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Abstract 

This paper examines the causes of dual-task interference in a time pressured dynamic 

environment. Resource sharing theories are often used as a theoretical framework to 

understand dual-task interference. These frameworks propose that resources from a limited 

pool of information-processing capacity is  reallocated towards the primary task as task load 

increases, and as a result, secondary-task performance declines if the total demand exceeds 

capacity limit. However, tests of resource models have relied on behavioral results that could 

be due to a number of different cognitive processes, including changes in response caution, 

rate of information processing, non-decision processes and response biases. We applied 

evidence-accumulation models to quantify the cognitive processes underlying performance in 

a dual-task paradigm in order to examine the causes underlying dual-task interference. We fit 

performance in time-pressured environment on both a primary classification task and a 

secondary detection task using evidence-accumulation models. Under greater time pressure, 

the rate of information processing increased for the primary task while response caution 

decreased, whereas the rate of information processing for the secondary task declined with 

greater time pressure. Assuming the rate of evidence accumulation is proportional to 

available capacity these results are consistent with resource theory and highlight the value of 

evidence-accumulation models for understanding the complex set of processes underlying 

dual-task interference. 

 

Keywords: Detection response task, response time modeling, linear ballistic accumulator, 

Wald model, workload, time pressure. 
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Public Significance Statement 

Measuring workload is critical for systems design to ensure that individuals are not 

overloaded and can perform tasks effectively and safely. Understanding how a measure is 

sensitive to workload is important for mitigating overload. We tested how the Detection 

Response Task, an international standard workload measure, is sensitive to workload in a 

time pressured environment. We found that the DRT is sensitive to the reallocation of 

cognitive resources towards the primary task, and away from the DRT, as task load increased 

on the primary task.  

 

  



 

 

4 

It has long been known that humans have limited information-processing capacity 

(Kahneman, 1973). Overload occurs when people have insufficient capacity to meet task 

demands, such as time pressure. Consequences of overload include increases in response 

times and error rates, which in turn can increase the risk of accidents and injuries 

(Parasuraman, Sheridan, & Wickens, 2008). It is for this reason that workload is a risk factor 

that needs to be managed, particularly in safety-critical industries (Neal, Hannah, Sanderson, 

Bolland, Mooij, & Murphy, 2014). The measurement of workload is critical to ensure that 

performance and task demands remain within manageable bounds. The dual-task paradigm is 

frequently adopted to study workload, and resource theories are often cited as a theoretical 

framework to understand dual-task performance (Vidulich & Tsang, 2012). This framework 

proposes that dual-task interference reflects competition for a limited pool of information-

processing capacity (i.e., “resources”), whereby resources are prioritized to the primary task 

as demands increase, resulting in performance decrements in the secondary task if the total 

available is exceeded (Kahneman, 1973).  

Despite widespread interest in the resource framework, there is surprisingly little 

evidence to support the idea that dual-task interference reflects competition for resources. 

Previous studies using the dual-task paradigm are ambiguous, as they rely on response time 

or accuracy to infer resource competition (Navon, 1984). Yet it is difficult to draw inferences 

regarding dual-task interference from such behavioral data alone, because they can change 

due to a range of different cognitive processes. For example, performance decrements on the 

secondary task might be attributable to a decrease in the rate of information processing for 

that task, but also be due to changes in response caution, bias, or non-decision processes 

(Palada, Neal, Tay, & Heathcote, 2018).  

To understand the causes of dual-task interference, it is necessary to quantify the latent 

cognitive processes underlying responses in both primary and secondary tasks. Recent studies 
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using dual-task paradigms have applied evidence-accumulation models to quantify latent 

cognitive processes and understand dual-task performance (Tillman, Strayer, Eidels, & 

Heathcote, 2017; Castro, Strayer, Matzke, & Heathcote, in press). However, these studies 

only modeled the secondary task, and as a result, were unable to directly examine the 

processes underlying dual-task interference.  

The aim of the paper is to use evidence-accumulation models to understand the patterns 

of dual-task interference that occur under time pressure in a complex and dynamic 

environment. We use a primary task involving discrete choices that is suitable for this type of 

analysis, in the form of a simulated maritime surveillance task performed under varying 

levels of time pressure. The reason for choosing maritime surveillance is because it is 

representative of a broad range of tasks in which people experience dual-task interference in 

a dynamic environment. Examples include air traffic control, train control, unmanned vehicle 

control, air battle management, and submarine track management. One group of participants 

performed the surveillance task alone, whereas a second group concurrently performed a 

simple stimulus-detection task, which also required a discrete response. We fit the Wald 

evidence-accumulation model (Heathcote, 2004) to both primary task and secondary-task 

performance and examined how the parameters of the model responded to time pressure 

manipulations in order to understand how people respond to changes in time pressure. We 

tested for individual differences to examine whether participants responded in different ways 

to time pressure. 

The Detection Response Task (DRT) 

The DRT is a standardized secondary-task measure of workload that has been designed 

to infer workload (International Organization for Standardization [ISO], 2015). The DRT 

requires the detection of a visual or tactile stimulus randomly presented every three to five 

seconds as the individual performs the primary task of interest. Slowed and/or missed 
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responses on the DRT are indicative of greater workload. The DRT has been widely used to 

measure the effects of increased task load during driving, because it is sensitive to transient 

fluctuations in workload, and has minimal impact on primary task performance, meaning that 

it is unlikely to pose a safety risk (Strayer, et al., 2014). For these reasons, the DRT has the 

potential to be widely used as a measure of workload in both laboratory and field settings 

(Bruyas, Dumont, & Bron, 2013). 

