014, for a review of related findings). Our formal approach addresses 

Navon’s (1984) critique of the circularity of the concept of capacity, by embedding it within a 

comprehensive model of task performance that takes account of human adaptations to task 

demands through proactive and reactive control processes (Braver, 2012), and which grounds the 

concept of capacity in well-defined and specific measures of latent information processing rates.  

We found that the PMDC model was able to fit the full distribution of RTs for both 

ongoing-task and PM responses across all experimental factors, accounting for observed 

differences in accuracy and RT related to time pressure, PM demand, and task importance. 

Although there was a clear role for capacity sharing and capacity mobilization mechanisms, we 

also replicated previous work using an ongoing conflict detection task and other demanding 

ongoing tasks (Boag et al., 2019; Strickland et al., 2019), and less demanding ongoing tasks such 

as lexical decision (Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 2015; 

Strickland et al., 2017, 2018), in finding that proactive and reactive control processes explained 

the majority of variation in performance (however, as will be discussed, cognitive gain and focus 

play critical roles in explaining certain effects). Hence, we first summarize our findings with 

respect to cognitive control effects in order to provide an appropriate context for a more detailed 

consideration of capacity-related effects.   

Cognitive Control 

Proactive. Participants set lower ongoing task thresholds as time pressure increased, 

consistent with work showing individuals set lower thresholds to favour fast responding when 
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deadlines are short (i.e., a speed-accuracy trade-off) (Boag et al., 2019; Dutilh, Wagenmakers, 

Visser, & van der Maas, 2011; Forstmann et al., 2011; Usher, Olami, & McClelland, 2002). 

Consistent with prior modeling of PM costs (e.g., Ball & Aschenbrenner, 2017; Boag et al., 

2019; Heathcote et al., 2015; Horn & Bayen, 2015; Strickland et al., 2017, 2018), participants set 

higher ongoing task thresholds in PM blocks than control blocks, which drove PM cost effects 

and increased the frequency of non-responses (in PM blocks).  

PM-induced proactive control interacted with time pressure. That is, participants used 

less proactive control as time pressure increased, making the ongoing task accumulators more 

likely to pre-empt the PM response. This resulted in poorer PM accuracy and more frequent non-

responses in high time pressure PM blocks, consistent with prior work suggesting individuals are 

particularly prone to making PM errors during periods of heightened time pressure (Boag et al., 

2019). Proactive control also depended upon the importance of the PM task relative to the 

ongoing task. As expected, the PM-important group used the largest amount of proactive control 

(i.e., proactive control was stronger when the PM task was emphasized; replicating Strickland et 

al., 2018) and the ongoing- and speed-important groups used the least.  

PM thresholds decreased with increased time pressure and were reliably lower for the 

PM-important group, consistent with the increase in PM false alarms observed in that group, and 

in line with previous modeling (Strickland et al., 2018). This shows that participants proactively 

controlled PM decision processes to adapt PM task performance to the time pressure and reward 

structure of the environment.  

Overall, these effects support a proactive control account in which participants control 

ongoing task and PM thresholds in order to facilitate fast responding as well as to increase the 
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probability of responding to high- versus low-importance stimuli. However, as noted, this 

strategy can increase non-response misses (under high time pressure) and increase PM false 

alarms (when PM is prioritised), which may have implications in settings where such outcomes 

are undesirable.  

Reactive. Ongoing task accumulation rates were lower on PM trials than on non-PM 

trials (i.e., rates were lower with a PM target present versus absent), consistent with inhibition 

from the PM detector when activated by a PM stimulus (Boag et al., 2019; Strickland et al., 

2017, 2018). Inhibiting ongoing task rates on PM trials increases the probability that the PM 

accumulator will out-pace the ongoing task accumulators. This is in line with theoretical work 

(Bugg et al. 2013), neurological data (McDaniel et al. 2013), and broader approaches to human 

error (Norman, 1981; Reason, 1990) suggesting such response inhibition is necessary to allow 

atypical task responses (with weak associative strengths) to compete with common task 

responses (with strong associative strengths) for retrieval and response selection.  

Time pressure had no systematic effect on the strength of reactive control, in line with 

Braver’s (2012) description of reactive control as an automatic, stimulus-driven control process. 

Since reactive control is only active on PM trials, it would not be an effective mechanism for 

dealing with changes in time pressure across entire blocks of trials.  

Reactive control was strongest in the PM-important group and weakest in the ongoing-

important group (replicating Strickland et al., 2018), suggesting that individuals can modulate 

the strength with which irrelevant task information is inhibited depending on the reward structure 

of the environment. This is consistent with neurological work showing that reward motivations 

can increase the strength of reactive response inhibition (Boehler et al., 2014). In terms of our 
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model, participants may adjust the reactive control inputs to ongoing task accumulators, 

depending on the importance of the PM task. That is, participants may set their reactive control 

architecture in anticipation of the upcoming reward context to favour stronger inhibitory control 

when a PM item is encountered.  

Cognitive Capacity 

Gain. The quantity of ongoing-task processing increased under both time pressure and 

PM load, supporting the idea that greater task demands lead to heightened cognitive gain (i.e., 

gain increased at shorter trial deadlines and under PM load; Boag et al., 2019). Ongoing-task 

quantity was highest for the speed-important group and lowest for the ongoing-important group 

(i.e., where ongoing task focus was highest), confirming our framework’s prediction that 

quantity should be a decreasing function of focus. These effects are consistent with prior 

modeling (Rae et al., 2014) and support our framework’s formulation of cognitive gain as 

primarily controlling the speed of responding, in contrast to focus, which controls the signal-to-

noise ratio of the evidence and is thus a primary determinant of accuracy. 

Focus. Consistent with prior work (Boag et al., 2019; Rae et al., 2014), ongoing-task 

processing quality decreased under both time pressure and PM load, indicating that greater task 

demands lead to a loss of cognitive focus. However, in terms of effect size, quality was much 

less affected by time pressure and PM load (Z ~ 5) than was quantity (Z ~ 30). Ongoing task 

focus was lowest in the speed-important group compared with the other three importance 

conditions, consistent with previous reports of reduced quality during high versus low time 

pressure or when the speed of responding is emphasized (e.g., Heitz & Schall, 2012; Ho et al., 
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2012; Rae et al., 2014; Starns, Ratcliff, & McKoon, 2012; Vandekerckhove, Tuerlinckx, & Lee, 

2008).  

Taken together, these results suggest that increased time pressure and PM load lead to a 

loss of cognitive focus, which reduces the quality of information entering the decision process. 

This could occur because individuals focus on less diagnostic information under high time 

pressure and because PM processes draw focus away from the ongoing task. We further note that 

this is consistent with the observed cost to ongoing task accuracy in PM blocks, which was 

greatest when trial load and time pressure were high, and strongest in the PM-important group. 

This contrasts with previous studies that found no capacity-sharing effects of PM load in less 

demanding ongoing tasks (Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 

2015; Strickland et al., 2017, 2018), further highlighting that PM-induced costs to ongoing-task 

processing can occur in paradigms where the ongoing task is sufficiently demanding so as to 

fully occupy cognitive resources.  

Consistent with our formulation of quality as measuring cognitive focus, quality was a 

sliding function of importance, with ongoing task focus highest in the ongoing-important group 

and lowest in the speed-important group, with the neutral and PM-important groups in between. 