The increase in DRT response times and misses is thought to be because the DRT 

competes with the primary task for a finite pool of resources, which means that the rate of 

information processing for the DRT decreases as resources are diverted away from the DRT 

to maintain performance on the primary task (Strayer, Watson, & Drews, 2011). However, 

evidence to support this assumption is inconsistent. Using evidence-accumulation models, 

including the linear ballistic accumulator (LBA; Brown & Heathcote, 2008) and the single-

bound diffusion or Wald model (Heathcote, 2004), Tillman et al. (2017) found that people 

were slower to respond to the DRT when having to hold a conversation while driving. 

However, this effect was due to increased response caution, rather than a decrease in the rate 

of information processing. In contrast, Castro et al. (in press) found that slowed DRT 

response times  due to more consistent cognitive demands (counting backwards by threes vs. 

not while in both cases preforming a primary tracking task) was due to a decrease in the both 

the rate of information processing and an increase in response caution, as well as a small 

decrease in non-decision time (i.e., the sum of stimulus encoding and response production 

times).  

Unfortunately, because existing studies used a continuous primary task (driving and 

tracking, respectively), it has not been possible to also critically examine the cognitive 

processes underlying primary-task performance using evidence-accumulation modeling. 

There are many ways in which people can respond to demands on a discrete-choice primary 
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task in order to protect performance, such as adjusting effort, response caution and biases, 

and task priorities (Neal, Ballard, & Vancouver, 2017; Palada et al., 2018). Such adjustments 

might also influence DRT performance, and thus the inferences made about workload. For 

example, in response to greater time pressure, people might lower their response caution to 

speed the primary task, and therefore still have sufficient resources to protect DRT 

performance. In this scenario, modelling of the DRT alone would lead to the erroneous 

conclusion that the individual was not under higher workload. For this reason, it is desirable 

to have a cognitive model of both the primary task and the DRT in order to understand how 

people respond to changes in task demands, such as time pressure, and to identify what it is 

that the DRT is measuring. 

Resource Accounts of Workload and Performance 

Resource-based theories of workload provide an account of the relationship between task 

demands and performance. Resources are a theoretical construct that refers to units or 

channels of information processing (Navon & Gopher, 1979). The rate at which information 

is processed in a given task is determined by the resources allocated to it. Performance can be 

maintained if the allocated resources can meet task demands (Norman & Bobrow, 1975). 

However, if task demands exceed capacity, performance will degrade unless adaptive 

strategies are used in attempts to protect performance. For this reason, workload and primary-

task performance can disassociate (Parasuraman et al., 2008), making it necessary to account 

for strategic responses when examining the effects of workload (Palada et al., 2018).  

Dual-task paradigms are o ften used to infer whether individuals are working within or 

exceeding their limited information-processing capacity. In these paradigms, the primary task 

of interest is performed alongside a secondary task, with the former being designated as more 

important and critical in terms of performance. When primary-task performance is 

prioritized, resources can be allocated towards a secondary task when there is reserve 
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capacity that is not allocated to the primary task. The assumption is that as primary task 

demands increase, the resources allocated towards it are increased, diminishing the resources 

available to the secondary task. As a result, primary-task performance is protected, and 

secondary-task performance suffers. The performance decrease in secondary task is inferred 

to reflect a higher workload in the primary task.  

One of problems with the dual-task paradigm is that it provides only an indirect test of 

the resource model, as the theoretical processes thought to be involved must be inferred from 

observable behaviors (Navon, 1984). However, there are a range of different processes that 

might explain a given set of behavioral results, beyond those specified by resource theory.  

For example, the person may change their strategy for the primary or secondary task, trading 

off accuracy for speed; they may encode the stimuli or execute motor responses more rapidly; 

or they may adjust their response bias (Palada et al., 2018). Adding a secondary task may 

change the way in which the primary task is processed (Vidulich & Tsang, 2012), and there 

may be individual differences in the types of strategies that people use. In combination, these 

factors make it difficult to draw inferences about the sources of dual-task interference from 

behavioral measures alone. 

In this paper, we use evidence-accumulation  models to quantify the latent processes 

underlying performance on both the primary task and secondary task, and to gain insight into 

the mechanisms responsible for dual-task inference when people are put under time pressure. 

Specifically, we examine whether dual-task interference can be explained by changes in the 

rate of information processing on the primary and secondary tasks, as predicted by resource 

theory, or whether they are due to changes in response caution, response bias, or the speed of 

stimulus encoding and response production for either or both tasks.  
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Modeling Task Performance 

Evidence-accumulation  models share the basic assumption that evidence is accumulated 

over time from the environment until a threshold is reached, triggering an overt response 

(Brown & Heathcote, 2008; Ratcliff, 1988). Such models account for the full distribution of 

correct and error response times and accuracy by providing a detailed account of the 

cognitive processes underlying detection and choice tasks. The validity of evidence-

accumulation models in quantifying the effects of a variety of load-related manipulations on 

rates of evidence accumulation is well supported. For example, the linear ballistic 

accumulator model’s rate estimates coincide with the established cognitive capacity estimates 

using Systems Factor Technology (Townsend & Nozawa, 1995) with stimuli that require 

processing multiple attributes (Eidels, Donkin, Brown, & Heathcote, 2010; Donkin, Little, & 

Houpt, 2014). Using evidence-accumulation models to account for stop-signal paradigms, 

Logan, Van Zandt, Verbruggen and Wagenmakers (2014) found that the rate estimates 

decreased with an increase in the number of choice alternatives. Diffusion model rate 

estimates have been shown to decline with an increase in working memory load (Sewell, 

Linburn, & Smith, 2016). Finally, Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann 

(2007) found that the rate parameter in the EZ-diffusion model (Wagenmakers, Van Der 

Mass, & Gasman, 2007) correlated with individual differences in cognitive abilities which 

are theorized to reflect cognitive capacity, including reasoning, working memory and 

psychometric speed.  

In this study, we use a classification task as the primary task, requiring participants to 

decide whether incoming ships are target or non-targets. We manipulate time pressure by 

varying the number of ships within a given trial and the time available to classify the ships 

presented within a trial. The secondary task is the DRT, which is a simple RT task requiring 

the detection of a vibrotactile stimulus. We modelled both tasks using Wald accumulator 
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model, which can be applied to both types of tasks, simple RT tasks, such as the DRT, and 

two-alternative forced choice tasks, such as our classification task (Heathcote, 2004). Fitting 

the models to the primary and secondary tasks allows us to examine the changes in the 

processes underlying DRT performance caused by changes in time pressure factors on the 

primary classification task. As the DRT was a simple detection and response task, we fit a 

single Wald accumulator model. As the classification task required a choice between two 

alternatives, we fit a model with a racing pair of Wald accumulators, one representing each 

choice.  

Wald Model Architecture. The Wald model assumes stochastic evidence accumulation 

(i.e., varying randomly within a trial) and that accumulation is linear on average. In choice 

tasks, the model assumes that the accumulators race independently towards the decision 

threshold, with the winning accumulator triggering the corresponding overt response. The 

choice Wald model is shown in Figure 1. Observed response times are partitioned into 

decision time and a constant non-decision time. The latter is quantified by a parameter (Ter) 

accounting for the sum of the times for to stimulus encoding and response production. 

Decision times are quantified by parameters accounting for the input and operation of the 

evidence accumulation process. A source of noise is introduced by having the start point for 

each accumulator follow a uniform distribution bound between zero and the parameter A. The 

response threshold (b) quantifies the amount of information that is required to make an overt 

response. The mean rate of evidence accumulation for each trial is quantified by the rate 

parameter (v). Decision time is determined by the time is takes for the winning evidence 

accumulator in the case of choice tasks, or the single accumulator in the case of simple RT 

tasks, to reach its response threshold.  

The second source of noise is introduced by stochastic within-trial (i.e., moment-to-

moment) rate noise and is specified by the diffusion coefficient (Logan et al., 2014). The 
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Wald model can be elaborated to introduce between-trial variability in rates, though this 

added flexibility comes at a cost, as only two accumulation parameters are identifiable (i.e., 

response threshold, mean rate and rate variability; Ratcliff & Van Dongen, 2011). The 

addition of start point variability in the Wald model is relatively new (Logan et al., 2014). For 

this reason, Castro et al. (in press), fit two variants of the model with and without start-point 

variability, and found that start-point variability was necessary to account for premature 

sampling in the standard DRT, but was not necessary for a choice task. As we model both 

simple and choice tasks – the DRT and primary classification task, respectively – we also fit 

these two variants of the Wald model.  

For the primary choice task, we use a "match" factor to represent the correspondence 

between the accumulator and the stimulus presented in the trial. The “matching” accumulator 

corresponds to the correct response option for the stimulus presented in a given trial, whereas 

the “mismatching” accumulator corresponds to the incorrect response option. When accuracy 

is above chance, the rate for the matching accumulator is greater than the rate for the 

mismatching one. We allowed rate to vary by a “stimulus” factor (i.e., target stimuli vs. non-

target stimuli) and we allowed threshold to vary by an “accumulator” factor (e.g., “target” vs. 

“non-target” accumulator), which allows for potential response biases – a subjective 

preference towards a given response alternative mediated by the preferred response options 

requiring lesser evidence to trigger that response. Under greater time pressure, individuals 

may fail to begin the evidence accumulation process due to failures in attending to, or 

properly encoding, the stimulus (e.g., Palada et al., 2018). 

Following Castro et al. (in press), we extended the DRT models to account for response 

failures by adding a response omission parameter (pf), where the likelihood of responding in 

time is (1- pf). We allowed this parameter to vary with time pressure. In Castro et al. and 

Tillman et al., there was no evidence that response failures occurred due to the next DRT 
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stimulus being presented before responding to the current stimulus. At a minimum, the inter-

stimulus interval in the DRT task is 3 seconds, whereas the slow tail of the DRT distribution 

approaches zero well before this time. Hence, it is reasonable to assume that non-responses 

occurred because of a failure to start accumulation, perhaps because of an attentional failure 

that causes the DRT stimulus not to be encoded, or a failure to attend to the goal of making 

DRT responses that causes a failure of the encoded stimulus to produce an input to the 

accumulation process (see Matzke, Love & Heathcote, 2017a; Matzke, Hughes, Badcock, 

Michie & Heathcote, 2017b). The presentation of subsequent stimuli in our classification task 

is contingent on responding to the currently visible stimuli. Therefore, we also included the 

response omission parameter in modeling the classification task.  

Time Pressure Effects on Cognitive Processes 

The success of evidence-accumulation models lies in their ability to discriminate the 

effects of latent cognitive processes that are conflated in observed behaviors. The concept of 

“selective influence”, whereby an experimental effect is captured by a single model 

parameter, has been important for testing the utility of such models. For example, Palada et 

al. (2016) tested the LBA (Brown & Heathcote, 2008) and diffusion (Ratcliff & McKoon, 

2008) models in a complex choice task that produced relatively long response times, and 

found time pressure selectively influenced threshold, whereas difficulty selectively 

influenced rates.  

Task demands have also been shown to have complex effects on several cognitive 

processes underlying task performance. Dambacher and Hübner (2015) found that threshold, 

rates, and non-decision times decreased with shorter decision deadlines. Tillman et al. (2017) 

found that the DRT’s decline in performance under load was explained by an increase in 

threshold, whereas Castro et al. (in press) additionally found that rate and non-decision time 

declined under load. Finally, Loft et al. (2009) found that air traffic controllers adjusted their 
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response bias as workload increased, in order to provide a greater safety margin between 

aircraft.  

Cognitive processes are also responsive to task demands that arise as a result of time 

pressure. For example, Palada et al. (2018) examined how individuals responded to time 

pressure using a maritime surveillance task. Time pressure was manipulated by varying task 

the number of stimuli requiring classification and time available to classify those stimuli 

(deadline). They found a clear prioritization of speed over accuracy as time pressure 

increased, though this change in strategy was not sufficient to prevent an increase in non-

responses under time pressure (i.e., a failure to respond to some stimuli before the deadline). 