In addition, ongoing task focus was marginally lower in the PM-important group compared with 

the neutral instruction group in PM blocks but not control blocks (i.e., ongoing task focus was 

lower only when the PM intention was active). This selective influence provides a further 

demonstration of capacity sharing: PM-important instructions produced the greatest amount of 

resource sharing from the ongoing task to the PM task, but only when the PM intention was 

active. When the PM intention was inactive (i.e., in control blocks) the quality of ongoing-task 
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processing was the same as under neutral-importance instructions. These findings extend work 

from the basic PM literature in which emphasizing the importance of the PM task did not reduce 

the quality of ongoing-task processing (Strickland et al., 2018), and are consistent with the idea 

that the degree to which the ongoing and PM tasks share cognitive capacity is proportional to 

their relative importance (Walter & Meier, 2014).  

PM Accumulation Rate. PM accumulation rates decreased as time pressure increased. 

Recall that ongoing-task quantity increased as time pressure increased. This trade-off suggests 

that resources were diverted from PM processing to ongoing-task processing in order to cope 

with the greater demands associated with performing the ongoing task under high time pressure 

(i.e., with a shorter trial deadline), a critical demonstration of capacity sharing (Navon & Gopher, 

1979). However, time pressure did not affect PM rates in the speed-important group, which 

likely reflects that group’s overall emphasis on responding quickly to avoid non-responses. Time 

pressure similarly did not affect PM rates in the PM-important group, which likely reflects the 

significantly greater cognitive capacity available to the PM task when it was emphasized, 

consistent with previous modeling (e.g., Strickland et al., 2018).  

Compared with the neutral group, PM rates were higher in the PM-important group and 

lower in the ongoing- and speed-important groups. This second trade-off further demonstrates 

capacity sharing: resources were shared between the ongoing and PM tasks based on their 

relative importance (i.e., the greatest cognitive capacity was allocated to the highest priority 

task). The greater resources allocated to PM processing under PM-important instructions likely 

explains why ongoing-task quantity was lower under PM-important instructions compared with 

neutral, despite focus being directed away from the ongoing task (recall that quantity is a 
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decreasing function of focus). That is, the ‘missing’ ongoing task resources were allocated to PM 

processing.  

Consistent with ecological rationality approaches to cognition (Simon, 1956; Todd & 

Gigerenzer, 2007), these findings demonstrate that individuals allocate cognitive resources 

between the ongoing and PM tasks based on the reward and demand structure of the 

environment. Our framework provides a cogent explanation for this complex set of empirical 

phenomena that would be difficult to interpret using standard statistical analyses of observed 

behaviour. Moreover, the trade-offs between PM and ongoing task rates (i.e., by time pressure 

and task importance) revealed by our model provide two critical demonstrations of capacity 

sharing (Navon & Gopher, 1979) that do not suffer from circularity or unfalsifiability (Navon, 

1984). 

Trial Load Effects 

Ongoing task RTs were marginally slower, and non-responses less frequent, under high 

trial load compared with low trial load when comparing conditions with equal time pressure. 

There were no significant effects of trial load on ongoing task accuracy, PM accuracy, or PM 

RT. In terms of the model, however, higher trial load was associated with poorer processing 

quantity, better processing quality, smaller proactive control effects, and lower PM accumulation 

rates. This is consistent with slightly more cognitive capacity being focused on the ongoing task 

versus the PM task during 20-second/5-decision trials compared with 8-second/2-decision trials, 

despite there being equal time available per decision on average. A possible explanation for this 

is that there was a fixed start-up time on each trial, which would have left more subsequent 

processing time on 20-second/5-decision trials compared with 8-second/2-decision trials. We 



 

 

69 

note that this pattern of effects is similar to the differences that occurred between the ongoing- 

and PM-important groups (discussed below), which suggests that the less temporally-demanding 

context of the 20-second/5-decision trials led participants to focus more on the ongoing task 

relative to the PM task (i.e., to treat the ongoing task as more important) than they did in 8-

second/2-decision trials. Nevertheless, we emphasize that the effects of trial load were extremely 

small in comparison to the effect of the time per decision, which was the major determinant of 

time pressure effects.  

Summary of Between-Subjects Importance Effects 

Confirming our framework’s formulation of gain as a decreasing function of focus that 

primarily controls the speed of responding, ongoing-task quantity was lowest when the ongoing 

task was important (i.e., where focus was greatest) and highest when the speed of responding 

was important. As mentioned, ongoing-task quantity was lower than expected under PM-

important instructions (compared with neutral), since directing focus away from the ongoing task 

(i.e., decreasing focus) should increase quantity. However, the concomitant increase in PM 

accumulation under PM-important instructions explains this via capacity sharing, that is, the 

‘missing’ ongoing task resources were diverted to PM processing) (Navon & Gopher, 1979). 

Quality was a sliding function of importance, consistent with participants shifting 

cognitive focus between concurrent tasks in accordance with the reward structure of the 

environment (i.e., attention was allocated in proportion to the importance of each task; Walter & 

Meier, 2014). Similarly, the PM-important group used the largest amount of proactive control 

and had the highest PM accumulation rates, while the ongoing- and speed- important groups 

used the least amount of proactive control and had the lowest PM accumulation rates. These 
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effects were reflected in higher PM accuracy and slower ongoing task RTs observed in the PM-

important group compared with lower PM accuracy and faster ongoing task RTs in the ongoing- 

and speed-important groups. The PM-important group also set lower PM thresholds than the 

other three groups, which was evident in the PM-important group’s faster empirical PM RTs and 

significantly more frequent PM false alarms and non-responses. Average ongoing task and PM 

thresholds were lowest in the speed-important group, which also had the fastest ongoing task 

RTs and lowest frequency of non-response misses. 

Non-decision time was also shortest in the speed-important group, which is consistent 

with previous modeling showing reduced non-decision time in response to heightened time 

pressure (e.g., Dambacher & Hübner, 2015) and is typically assumed to reflect a combination of 

faster motor response execution and more efficient pre-decisional attentional selection (e.g., 

Ong, Sewell, Weekes, McKague, & Abutalebi, 2017; Ratcliff & Smith, 2010; Voss et al., 2010). 

Non-decision time was longest in the PM-important group, which may reflect additional 

processing related to the PM task that is not part of the evidence accumulation process, such as 

double-checking or pre-decisional visual search. Reactive control was also strongest in the PM-

important group, and weakest in the ongoing-important group, demonstrating that task 

importance modulates the strength with which irrelevant task information is inhibited (Strickland 

et al., 2018).  

Taken together, these findings demonstrate that cognitive control and cognitive gain and 

focus mechanisms each contribute to explaining the complex ways the cognitive system adapts 

to environmental demands to support decision making. However, we repeat that the capacity 

effects were small in comparison to the proactive and reactive cognitive control effects we found 
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here and in previous work (e.g., Boag et al., 2019; Heathcote et al., 2015; Strickland et al., 2017, 

2018). Specifically, model exploration showed that ongoing-task thresholds explained more of 

the effects on PM accuracy, PM RT, and PM-induced costs to ongoing-task RT than did 

ongoing-task accumulation rates (Figures S9-S10), whereas ongoing-task accumulation rates 

were more important in explaining the effects of time pressure on ongoing-task RT than were 

ongoing-task thresholds. As such, although cognitive gain and focus are clearly useful concepts, 

they should be situated within a cognitive control framework to form a complete picture of the 

latent cognitive processes that control overt performance. 

General Implications 

This current work provides a significant theoretical advance, by offering a tractable 

quantitative framework for measuring the complex set of cognitive control and cognitive 

capacity processes that underlie performance in complex dynamic environments. More broadly, 

our approach has the potential to provide insights into cognitive control and attention deficits 

observed in certain clinical disorders including anxiety, depression, schizophrenia, and substance 

dependence and abuse disorders (see White, Ratcliff, Vasey, & McKoon, 2010). For example, 

individuals with high anxiety preferentially direct attention toward threatening information, a 

phenomenon known as attentional bias (see Bar-Haim, Lamy, Pergamin, Bakermans-

Kranenburg, & Van Ijzendoorn, 2007). Current debate exists over the specific source of such 

biases (e.g., early-stage attentional selection processes versus late-stage maintenance or failures 

to disengage attention; see Bar-Haim et al., 2007). Our proactive and reactive control, cognitive 

gain and focus, and non-decision time measures could prove useful in resolving these and similar 

theoretical issues in clinical psychology. Proactive and reactive cognitive control deficits are also 
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thought to underlie the behavioural disorganization characteristic of schizophrenia (see Lesh, 

Niendam, Minzenberg, & Carter, 2011; Lesh et al., 2013) and have been implicated in ADHD 

(Iselin & DeCoster, 2009; Pani et al., 2013). The PMDC model provides a cogent framework for 

understanding a complex set of empirical phenomena that would be difficult to interpret using 

standard statistical analyses of observed behaviour. In providing a detailed understanding of the 

cognitive processes thought to underlie many clinical disorders, our model could be used to 

improve assessment, classification, and treatment. 

In work and everyday life, people are particularly prone to disruption from concurrent 

tasks that compete for their limited attention. Our approach may thus prove useful for measuring 

the disruptive effects of distractions and interruptions6 on attention and performance (Altmann, 

Trafton, & Hambrick, 2014; Monk, Boehm-Davis, Mason, & Trafton, 2004; Trafton & Monk, 

2007; Wilson, Farrell, Visser, & Loft, 2018). Distractions (i.e., when attention is partially 

diverted from the primary task; Graydon & Eysenck, 1989) and interruptions (i.e., when 

attention is entirely diverted from the primary task; Gillie & Broadbent, 1989) have been linked 

to negative outcomes in safety-critical contexts including aviation (Dismukes, Young, Sumwalt 

III, & Null, 1998; Loukopoulos, Dismukes, & Barshi, 2001, 2003), driving (Bowden,  Loft, 

Wilson, Howard, & Visser, 2019; Ratcliff & Strayer, 2014; Strayer et al., 2015), and medicine 

(Coiera & Tombs, 1998; Tucker & Spear, 2006). For example, a ringing mobile phone can draw 

cognitive focus away from the road scene, leading to slower braking times and more severe lane 

deviations (Ratcliff & Strayer, 2014; Waard & Brookhuis, 1997) (see Averty, Collet, Dittmar, 

                                                             
6 Dodhia and Dismukes (2009) have argued that interruptions are essentially one-off PM tasks, in which an intention 
to resume the interrupted task must be formed, stored, and later retrieved once the interruption is over. 



 

 

73 

Athènes, & Vernet-Maury, 2004; Metzger & Parasuraman, 2001; for examples from air traffic 

control). Although it may be challenging to achieve the experimental control and number of 

trials required for model fitting, our approach could prove useful in such contexts, giving a 

comprehensive decomposition of cognitive capacity and the sources of attentional degradation.  

Limitations and Future Directions 

One limitation of our modelling approach is that we do not include an explicit memory 

mechanism, so our model makes no claims about how PM intentions are stored, retrieved, or 

forgotten. Forgetting irrelevant and outdated information is critical in dynamic task environments 

in which to-be-remembered information changes frequently (Garland, Stein, & Muller, 1999; 

Hopkin, 1980). PM in air traffic control, for example, often involves a dynamic process of 

coordination between controllers and pilots, meaning intentions are encoded and updated on a 

moment-to-moment basis (Loft, Smith, & Bhaskara, 2011) rather than a single fixed intention 

encoded at the beginning of a trial. Failing to forget outdated PM intentions has been shown to 

cause PM commission errors and increase susceptibility to PM lures (i.e., non-PM items that 

share features with genuine PM targets; e.g., Meier, Zimmermann, & Perrig, 2006; Scullin, 

Bugg, & McDaniel, 2012). As such, although our approach provided a comprehensive and 

theoretically informative account of a complex set of data, the present modeling necessarily 

omitted some processes likely to be consequential in real work systems.  

Extending the model to include explicit mechanisms of retrieval/forgetting could prove 

useful for investigating situations in which PM errors are expected to be due to retrieval failures. 

Retrieval failures are likely to occur when PM processing is interrupted and must then be 

resumed (Wilson et al., 2018), when PM retrieval must be triggered internally (as in time-based 
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PM tasks; e.g., Huang, Loft, & Humphreys, 2014), and when individuals lack information about 

the context in which PM events will occur (Loft, Finnerty et al., 2011). Adding a 

retrieval/forgetting mechanism to the model could also provide insight into how people manage 

tasks with multiple concurrent PM intentions (e.g., Cohen, Jaudas, & Gollwitzer, 2008; Einstein 

& McDaniel, 2005) and intentions that require updating over time (Bugg & Scullin, 2013; Ecker, 

Lewandowsky, Oberauer, & Chee, 2010; Ecker, Oberauer, & Lewandowsky, 2014; Voigt et al., 

2014). We expect environments with multiple PM tasks and intention-updating to be even more 

demanding than our task and to therefore elicit greater effects on the attentional system than seen 

here. Another possibility with less-demanding tasks is that, as demands increase, participants 

may simultaneously increase their effort toward both the ongoing and PM tasks due to focusing 

more on the entire task ensemble (Rummel, Smeekens, & Kane, 2017). In the model this would 

be reflected by concurrent increases in both ongoing task quality and PM accumulation rate. 

Although not observed in the context of our demanding ongoing task and non-focal PM stimuli, 

future work could pair our model with a simultaneous detection response task, which has been 

used to measure overall on-task focus and modelled using evidence-accumulation processes 

(Cooper, Castro, & Strayer, 2016).  

In terms of methodology, on PM trials, our task required participants to make PM 

responses instead of the ongoing task response. This was done because a common form of PM 

error in complex work tasks is due to ‘habit capture’, where an individual fails to perform an 

atypical intended action, substituting a routine non-intended action instead (Grundgeiger, 

Sanderson, & Dismukes, 2015; Loft & Remington, 2010; Norman, 1981; Reason, 1990). For 

example, a thunderstorm may mean that a controller cannot assign aircraft a certain range of 
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altitude. It may be the case that 767 aircraft are routinely assigned altitude 320, but in this case, 

the controller must assign an alternative altitude. However, we note that this mode of responding 

differs from the 'dual-response' PM paradigm (e.g., Bisiacchi et al., 2009), in which participants 

are instructed to make PM responses in addition to the ongoing response. Heathcote et al. (2015) 

reported similar proactive control effects in a dual-response paradigm. However, PM trials have 

not yet been modeled in a dual-response PM paradigm so it is unclear whether reactive control 

and capacity allocation processes will operate exactly as they did here. We note that this 

represents a difficult modeling problem, since RTs for the ongoing and PM responses are 

confounded in the dual-response case. 