The compromise in accuracy resulted in near chance performance for target stimuli. Model-

based analyses using the LBA revealed that participants used a number of different strategies 

in an attempt to maintain performance under time pressure. First, participants reduced their 

response caution as the number of stimuli increased. Second, in response to tighter deadlines, 

participants reduced the time taken to encode stimuli. Finally, there was an increase in the 

overall rate of information processing, suggesting that more resources were allocated to the 

task in an attempt to compensate for the increase in time pressure. We employ the same 

paradigm to test the predictions of the resource model in the current study.   

In summary, resource accounts of performance make two predictions about the effects of 

time pressure in a dual-task paradigm. First, time pressure will increase the allocation of 

resources to the primary task, producing an increase in rate for the primary task. Second, 

because people have limited capacity, increases in the allocation of resources to the primary 

task will be accompanied by decreases in the allocation of resources to the DRT. This is 

expected to produce a decrease in rate for the DRT. In contrast to the resource model, the 

literature described above suggests that several other processes could explain dual-task 

performance. For example, in response to time pressure on the primary task, individuals 
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could decrease their response caution on the primary task and increase their response caution 

on the DRT, as well as speed their non-decision processes or change their response bias on 

the primary task. Such evidence against changes in rate would cast strong doubt on resource-

based theories (e.g., Navon & Miller, 1987). 

Method 

Participants  

Sixty-six undergraduate students from the University of Queensland participated in the 

study in return for course credit. The study was approved by the University of Queensland 

Human Research Ethics Committee. Initially, thirty participants were recruited to complete 

the UAV classification task (“single-task group”; mean age = 21.83; SD = 6.40; 18 female). 

Thereafter, 36 newly recruited participants completed both the UAV classification task and 

the DRT (“dual-task group”; mean age = 20.34; SD = 3.21; 13 female). The sample size for 

each group was informed by previous studies using similar paradigms (Palada et al., 2016; 

Palada et al., 2018). 

Upon inspection of the data, three participants in the dual-task group had invalid or 

incomplete data and were therefore removed from analyses, leaving 33 participants. One 

participant failed to respond to any DRT stimuli. Due to technical issues, the remaining two 

participants had missing DRT data for an extended period of the experiment, such that an 

entire time pressure condition did not have DRT data.  

Experimental Tasks & Designs 

Classification task. The classification task required participants to categorize incoming 

ships as targets or non-targets (see Figure 2). In a trial, ships entered the screen from the 

right, and moved synchronously across the screen, exiting the left of the screen. At the 

beginning of the trial, the full length of the first visible ship appeared instantly, allowing 

immediately encoding of the entire ship. Ships were presented on adjacent lanes to minimize 
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motor movements. To make the task challenging, ships were obscured by overlaying fog 

graphic, and the entire simulation was obscured by dynamic noise.  

Serial classification was enforced using a masking procedure, such that at any given 

point in time only one ship was visible. The trial began with the bottom lane being unmasked. 

Once a participant classified the ship, its lane was masked, and the lane above it was 

unmasked; this process continued until the ships exited the screen.  

Participants classified ships by clicking on the corresponding colored response box 

positioned above the ship. The green and red response options reflected a target and non-

target classification, respectively. When a response was made, the lane was masked and an 

arrow indicating the position of the ship was filled with the corresponding classification 

color. Unfilled arrows with a yellow border indicated the position of masked, unclassified 

ships.  

Target and non-target ships were defined by their features. Ships could be equipped with 

up to five features, and each feature was located at a fixed position on the ship. Features 

included an anchor, crane, life boat, mast, and smokestack. A ship was a target if it was 

equipped with three or more features; otherwise, if the ship was equipped with two features 

or less, it was a non-target. Reclassifications were not permitted, and there was a 1s interval 

between trials.  

The task included three within-person manipulations: Stimulus type (target vs. non-

target), deadline (6s, 9s, and 12s) and the number of ships requiring classification per trial (2, 

3, and 4 ships). Deadline refers to the time available to classify the number of ships presented 

within a given trial. Deadline was manipulated by varying the speed at which ships travelled 

across the screen (6s: 420 pixels/s, 9s: 280 pixels/s, and 12s: 210 pixels/s; screen resolution 

was 1920 ´ 1080). Deadline and number of ships were crossed to create nine blocks. The 
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presentation of blocks was randomized for each participant, and each block included 30 trials. 

A trial refers to the simultaneously presented of number of ships within the given deadline.   

DRT. The tactile DRT required participants to respond to vibrotactile stimulation. The 

vibrotactile DRT was selected, to ensure that the primary and secondary tasks were presented 

via different modalities (visual vs. tactile). Doing so allows better examination of primary-

task workload effects of DRT, as opposed to any visual-perceptual and motor conflict (ISO, 

2015). The DRT stimuli were randomly and uniformly presented every three to five seconds, 

thus producing temporal uncertainty. When the participants detected vibrotactile stimulation 

they were required to respond using a micro-second precision clicker attached to their non-

dominant index finger. The vibrotactile motor was tapped on the participant’s preferred 

shoulder.  

Measures 

After every 10th trial, participants responded to three self-report items. Two items are 

from the NASA-TLX: temporal demands (“How hurried or rushed is the pace of the task?”) 

and mental workload (“How mentally demanding is the task?”). The third item assessed 

effort (“How hard are you trying”?). The items were anchored from 0 (“very low”) to 10 

(“very high”). 