Our task used highly non-focal PM items, meaning the evidence required to make a PM 

decision was unrelated to the evidence required to make ongoing task (conflict detection) 

responses. Focal PM items, which share features with ongoing task stimuli and are thus more 

salient, are typically assumed to require less PM monitoring than non-focal items (Einstein & 

McDaniel, 2005; McDaniel & Einstein, 2000), and some researchers argue are more likely to 

result in 'spontaneous retrieval' (Einstein et al., 2005) in which intentions are retrieved without 

effortful processing. In addition, Strickland et al. (2018) reported that focal PM items resulted in 

stronger reactive control over ongoing task accumulation rates than did non-focal items, due to 

focal PM items eliciting greater activation of the PM detector and consequently greater inhibition 

of the ongoing task accumulators. Thus, we would expect focal PM items to produce faster PM 

accumulation rates, smaller capacity-sharing effects, and larger reactive control effects than 

occurred with our non-focal PM task. 
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Another important consideration is that (due to practical and measurement 

considerations) our task, although within the bounds of previous PM research, used a relatively 

high frequency of PM items (20% of PM block trials). With a lower PM frequency, we would 

expect less PM cost (e.g., Loft, Kearney, & Remington, 2008) and thus weaker proactive control 

effects than seen here. Low-frequency PM may also result in 'trigger-failures' (Matzke, Love, & 

Heathcote, 2017) - trials on which the PM intention is not retrieved and thus the PM accumulator 

does not enter the race. Extending the model to include a trigger-failure mechanism would be an 

interesting avenue for future work. 

Finally, our conception of mean rates as being a function of cognitive gain and focus 

could potentially be of use in broader applications of evidence accumulation models. For 

example, future work could directly estimate gain and focus parameters along with parameters 

quantifying the bottom-up components of information processing. If it can be assumed that the 

bottom up components are invariant over a sufficient set of experimental conditions, such models 

can be made identifiable when the total number of gain, focus and bottom up parameters is at 

least equal to the number of parameters required in a traditional parameterization (e.g., the 

number of conditions times the number of accumulators required to model them). Where the 

number is less, the more specific predictions of the focus and gain framework can be compared 

to those of a traditional, and more flexible, parameterization in order to test which provides the 

best trade-off between goodness-of-fit and parsimony. Selective influence assumptions can also 

be tested and, as here, an assessment made of predicted trade-offs, such as an increase in quality 

and decrease in quantity due to an increase in focus.        

Conclusion 



 

 

77 

This study presented a formal justification for measuring and interpreting cognitive gain 

and focus effects in an evidence-accumulation modeling framework. The model provided a 

consistent and psychologically interpretable quantitative measure of cognitive control and 

cognitive capacity effects for use in a dynamic multiple-task environment. Consistent with 

previous work, we found robust capacity-sharing and cognitive control effects, highlighting the 

role of each in adapting to the particular time pressure, PM, and task importance requirements of 

the environment. Extending previous work, we found that resources were shared between the 

ongoing and PM tasks in proportion to their relative importance (i.e., the greatest cognitive 

capacity was allocated to the highest priority task). Further, we decomposed capacity into 

distinct cognitive gain and focus mechanisms to give a finer-grained picture of the role of the 

attentional system in supporting decision making and PM. This work has the potential to be 

useful to researchers in many different fields, providing a comprehensive computational 

framework to test cognitive theory and measure the latent cognitive control and attentional 

processes that drive performance in complex multiple-task environments. 

 

  



 

 

78 

References 

Altgassen, M., Kliegel, M., Brandimonte, M., & Filippello, P. (2010). Are older adults more 

social than younger adults? Social importance increases older adults’ prospective memory 

performance. Aging, Neuropsychology, and Cognition, 17(3), 312–328. 

Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014). Momentary interruptions can derail 

the train of thought. Journal of Experimental Psychology: General, 143(1), 215. 

Anderson, F. T., Rummel, J., & McDaniel, M. A. (2018). Proceeding with care for successful 

prospective memory: Do we delay ongoing responding or actively monitor for cues? 

Journal of Experimental Psychology: Learning, Memory, and Cognition. Retrieved from 

https://www.researchgate.net/publication/323859395_Proceeding_With_Care_for_Succe

ssful_Prospective_Memory_Do_We_Delay_Ongoing_Responding_or_Actively_Monitor

_for_Cues 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An 

integrated theory of the mind. Psychological Review, 111(4), 1036. 

Andrzejewski, S. J., Moore, C. M., Corvette, M., & Herrmann, D. (1991). Prospective memory 

skill. Bulletin of the Psychonomic Society, 29(4), 304–306. 

Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York 

Academy of Sciences, 1224(1), 147–161. 

Averty, P., Collet, C., Dittmar, A., Athènes, S., & Vernet-Maury, E. (2004). Mental workload in 

air traffic control: an index constructed from field tests. Aviation, Space, and 

Environmental Medicine, 75(4), 333–341. 



 

 

79 

Ball, B. H., & Aschenbrenner, A. J. (2017). The importance of age-related differences in 

prospective memory: Evidence from diffusion model analyses. Psychonomic Bulletin & 

Review, 1–9. 

Band, G. P., Van Der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of 

the stop-signal procedure. Acta Psychologica, 112(2), 105–142. 

Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. 

(2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-

analytic study. Psychological Bulletin, 133(1), 1. 

Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). lme4: Linear mixed-effects 

models using Eigen and S4. R package version 1.1–7. (Vol. 67). Retrieved from 

http://CRAN.R-project.org/package=lme4 

Bisiacchi, P. S., Schiff, S., Ciccola, A., & Kliegel, M. (2009). The role of dual-task and task-

switch in prospective memory: Behavioural data and neural correlates. 

Neuropsychologia, 47(5), 1362–1373. 

Boag, R. J., Strickland, L., Neal, A., Heathcote, A., & Loft, S. (2019). Cognitive control and 

capacity for prospective memory in complex dynamic environments. Journal of 

Experimental Psychology: General. 

Boehler, C. N., Schevernels, H., Hopf, J.-M., Stoppel, C. M., & Krebs, R. M. (2014). Reward 

prospect rapidly speeds up response inhibition via reactive control. Cognitive, Affective, 

& Behavioral Neuroscience, 14(2), 593-609. 

Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of 

Pavlovian learning. Psychological Bulletin, 114(1), 80. 



 

 

80 

Bowden, V. K., & Loft, S. (2016). Using memory for prior aircraft events to detect conflicts 

under conditions of proactive air traffic control and with concurrent task requirements. 

Journal of Experimental Psychology: Applied, 22(2), 211.  

Bowden V., Loft, S., Wilson, M., Howard, J., Visser. T.A.W (2019). The long road home from 

distraction: Investigating the time-course of distraction recovery in driving. Accident 

Analysis and Prevention. 

Bland, J. M., Altman, D. G., & Rohlf, F. J. (2013). In defence of logarithmic transformations. 