Procedure 

Participants viewed an audio-visual presentation explaining the task(s). For the 

classification task, participants were instructed to “classify incoming ships as targets or non-

targets”. Participants in the dual-task condition were instructed that the “UAV simulation is 

your main task” and to do “[their] best to pay attention to both tasks”. After viewing 

instructions, participants in the dual-task group then had the DRT fitted. To familiarize 

themselves with the task(s), participants completed a 5-minute training phase. For the dual-

task group, the DRT commenced from hereon for the remainder of the experiment. The 
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training for the classification task included the nine time pressure conditions. The ordering of 

conditions was such that time pressure increased over the course of training, allowing 

participants to ease into the task. Training began with the 12s deadline, with 2, 3, and then 4 

ships; this sequence was then completed with the 9s and 6s deadlines. Feedback was provided 

throughout training; a green tick or red cross indicated a correct or incorrect response, 

respectively. Once the participant stated that they understood their task, and any outstanding 

clarifications were made, they began the experimental trials. No feedback was provided for 

the classification task during the experimental phase. The entire session lasted an hour.  

Results 

First, we examined the linear effects of group type (single-task vs. dual-task), time 

pressure (number of stimuli and deadline) and their interaction on perceived workload and 

classification performance (mean correct and error response times, accuracy, and non-

response rates). For the dual-task group, the effects of time pressure on DRT performance 

was also examined (response times and hit-rate). Analyses were run using R (R Development 

Core Team, 2016) via the brms package, which compiles STAN code for Bayesian 

generalized linear mixed-models (GLMM; Bürkner, 2017). Reliable linear effects were 

inferred where 95% credible intervals for regression coefficients did not include zero, and as 

such, we present the mean posterior estimates of regression coefficients (b) with two-tailed 

95% credible intervals (CIs). Priors were consistent across models. Fixed effects and random 

intercepts had a Cauchy prior (location = 0, scale = 1.5), with the latter being zero-truncated. 

All other priors remained as their defaults specified in brms. Predictors were median 

centered. The results are summarized in Table 2.  

Perceived Workload 

Perceived workload was calculated by averaging the self-report items (temporal 

demands, mental workload, and effort; range = 0 to 10) that were assessed after every 10th 
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trial.1 A GLMM assuming a Gaussian distribution was used, with group type (single-task vs. 

dual-task), number of ships and deadline entered as a fixed-effect. Perceived workload was 

greater for the dual-task group compared to the single-task group, and increased with tighter 

deadlines, and a greater number of ships. There was evidence for a three-way interaction 

between the experimental factors. The only discernible differences were that perceived 

workload was higher for the dual-task group than the single-task group for the 3-ship, 9s 

deadline condition, and the 2-ship, 12s deadline condition.  

Classification Task Performance 

Responses were censored to remove response times longer than 6s. The fastest observed 

RT was 390ms, which is not implausibly fast, and so no censoring of fast responses was 

required. The data censored for each participant ranged from 0.00% to 2.10% for the dual-

task group (M = 0.37%) and 0.00% to 1.11% for the single-task group (M = 0.28%). 

Dependent variables included correct and error response times, accuracy and non-response 

rates. For all analyses, stimulus type, number of ships, deadline and group type were entered 

as predictors with fixed effects. Given that raw RT distributions were positively skewed, a 

GLMM assuming a Lognormal distribution was used. As accuracy and non-responses are 

binary outcomes, GLMMs assuming a Bernoulli distribution via a logit link function were 

used.  

There was a reliable four-way interaction between time pressure factors (number of ships 

and deadline), stimulus type and group type on accuracy. Accuracy declined with tighter 

deadlines, and this effect was stronger for targets than for non-targets for both single and 

                                                

1 We also analysed the self-report items individually. The trends for individual items were identical with the 

averaged “perceived workload” variable, with the exception of mental effort, where the three-way interaction 

was not observed. Perceived workload is reported for brevity.  
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dual-task groups. For the single-task group, the interaction between deadline and stimulus 

type became slightly weaker as the number of stimuli increased; this effect for the single-task 

group replicates the results in Palada et al. (2018). In contrast, for the dual-task group, the 

interaction between deadline and stimulus type became slightly stronger as the number of 

stimuli increased.  

For correct response times, there was a reliable interaction between deadline and 

stimulus type. Correct response times speeded with tighter deadlines, and this effect was 

stronger for non-targets than targets. When considered together with accuracy for non-target 

trials, it appears that participants took advantage of the extra time available in the 12s 

condition than the 9s condition yet improved very little in accuracy.  In contrast, for target 

trials, participants took little advantage of the extra time available, only slightly increasing 

their response times in the 12s condition compared to the 9s condition, though this resulted in 

a much greater improvement in accuracy. These trends replicate those observed in Palada et 

al. (2018). A novel interaction was also observed involving deadline and number of ships; the 

speeding of RT with deadline slightly weakened with a greater number of ships. 

Error response times mainly had similar trends to correct response times. However, the 

interaction between deadline and number of ships showed the opposite trend, such that the 

effect of deadlines became stronger with an increase in the number of ships. For both RT 

measures, group type did not have a reliable effect. For non-response rates, there was a 

reliable interaction between time pressure factors, such that non-response rates increased with 

tighter deadlines, and this effect became stronger as the number of ships increased. There was 

also a reliable interaction between deadline and group type. The interaction was driven by the 

differences in the 12s deadline, where the single-task group has a greater non-response rate.  

In summary, the trends in classification performance replicated Palada et al. (2018). 

There was little evidence that the single-task and dual-task groups varied in performance on 
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the classification task, with minor differences in accuracy being driven by the slightly poorer 

target accuracy in the dual-task group. As performance was similar across the two groups, 

this indicates that the presence of the DRT had little effect on classification task performance. 

However, the addition of the DRT did result in greater perceived workload.  

With regard to the effects of time pressure, the results indicate that participants’ 

performance generally suffered under time pressure. Participants prioritized speed and 

compromised their accuracy in response to greater time pressure, with the effects of deadline 

being stronger than number of ships. The speed-accuracy tradeoff resulted in greater 

decrements for target accuracy than non-target accuracy. The prioritization of speed over 

accuracy was not sufficient to fully offset the greater time pressure, as non-responses 

increased considerably under greater time pressure.  