Statistics in Medicine, 32, 3766–3768, doi:10.1002/sim.5772. 

Brandimonte, M. A., Ferrante, D., Bianco, C., & Villani, M. G. (2010). Memory for pro-social 

intentions: When competing motives collide. Cognition, 114(3), 436–441. 

Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. 

Trends in Cognitive Sciences, 16(2), 106–113. 

Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and 

neuromodulation. Neuroscience & Biobehavioral Reviews, 26(7), 809–817. 

Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. 

Psychological Review, 64(3), 205. 

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: 

Linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178. 

Bugg, J. M., & Scullin, M. K. (2013). Controlling intentions: The surprising ease of stopping 

after going relative to stopping after never having gone. Psychological Science, 24(12), 

2463–2471. 



 

 

81 

Bugg, J. M., Scullin, M. K., & McDaniel, M. A. (2013). Strengthening encoding via 

implementation intention formation increases prospective memory commission errors. 

Psychonomic Bulletin & Review, 20(3), 522–527. 

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523. 

Bundesen, C. (1998). A computational theory of visual attention. Philosophical Transactions of 

the Royal Society of London B: Biological Sciences, 353(1373), 1271–1281. 

Busse, L., Wade, A. R., & Carandini, M. (2009). Representation of concurrent stimuli by 

population activity in visual cortex. Neuron, 64(6), 931–942. 

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature 

Reviews Neuroscience, 13(1), 51. 

Castro, S., Strayer, D. L., Matzke, D., & Heathcote, A. (2018). Modeling the detection response 

task. Conference: Object Perception, Attention and Memory Conference, Retrieved from 

https://www.researchgate.net/publication/324043188_Modeling_the_Detection_Respons

e_Task 

Cohen, A.-L., Jaudas, A., & Gollwitzer, P. M. (2008). Number of cues influences the cost of 

remembering to remember. Memory & Cognition, 36(1), 149–156. 

Coiera, E., & Tombs, V. (1998). Communication behaviours in a hospital setting: an 

observational study. Bmj, 316(7132), 673–676. 

Cooper, J. M., Castro, S. C., & Strayer, D. L. (2016). Extending the Detection Response Task to 

Simultaneously Measure Cognitive and Visual Task Demands. Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting, 60(1), 1962–

1966. https://doi.org/10.1177/1541931213601447 



 

 

82 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in 

the brain. Nature Reviews Neuroscience, 3(3), 201. 

Dambacher, M., & Hübner, R. (2015). Time pressure affects the efficiency of perceptual 

processing in decisions under conflict. Psychological Research, 79(1), 83–94. 

Dismukes, K. (2006). Concurrent task management and prospective memory: pilot error as a 

model for the vulnerability of experts. In Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting (Vol. 50, pp. 909–913). Sage Publications Sage CA: 

Los Angeles, CA. 

Dismukes, R. K., & Nowinski, J. (2007). Prospective memory, concurrent task management, and 

pilot error. Attention: From Theory to Practice, 225–236. 

Dismukes, R. K., Young, G. E., Sumwalt III, R. L., & Null, C. H. (1998). Cockpit interruptions 

and distractions: Effective management requires a careful balancing act. 

Dismukes, R. K. (2012). Prospective Memory in Workplace and Everyday Situations. Current 

Directions in Psychological Science, 21(4), 215–220. 

https://doi.org/10.1177/0963721412447621 

Dodhia, R. M., & Dismukes, R. K. (2009). Interruptions create prospective memory tasks. 

Applied Cognitive Psychology: The Official Journal of the Society for Applied Research 

in Memory and Cognition, 23(1), 73–89. 

Donkin, C., Brown, S. D., & Heathcote, A. (2009). The overconstraint of response time models: 

Rethinking the scaling problem. Psychonomic Bulletin & Review, 16(6), 1129–1135. 



 

 

83 

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time 

models: A tutorial using the linear ballistic accumulator. Journal of Mathematical 

Psychology, 55(2), 140–151. 

Donkin, C., Little, D. R., & Houpt, J. W. (2014). Assessing the speed-accuracy trade-off effect 

on the capacity of information processing. Journal of Experimental Psychology: Human 

Perception and Performance, 40(3), 1183. 

Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model 

decomposition of the practice effect. Psychonomic Bulletin & Review, 16(6), 1026–1036. 

Dutilh, G., Wagenmakers, E.-J., Visser, I., & van der Maas, H. L. (2011). A phase transition 

model for the speed-accuracy trade-off in response time experiments. Cognitive Science, 

35(2), 211–250. 

Ecker, U. K., Lewandowsky, S., Oberauer, K., & Chee, A. E. (2010). The components of 

working memory updating: an experimental decomposition and individual differences. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(1), 170. 

Ecker, U. K., Oberauer, K., & Lewandowsky, S. (2014). Working memory updating involves 

item-specific removal. Journal of Memory and Language, 74, 1–15. 

Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. 

Journal of Experimental Psychology: Human Perception and Performance, 10(1), 32. 

Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical 

amplification of task-relevant information. Nature Neuroscience, 8(12), 1784. 

Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converging measures of workload 

capacity. Psychonomic Bulletin & Review, 17(6), 763–771. 



 

 

84 

Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 16(4), 717. 

Einstein, G. O., & McDaniel, M. A. (2005). Prospective memory: Multiple retrieval processes. 

Current Directions in Psychological Science, 14(6), 286–290. 

Einstein, G.O., McDaniel, M.A., Thomas, R., Mayfield, S., Shank, H., Morrisette, N., & 

Breneiser, J. (2005). Multiple processes in prospective memory retrieval: Factors 

determining monitoring versus spontaneous retrieval. Journal of Experimental 

Psychology: General, 134, 327–342. 

Einstein, G. O., McDaniel, M. A., Williford, C. L., Pagan, J. L., & Dismukes, R. (2003). 

Forgetting of intentions in demanding situations is rapid. Journal of Experimental 

Psychology: Applied, 9(3), 147. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. 

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of 

Experimental Psychology: General, 127(2), 107. 

Fific, M., Little, D. R., & Nosofsky, R. M. (2010). Logical-rule models of classification response 

times: A synthesis of mental-architecture, random-walk, and decision-bound approaches. 

Psychological Review, 117(2), 309. 

Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J., Imperati, D., & Brown, S. 

(2011). The speed-accuracy tradeoff in the elderly brain: a structural model-based 

approach. Journal of Neuroscience, 31(47), 17242–17249. 

Fothergill, S., Loft, S., & Neal, A. (2009). ATC-lab Advanced: An air traffic control simulator 

with realism and control. Behavior Research Methods, 41(1), 118–127. 



 

 

85 

Fox, J., & Weisberg, S. (2011). Multivariate linear models in R. An R Companion to Applied 

Regression. Los Angeles: Thousand Oaks. 

Garland, D. J., Stein, E. S., & Muller, J. K. (1999). Air traffic controller memory: capabilities, 

limitations and volatility. Handbook of Aviation Human Factors, 455–496. 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). 

Bayesian data analysis (Vol. 2). CRC press Boca Raton, FL. 

Gillie, T., & Broadbent, D. (1989). What makes interruptions disruptive? A study of length, 

similarity, and complexity. Psychological Research, 50(4), 243–250. 

Gobell, J. L., Tseng, C., & Sperling, G. (2004). The spatial distribution of visual attention. Vision 

Research, 44(12), 1273–1296. 

Graydon, J., & Eysenck, M. W. (1989). Distraction and cognitive performance. European 

Journal of Cognitive Psychology, 1(2), 161–179. 

Grundgeiger, T., Sanderson, P. M., Beltran Orihuela, C., Thompson, A., MacDougall, H. G., 

Nunnink, L., & Venkatesh, B. (2013). Prospective memory in the ICU: The effect of 

visual cues on task execution in a representative simulation. Ergonomics, 56(4), 579–589. 

Grundgeiger, T., Sanderson, P., MacDougall, H. G., & Venkatesh, B. (2010). Interruption 

management in the intensive care unit: Predicting resumption times and assessing 

distributed support. Journal of Experimental Psychology: Applied, 16(4), 317.  

Heathcote, A., Lin, Y-S, Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (2018). 

Dynamic models of choice. Behavior Research Methods. 

Heathcote, A., Loft, S., & Remington, R. W. (2015). Slow down and remember to remember! A 

delay theory of prospective memory costs. Psychological Review, 122(2), 376. 



 

 

86 

Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. 

Frontiers in Psychology, 3, 292. 

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 

9(2), 181–197. 

Heitz, R. P., & Schall, J. D. (2012). Neural mechanisms of speed-accuracy tradeoff. Neuron, 

76(3), 616–628. 

Hendy, K. C., Liao, J., & Milgram, P. (1997). Combining Time and Intensity Effects in 

Assessing Operator Information-Processing Load. Human Factors, 39(1), 30–47. 

https://doi.org/10.1518/001872097778940597 

Herrmann, K., Montaser-Kouhsari, L., Carrasco, M., & Heeger, D. J. (2010). When size matters: 

attention affects performance by contrast or response gain. Nature Neuroscience, 13(12), 

1554. 

Hicks, J. L., Marsh, R. L., & Cook, G. I. (2005). Task interference in time-based, event-based, 

and dual intention prospective memory conditions. Journal of Memory and Language, 

53(3), 430–444. 

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a 

mechanism of selective attention: electrophysiological and neuroimaging evidence. 

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 

353(1373), 1257–1270. 

Ho, T., Brown, S., van Maanen, L., Forstmann, B. U., Wagenmakers, E.-J., & Serences, J. T. 

(2012). The optimality of sensory processing during the speed–accuracy tradeoff. Journal 

of Neuroscience, 32(23), 7992–8003. 



 

 

87 

Hopkin, V. D. (1980). The measurement of the air traffic controller. Human Factors, 22(5), 547–

560. 

Horn, S. S., & Bayen, U. J. (2015). Modeling criterion shifts and target checking in prospective 

memory monitoring. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 41(1), 95. 

Horn, S. S., Bayen, U. J., & Smith, R. E. (2011). What can the diffusion model tell us about 

prospective memory? Canadian Journal of Experimental Psychology/Revue Canadienne 

de Psychologie Expérimentale, 65(1), 69. 

Horn, S. S., Bayen, U. J., & Smith, R. E. (2013). Adult age differences in interference from a 

prospective-memory task: A diffusion model analysis. Psychonomic Bulletin & Review, 

20(6), 1266–1273. 

Huang, T., Loft, S., & Humphreys, M.S. (2014). Internalizing versus externalizing control: 

different ways to perform a time-based prospective memory task. Journal of 

Experimental Psychology: Learning, Memory and Cognition, 40, 1064–1071. 

Iselin, A.-M. R., & DeCoster, J. (2009). Reactive and proactive control in incarcerated and 

community adolescents and young adults. Cognitive Development, 24(2), 192–206. 

Kahneman, D. (1973). Attention and effort (Vol. 1063). Citeseer. 

Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent-trait approach. 

Psychometrika, 75(1), 70–98. 

Kliegel, M., Martin, M., McDaniel, M. A., & Einstein, G. O. (2001). Varying the importance of a 

prospective memory task: Differential effects across time-and event-based prospective 

memory. Memory, 9(1), 1–11. 



 

 

88 

Kolossa, A., & Kopp, B. (2018). Data quality over data quantity in computational cognitive 

neuroscience. NeuroImage, 172, 775–785. 

Kruschke, J. K. (1992). ALCOVE: an exemplar-based connectionist model of category learning. 

Psychological Review, 99(1), 22. 

Kruschke, J. K. (2011). Models of attentional learning. Formal Approaches in Categorization, 

120. 

Kwantes, P. J., Neal, A., & Loft, S. (2004). Developing a formal model of human memory in a 

simulated air traffic control conflict detection task. In Proceedings of the Human Factors 

and Ergonomics Society Annual Meeting (Vol. 48, pp. 391–395). SAGE Publications 

Sage CA: Los Angeles, CA. 

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of 

Experimental Psychology: Human Perception and Performance, 21(3), 451. 

Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011). Cognitive control 

deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology, 36(1), 

316. 

Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., … 

Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal 

cortex dysfunction in first episode schizophrenia. NeuroImage: Clinical, 2, 590–599. 

Little, D. R. (2012). Numerical predictions for serial, parallel, and coactive logical rule-based 

models of categorization response time. Behavior Research Methods, 44(4), 1148–1156. 

Liu, C. C., & Watanabe, T. (2012). Accounting for speed–accuracy tradeoff in perceptual 

learning. Vision Research, 61, 107–114. 



 

 

89 

Loft, S. (2014). Applying psychological science to examine prospective memory in simulated air 

traffic control. Current Directions in Psychological Science, 23(5), 326–331. 

Loft, S., Bolland, S., Humphreys, M. S., & Neal, A. (2009). A theory and model of conflict 

detection in air traffic control: Incorporating environmental constraints. Journal of 

Experimental Psychology: Applied, 15(2), 106. 

Loft, S., Finnerty, D., & Remington, R. W. (2011). Using spatial context to support prospective 

memory in simulated air traffic control. Human Factors, 53(6), 662–671. 

Loft, S., Humphreys, M., & Neal, A. (2004). The influence of memory for prior instances on 

performance in a conflict detection task. Journal of Experimental Psychology: Applied, 

10(3), 173. 

Loft, S., Kearney, R., & Remington, R. (2008). Is task interference in event-based prospective 

memory dependent on cue presentation? Memory & Cognition, 36(1), 139–148. 

Loft, S., Neal, A., & Humphreys, M. S. (2007). The development of a general associative 

learning account of skill acquisition in a relative arrival-time judgment task. Journal of 

Experimental Psychology: Human Perception and Performance, 33(4), 938. 

Loft, S., Pearcy, B., & Remington, R. W. (2015). Varying the complexity of the prospective 

memory decision process in an air traffic control simulation. Zeitschrift Für Psychologie. 

Loft, S., & Remington, R. W. (2010). Prospective memory and task interference in a continuous 

monitoring dynamic display task. Journal of Experimental Psychology: Applied, 16(2), 

145. 



 

 

90 

Loft, S., & Remington, R. W. (2013). Wait a second: Brief delays in responding reduce focality 

effects in event-based prospective memory. Quarterly Journal of Experimental 

Psychology, 66(7), 1432–1447. 