DRT Performance 

DRT trials were included if they were presented during times at which the participant 

could have been processing the classification task. In other words, DRT trials were 

considered for analysis if the onset of the DRT stimulus occurred after the start of a 

classification trial and before all ships had been classified. If the final ship in the trial was not 

classified, then DRT trials were included if they were presented before the trial ended.  

Prior to analyzing DRT performance, we examined participants’ responses strategies, as 

repetitive clicking without prompt would spuriously improve hit rates and potentially speed 

response times. As per the ISO standard (2015), we calculated participants’ clicking ratio by 

dividing the total number of clicks by the total number of stimuli. Click ratios we much 

smaller than 2:1, the threshold specified in the DRT manual, even in the worst case (M = 

1.02, SD = 0.17; max = 1.42).  

Consistent with ISO (2015) guidelines, to analyze valid response times we censored 

responses faster than 100ms (“premature” responses) and those slower than 2.5s 
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(“unrequested” responses). The range of premature responses censored was 0.00% to 1.60% 

(M = 0.52 %, SD = 0.51%), whereas the range for unrequested responses was 0.00% to 

10.89% (M = 2.73 %, SD = 3.18%).2 Dependent variables included valid response times and 

hit rates (responses with response times between 100ms and 2.5s). Valid response times were 

analyzed with a GLMM assuming a Lognormal distribution, whereas hit rates were analyzed 

GLMM assuming a Bernoulli distribution via logit link function. For both analyses, 

predictors included time pressure factors as fixed effects. The results are summarized in 

Table 3. 

Deadline had a reliable negative effect on valid response times, whereas the number of 

ships had a reliable positive effect. That is, valid response times slowed with tighter deadlines 

and an increase in the number of ships. There was a reliable interaction between the time 

pressure factors on valid response times, driven by the virtually identical response times 

under the 6s deadline with 2 and 3 ships were present, whereas the other conditions showed 

clear additive effects. Hit rate declined with tighter deadlines and an increase in the number 

of ships. However, there was a reliable interaction between time pressure factors, which 

revealed that the negative effect of deadline on hit rates was considerably stronger for the 4-

ship condition compared to the 2-ship and 3-ship conditions. Overall, the effects reveal that 

performance degraded with increased time pressure imposed on the primary task and 

suggests that the two tasks were competing for cognitive resources, with the classification 

task being given priority over the DRT.  

                                                

2 Note that visual inspection of RT distributions for cases with larger proportions of unrequested responses 

indicated they were consistent with our method of modelling non-responses. 
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Decision Processes 

We used Wald model with and without start point variability to examine the cognitive 

processes underlying task performance and to test for dual-task resource competition.3 Where 

applicable, we used similar model parametrization for the classification task and the DRT. 

For both tasks, we allowed number of ships and deadline to influence threshold, rate and 

response omissions. In the classification task we allowed threshold to vary with accumulator 

type (target vs. non-target) to allow for potential response biases. We also allowed rate to 

vary by the stimulus and match factors to account for changes in accuracy between stimuli. 

The match factor refers to whether the accumulator “matches” or “mismatches” the stimulus 

presented in the trial; the matching accumulator accounts for correct responses while the 

mismatching accumulator accounts for incorrect responses. The number of parameters for 

each model and task are shown in Table 1  

Models were fit using Bayesian estimation via the Differential Evolution sampling 

algorithm (Turner, Sederberg, Brown & Steyvers, 2013) implemented in the Dynamic 

Models of Choice software (Heathcote et al., in press). A link to the software and scripts 

required to reproduce our modeling procedure are contained in supplementary materials, 

together with the parameter priors. Hierarchical models have a property known as shrinkage, 

whereby the individual estimates are pulled towards the group level estimates (Gelman et al., 

2013). As we also ran analyses examining individual differences in response to time pressure, 

we fit the Wald models to each individual to obtain independent estimates and circumvent 

                                                

3 To account for potential inconsistencies in the inferences based on assumptions about how accumulation 

occurs, we also modelled both tasks using LBA accumulators (Donkin et al., 2011). Our model selection 

procedure provided clear and consistent support for the Wald model with start-point variability, and therefore, 

we focus our discussion on the Wald model architecture. In supplementary materials we show that the LBA 

agreed with the inferences made by the selected Wald model. 
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non-independence issues for this analysis caused by shrinkage (Boehm, Marsman, Matzke, & 

Wagenmakers, 2018). 

We performed model selection procedures using the Deviance Information Criterion 

(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). A smaller DIC value reflects 

greater model performance in terms of the tradeoff between model simplicity and goodness 

of fit. The criterion is log-scaled, with a difference of 10 or more indicating strong evidence 

in favor of the model with the smaller DIC. We assessed model fits for the classification task 

separately for the single-task and dual-task groups. The Wald model variant with start-point 

variability was favored over the model variant without start-point variability for the single-

task group (DIC = 88,953 vs. 89,007, respectively) and for the dual-task group (95,873 vs. 

95,877, respectively), though the evidence for the start-point variability model was weaker in 

the latter group. This is contrary to Castro et al., who found that no-start variability was 

favored in their choice task; it is likely that our complex presentation of multiple-stimuli led 

to premature sampling of evidence, or sequential effects, both of which have been attributed 

as causing start-point variability (Heathcote, Suraev, Curley, Love & Michie, 2015; Laming, 

1968). However, in line with Castro et al. both models performed better than the LBA 

(single-task: 89,303; dual-task: 96,327), and for the DRT task completed by the dual-task 

group, the Wald model with start-point variability was favored over the model variable 

without start-point variability (56,217 vs. 56,581), though the LBA performed better than the 

latter model (56,387).  