Loft, S., Sanderson, P., Neal, A., & Mooij, M. (2007). Modeling and predicting mental workload 

in en-route air traffic control: critical review and broader implications. Human Factors, 

49(3), 376–399. 

Loft, S., Smith, R. E., & Bhaskara, A. (2011). Prospective memory in an air traffic control 

simulation: External aids that signal when to act. Journal of Experimental Psychology: 

Applied, 17(1), 60. 

Loft, S., & Yeo, G. (2007). An investigation into the resource requirements of event-based 

prospective memory. Memory & Cognition, 35(2), 263–274. 

Logan, G. D., Van Zandt, T., Verbruggen, F., & Wagenmakers, E.-J. (2014). On the ability to 

inhibit thought and action: general and special theories of an act of control. Psychological 

Review, 121(1), 66–95. 

Loukopoulos, L. D., Dismukes, K., & Barshi, I. (2009). The multitasking myth: Handling 

complexity in real-world operations. Ashgate Publishing, Ltd. 

Loukopoulos, L. D., Dismukes, R. K., & Barshi, I. (2001). Cockpit interruptions and distractions: 

A line observation study. In Proceedings of the 11th international symposium on aviation 

psychology (pp. 1–6). Ohio State University Columbus. 

Loukopoulos, L. D., Dismukes, R. K., & Barshi, I. (2003). Concurrent task demands in the 

cockpit: Challenges and vulnerabilities in routine flight operations. In Proceedings of the 



 

 

91 

12th international symposium on aviation psychology (pp. 737–742). The Wright State 

University Dayton, OH. 

Marsh, R. L., Hicks, J. L., & Bink, M. L. (1998). Activation of completed, uncompleted, and 

partially completed intentions. Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 24(2), 350.  

Marsh, R., Hicks, J., Cook, G., Hansen, J., & Pallos, A. (2003). Interference to ongoing activities 

covaries with the characteristics of an event-based intention. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 29, 861–870 

Matzke, D., Love, J., & Heathcote, A. (2017). A Bayesian approach for estimating the 

probability of trigger failures in the stop-signal paradigm. Behavior Research Methods, 

49(1), 267–281. 

McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective 

memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14, S127–

S144. 

McDaniel, M. A., LaMontagne, P., Beck, S. M., Scullin, M. K., & Braver, T. S. (2013). 

Dissociable neural routes to successful prospective memory. Psychological Science, 

24(9), 1791–1800. 

Meier, B., Zimmermann, T. D., & Perrig, W. J. (2006). Retrieval experience in prospective 

memory: Strategic monitoring and spontaneous retrieval. Memory, 14(7), 872–889. 

https://doi.org/10.1080/09658210600783774 



 

 

92 

Metzger, U., & Parasuraman, R. (2001). The role of the air traffic controller in future air traffic 

management: An empirical study of active control versus passive monitoring. Human 

Factors, 43(4), 519–528. 

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual 

Review of Neuroscience, 24(1), 167–202. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. 

(2000). The unity and diversity of executive functions and their contributions to complex 

“frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. 

Monk, C. A., Boehm-Davis, D. A., Mason, G., & Trafton, J. G. (2004). Recovering from 

interruptions: Implications for driver distraction research. Human Factors, 46(4), 650–

663. 

Moray, N. (1967). Where is capacity limited? A survey and a model. Acta Psychologica, 27, 84–

92. 

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau 

(2005). Reason, 4(2), 61–64. 

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in 

the Brain: A Diffusion Model Analysis of Prior Probability and Potential Payoff. Journal 

of Neuroscience, 32(7), 2335–2343. https://doi.org/10.1523/JNEUROSCI.4156-11.2012 

Navon, D. (1984). Resources—A theoretical soup stone? Psychological Review, 91(2), 216. 

Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. 

Psychological Review, 86(3), 214. 

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88(1), 1. 



 

 

93 

Norman, D. A., & Bobrow, D. G. (1976). On the analysis of performance operating 

characteristics. Psychological Review, 83(6), 508. 

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded 

classification. Psychological Review, 104(2), 266. 

Ong, G., Sewell, D. K., Weekes, B., McKague, M., & Abutalebi, J. (2017). A diffusion model 

approach to analysing the bilingual advantage for the Flanker task: The role of attentional 

control processes. Journal of Neurolinguistics, 43, 28–38. 

Osth, A. F., Bora, B., Dennis, S., & Heathcote, A. (2017). Diffusion vs. linear ballistic 

accumulation: Different models, different conclusions about the slope of the zROC in 

recognition memory. Journal of Memory and Language, 96, 36–61. 

Palada, H., Neal, A., Tay, R., & Heathcote, A. (2018). Understanding the causes of adapting, and 

failing to adapt, to time pressure in a complex multi-stimulus environment. Journal of 

Experimental Psychology: Applied. 

Palada, H., Neal, A., Vuckovic, A., Martin, R., Samuels, K., & Heathcote, A. (2016). Evidence 

accumulation in a complex task: making choices about concurrent multiattribute stimuli 

under time pressure. Journal of Experimental Psychology: Applied, 22(1), 1–23. 

Pani, P., Menghini, D., Napolitano, C., Calcagni, M., Armando, M., Sergeant, J. A., & Vicari, S. 

(2013). Proactive and reactive control of movement are differently affected in Attention 

Deficit Hyperactivity Disorder children. Research in Developmental Disabilities, 34(10), 

3104–3111. https://doi.org/10.1016/j.ridd.2013.06.032 

Pashler, H. (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. 

Journal of Experimental Psychology: Human Perception and Performance, 10(3), 358. 



 

 

94 

Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal 

of Experimental Psychology, 58(3), 193. 

Petrov, A. A., Van Horn, N. M., & Ratcliff, R. (2011). Dissociable perceptual-learning 

mechanisms revealed by diffusion-model analysis. Psychonomic Bulletin & Review, 

18(3), 490–497. 

Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391-

408. 

Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The Hare and the Tortoise: 

Emphasizing speed can change the evidence used to make decisions. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1226. 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59. 

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. 

Psychological Science, 9(5), 347–356. 

Ratcliff, R., & Smith, P. L. (2010). Perceptual discrimination in static and dynamic noise: the 

temporal relation between perceptual encoding and decision making. Journal of 

Experimental Psychology: General, 139(1), 70. 

Ratcliff, R., & Strayer, D. (2014). Modeling simple driving tasks with a one-boundary diffusion 

model. Psychonomic Bulletin & Review, 21(3), 577–589. 

Reason, J. (1990). Human error. Cambridge university press. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the 

effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current 

Research and Theory, 2, 64–99. 



 

 

95 

Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 

168–185. 

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel 

distributed processing. Parallel Distributed Processing: Explorations in the 

Microstructure of Cognition, 1(45–76), 26. 

Rummel, J., Smeekens, B. A., & Kane, M. J. (2017). Dealing with prospective memory demands 

while performing an ongoing task: Shared processing, increased on-task focus, or both? 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(7), 1047. 

Schöner, G. (2008). Dynamical systems approaches to cognition. Cambridge Handbook of 

Computational Cognitive Modeling, 101–126. 

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. 

Nature Neuroscience, 4(8), 819. 

Scullin, M. K., Bugg, J. M., & McDaniel, M. A. (2012). Whoops, I did it again: commission 

errors in prospective memory. Psychology and Aging, 27(1), 46. 

Scullin, M. K., McDaniel, M. A., & Shelton, J. T. (2013). The Dynamic Multiprocess 

Framework: Evidence from prospective memory with contextual variability. Cognitive 

psychology, 67(1), 55–71. 

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological 

Review, 63, 129–138.  

Smith, P. L., & Little, D. R. (2018). Small is beautiful: In defense of the small-N design. 

Psychonomic Bulletin & Review, 25(6), 2083–2101. 



 

 

96 

Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: 

investigating the capacity demands of delayed intention performance. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 29(3), 347. 

Smith, R. E., & Bayen, U. J. (2004). A multinomial model of event-based prospective memory. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 756. 

Smith, R. E., & Hunt, R. R. (2014). Prospective memory in young and older adults: The effects 

of task importance and ongoing task load. Aging, Neuropsychology, and Cognition, 

21(4), 411–431. 

Soar, J., Nolan, J. P., Böttiger, B. W., Perkins, G. D., Lott, C., Carli, P., … Smith, G. B. (2015). 

European resuscitation council guidelines for resuscitation 2015: section 3. Adult 

advanced life support. Resuscitation, 95, 100–147. 

Sperandio, J. C. (1971). Variation of operator’s strategies and regulating effects on workload. 

Ergonomics, 14, 571–577. 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures 

of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 64(4), 583–639. 

Starns, J. J., Ratcliff, R., & McKoon, G. (2012). Evaluating the unequal-variance and dual-

process explanations of zROC slopes with response time data and the diffusion model. 

Cognitive Psychology, 64(1–2), 1–34. 

Strayer, D. L., Turrill, J., Cooper, J. M., Coleman, J. R., Medeiros-Ward, N., & Biondi, F. 

(2015). Assessing cognitive distraction in the automobile. Human Factors, 57(8), 1300–

1324. 



 

 

97 

Strickland, L., Elliott, D., Wilson, M., Loft, S., Neal, A., & Heathcote, A. (2019). Prospective 

memory in the red zone: Cognitive control and capacity sharing in a complex, multi-

stimulus task. Journal of Experimental Psychology: Applied.  

Strickland, L., Heathcote, A., Remington, R. W., & Loft, S. (2017). Accumulating evidence 

about what prospective memory costs actually reveal. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 43(10), 1616. 

Strickland, L., Loft, S., Remington, R. W., & Heathcote, A. (2018). Racing to Remember: A 

Theory of Decision Control in Event-Based Prospective Memory. Psychological Review, 

21, 03. 

Todd, P. M., & Gigerenzer, G. (2007). Environments that make us smart: ecological rationality. 

Current Directions in Psychological Science, 16, 167–171. 

Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look like Tweedledum 

and Tweedledee but they can (and should) be distinguished. Psychological Science, 1(1), 

46–54. 

Townsend, J. T., & Altieri, N. (2012). An accuracy–response time capacity assessment function 

that measures performance against standard parallel predictions. Psychological Review, 

119(3), 500. 

Townsend, J. T., & Wenger, M. J. (2004). The serial-parallel dilemma: A case study in a linkage 

of theory and method. Psychonomic Bulletin & Review, 11(3), 391–418. 

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an 

interrupted task: Effects of prospective goal encoding and retrospective rehearsal. 

International Journal of Human-Computer Studies, 58(5), 583–603. 



 

 

98 

Trafton, J. G., & Monk, C. A. (2007). Task interruptions. Reviews of Human Factors and 

Ergonomics, 3(1), 111–126. 

Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 

76(3), 282. 

Treisman, A. M., & Davies, A. (1973). Divided attention to ear and eye. Attention and 

Performance IV, 101–117. 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive 

Psychology, 12(1), 97–136. 

Tucker, A. L., & Spear, S. J. (2006). Operational failures and interruptions in hospital nursing. 

Health Services Research, 41(3p1), 643–662. 

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for efficiently 

sampling from distributions with correlated dimensions. Psychological Methods, 18(3), 

368. 

Usher, M., Olami, Z., & McClelland, J. L. (2002). Hick’s law in a stochastic race model with 

speed–accuracy tradeoff. Journal of Mathematical Psychology, 46(6), 704–715. 

Van Maanen, L., van Rijn, H., & Taatgen, N. (2012). RACE/A: An architectural account of the 

interactions between learning, task control, and retrieval dynamics. Cognitive Science, 

36(1), 62–101. 

van Rijn, H., Borst, J., Taatgen, N., & van Maanen, L. (2016). On the necessity of integrating 

multiple levels of abstraction in a single computational framework. Current Opinion in 

Behavioral Sciences, 11, 116–120. 



 

 

99 

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. (2008). A Bayesian approach to diffusion process 

models of decision-making. In Proceedings of the 30th annual conference of the 

cognitive science society (pp. 1429–1434). Cognitive Science Society. 

Voigt, B., Mahy, C. E., Ellis, J., Schnitzspahn, K., Krause, I., Altgassen, M., & Kliegel, M. 

(2014). The development of time-based prospective memory in childhood: The role of 

working memory updating. Developmental Psychology, 50(10), 2393. 

Voss, A., Voss, J., & Klauer, K. C. (2010). Separating response-execution bias from decision 

bias: Arguments for an additional parameter in Ratcliff’s diffusion model. British Journal 

of Mathematical and Statistical Psychology, 63(3), 539–555. 

Vuckovic, A., Kwantes, P. J., & Neal, A. (2013). Adaptive decision making in a dynamic 

environment: A test of a sequential sampling model of relative judgment. Journal of 

Experimental Psychology: Applied, 19(3), 266. 

Waard, D. D., & Brookhuis, K. A. (1997). Behavioural adaptation of drivers to warning and 

tutoring messages: results from an on–the–road and simulator test. International Journal 

of Heavy Vehicle Systems, 4(2–4), 222–234. 

Walter, S., & Meier, B. (2014). How important is importance for prospective memory? A review. 

Frontiers in Psychology, 5, 657. 

Welford, A. T. (1952). The ‘psychological refractory period’and the timing of high-speed 

performance—a review and a theory. British Journal of Psychology. General Section, 

43(1), 2–19. 

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Using diffusion models to 

understand clinical disorders. Journal of Mathematical Psychology, 54(1), 39–52. 



 

 

100 

Wickens, C. D. (1980). The structure of attentional resources. Attention and Performance VIII, 8, 

239–257. 

Wilson, G. F., & Russell, C. A. (2003a). Operator functional state classification using multiple 

psychophysiological features in an air traffic control task. Human Factors, 45(3), 381–

389. 

Wilson, G. F., & Russell, C. A. (2003b). Real-time assessment of mental workload using 

psychophysiological measures and artificial neural networks. Human Factors, 45(4), 

635–644. 

Wilson, G. F., & Russell, C. A. (2007). Performance enhancement in an uninhabited air vehicle 

task using psychophysiologically determined adaptive aiding. Human Factors, 49(6), 

1005–1018.  

Wilson, M. S., Farrell, S., Visser, T. A. W., & Loft, S. (2018). Remembering to execute deferred 

tasks in simulated air traffic control: The impact of interruptions. Journal of Experimental 

Psychology: Applied. 

 