We subsequently ran additional model selection tests on the best-supported Wald model 

with start-point variability (the “top” model) by fitting five model variants with simpler 

parametrizations for both tasks. The top model allowed time pressure factors to influence 

threshold (B), drift-rate (v), non-decision time (t0) and response omissions, so we denoted it 

as Bvt0 (response omissions were included in all models). The first two simpler model 
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alternatives allowed time pressure factors to influence only threshold (denoted B) and only 

mean rate (v); we omitted the equivalent model for non-decision time, as it would be unable 

to account for the observed changes in accuracy. The next three model alternatives allowed 

time pressure factors to influence a pair of parameters between threshold, mean rate and non-

decision time (Bv, Bt0, vt0). The differences in DIC values for the model variants are shown 

in Table 4. For the classification task, the top model performed better than the simpler models 

for both the single-task and dual-task groups. In contrast, for the DRT, the vt0 model 

performed better than the top model and other variants. The selected vto model for the DRT 

therefore does not allow threshold to vary as a function of time pressure. The fact that a DRT 

model including v was selected provides preliminary support for the resource model of dual-

task interference. Given the model selection results, we targeted the Bvt0 and vt0 models for 

the classification task and DRT, respectively, for further analyses. The selected models are 

shown to describe the data well in the supplementary materials.  

Between-Group and Individual Differences. Analyses of the accuracy and RT data 

indicated that the single-task and dual-task groups had similar performance. Although task 

performance is comparable between-groups, the cognitive processes underlying performance 

could differ. For this reason, we examined between-group differences in latent processes 

underlying the classification task. It is also possible that there may be individual differences 

in the way that participants respond to time pressure in a dual-task paradigm. For this reason, 

we further examined within-group differences in latent processes, assessing whether there 

were subgroups of individuals in the dual-task group that used different strategies in response 

to time pressure.  

To examine these possibilities, we analyzed parameter estimates using a mixture of 

multivariate GLMM with Bayesian estimation via the mixAK package in R (Komárek & 

Komárková, 2014). The mixture component extends GLMMs by allowing us to test whether 
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the effects of time pressure factors on latent processes could be differentiated by latent 

groups (or classes) that are inferred by trends in the mean posterior estimates for model 

parameters. The mixAK package default priors were used, which are specified as being 

weakly informative. We fit alternative models specifying one to three latent classes (K). To 

select the most parsimonious model in terms of number of parameters and goodness of fit, we 

used the penalized expected value (PED), as the DIC is unreliable for mixed models (Celeux, 

Forbes, Robert, & Titterington, 2006). Similar to DIC, a smaller PED indicates greater model 

performance. Our analyses focused on the most important model parameters (i.e., threshold, 

rate and non-decision processes). As we were interested in examining the general trajectories 

of these parameters as a function of time pressure, we collapsed across other factors (i.e., 

response type, match and stimulus factors.  

We first tested whether subgroups would emerge comparing the classification task 

processes for the single-task and dual-task groups. If there are between-group differences, we 

could expect to find at least two latent classes that would approximate the single- and dual-

task groups. The mean of posterior estimates for threshold, mean rate, and non-decision time 

parameters were used as dependent variables, with group type and time pressure factors 

entered as median-centered predictors. The PEDs indicated that the model specifying a single 

latent group was favored (PEDs for K = 1 to 3: 931, 1006, 2239, respectively; see 

supplementary material for trajectories of individual participants’ model parameters and the 

latent groups).  

We next tested whether individuals in the dual-task group could be clustered into latent 

groups reflecting differing responses to time pressure while performing the two tasks (e.g., 

responding to time pressure via response caution vs. rate of information processing). The 

same procedures were used as described above, however, dependent variables included 

threshold, mean rate, and non-decision time parameter estimates for both tasks (i.e., six 
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parameters in total – three parameters each for both tasks). A single latent group was favored 

(PEDs for K = 1 to 3: 339, 414, 2155).  

Dual-task processes. The mixture model examining between-group differences on 

cognitive processes provided evidence that the presence of the DRT did not influence the 

processing of the primary classification task. Additionally, the mixture model examining 

individual strategies in response to time pressure provided evidence that individuals used 

qualitatively similar strategies in response to time pressure. Therefore, we focus on the dual-

task group to understand how the DRT is a sensitive measure of workload and provide 

quantitative results about the processes underlying task performances for the dual-task group. 

We examined the linear effect of the two time pressure factors on cognitive processes. 

For each iteration of the posterior estimate, we calculated the linear contrasts over parameters 

for the three levels of one time pressure condition within each level of the other time pressure 

condition. For each iteration, we then took the average over participants to derive a 

distribution of linear contrasts. We applied the same procedure to test differences between the 

two levels of the accumulator factor (i.e., response bias). We also examine the interaction 

between the linear effects of the two time pressure factors. Reliable effects were inferred 

where 95% credible intervals for the linear contrasts did not include zero, and as such, we 

present the posterior mean of the linear coefficient with two-tailed 95% credible intervals. A 

table of the linear effects are provided in Table 5.  

Classification Task Processes. Figure 3 illustrates the effects of deadline and number of 

ships on threshold, mean rate, and non-decision time. There was a decline in threshold with 

tighter deadlines and an increase in the number of ships. The interaction in threshold values 

between the time pressure factors was reliable, though this appears to be driven by the similar 

thresholds for the 3-ship and 4-ship conditions under a 6s deadline. There was a reliable 

increase in rates with tighter deadlines and an increase in the number of ships. The interaction 
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between these two factors was reliable, as the effect of deadline was stronger in the 4-ship 

condition compared to the 2-ship and 3-ship conditions. In combination, the decline in 

threshold and increase mean rate in response to greater time pressure explain how 

participants speeded their response times, as the accumulators have less distance to travel to 

reach the threshold and trigger a decision, and they do so at a greater rate. Although these 

strategies ameliorated the number of missed responses, they were not fully effective, as non-

response rates continued to increase with time pressure. Additionally, the decline in threshold 

partially accounted for the decline in accuracy with greater time pressure, as there is a greater 

chance of the mismatching (i.e., incorrect) accumulator reaching the threshold before the 

matching (i.e., correct) accumulator.  

Figure 4 illustrates the effects of time pressure and stimulus effects on the rate estimates. 

The difference between matching and mismatching accumulators provides an index of 

discriminability. The difference between the accumulators decreased with tighter deadlines, 

whereas the difference remained constant with deadline for non-targets. The negative effect 

of tighter deadlines on target discriminability mediated the strong decline in target accuracy. 

In contrast, the constant discriminability for non-targets suggests that the decline in accuracy 

for non-targets was mediated by the decline in response caution.  

There was reliable evidence of overall slowing in non-decision time as the number of 

ships increased, except for the 6s deadline, as indicated by a reliable interaction. Finally, 

there was also a reliable response bias main effect, such that the “target” response threshold 

was lower than the “non-target” response threshold (2.05 vs 2.16, respectively). The bias to 

respond “target” appears to have been adopted in an attempt to ameliorate the generally poor 

target accuracy, though this strategy was not particularly effective.   

DRT Processes. The trends for the selected Wald model are shown in Figure 5. There 

were reliable main effects of both time pressure factors and a reliable interaction between 
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them on mean rate. The rate of evidence accumulation declined with tighter deadlines, and 

this effect increased with a greater number of ships. There was also a small but reliable main 

effect of deadline on non-decision time, such that the time required for non-decision 

processes slowed with tighter deadlines. In conjunction, these two effects explain the slowing 

of the DRT response times and the greater frequency of missed responses, as the accumulator 

takes more time to reach the threshold, and the non-decision time is added to the time 

required to accumulate evidence. 

Discussion 

Our aim was to understand the mechanisms responsible for the patterns of dual-task 

interference that emerge when people are placed under time pressure in a complex, dynamic 

environment. We did this by applying evidence-accumulation models and examining how 

model parameters describing participants decisions in a maritime surveillance task varied in 

response to time pressure. We describe the how the cognitive processes underlying the dual 

tasks paradigm reflect the tradeoff in resources between tasks and how the effects are 

diagnostic of the those hypothesized by resources models. Finally, we describe the 

implications of our findings.  

Resource Theory 

Resource models are often used to explain dual-task performance, describing a tradeoff 

in resources between tasks, whereby resources are prioritized towards the primary task in 

response to greater task demands resulting in performance decrements in the secondary task 

(Kahneman, 1973). Resource models have been used to explain decrements secondary tasks, 

including the DRT (Strayer et al., 2011). However, there are many different ways in which 

people can adapt to changes in task demands, including changes in response caution, 

encoding processes, and response bias, and it is possible that different people may respond in 

different ways (Loft, et al., 2009; Neal et al., 2017; Palada et al., 2018). This makes it 
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difficult to draw inferences regarding workload from behavioral data alone. For these 

reasons, we argued that it is desirable to have a cognitive model of both the primary task and 

the DRT.  

The current findings provide direct evidence in support of the resource account of DRT 

performance (Strayer et al., 2011; ISO, 2015). Specifically, the modeling revealed that the 

rate of evidence accumulation for the DRT declined as time pressure increased on the 

primary task, and that this was accompanied by an increase in the rate of evidence 

accumulation for the primary task. This suggests that the primary task and the DRT were 

competing for a finite pool of resources, and that participants compensated for an increase in 

time pressure by reallocating resources from the DRT to the primary task.  

These findings reconcile the inconsistent results of previous studies that have attempted 

to test the resource account by modeling DRT performance without modelling the primary 

task. Whereas Castro et al. (in press) found that increases in primary task load were 

accompanied by a decrease in the rate of evidence accumulation for the DRT, Tillman, et al. 

(2017) did not. It is likely that the differences in findings across studies reflect differences in 

the types of primary tasks that have been used. The primary tasks used in the current study 

and by Castro et al. (in press) are demanding. The highest levels of time pressure used in the 

current study were close to the “red line” observed by Palada et al. (2018). Palada et al. found 

that increases in time pressure beyond the levels in the current study caused performance to 

decline rapidly. This suggests that participants in the current study were unlikely to have 

spare capacity, and therefore had to reallocate resources from the DRT to the primary task as 

time pressure increased. Tillman, et al. (2017), by contrast, used a driving task, which was 

less demanding. It is unlikely that experienced drivers would be close to the “red line” under 

normal driving conditions in this task, and therefore, should have sufficient capacity in 

reserve to protect both the primary task and DRT as load increases.  



 

 

30 

One of the criticisms that is often levelled at resource theory is that it is unfalsifiable. 

Navon (1984) pointed to the falsifiability of resource models as being asymmetric: Observing 

a tradeoff in resources is diagnostic of limited resources being reallocated between tasks, and 

failures to find evidence in support of the theory are ambiguous, because they can often be 

explained anyway (e.g., the tasks may not be sufficiently demanding to exhaust the available 

pool of capacity). Our observation of a tradeoff in resources between tasks, as reflected by 

the tradeoff in rates, is diagnostic of the hypotheses posited by resource models. However, 

had we failed to observe this tradeoff, the conclusions would be less clear and insufficient to 

falsify the idea of resources. For example, we could have found tradeoffs in response times 

and accuracy that were not due to change in rate, which would be troublesome for resource 

models positing some sort of reciprocity. Navon (1984) originally demonstrated the 

ambiguity in testing resources models by using speed and accuracy. Using evidence-

accumulation models allowed us to quantify latent cognitive processes which are conflated in 

observed behaviors and rule out confounds such as speed-accuracy tradeoffs. Our results 

emphasize how using behavioral data alone to infer resource tradeoffs could result in 

erroneous or oversimplified conclusions. Recently, other researches have showed that 

traditional assumptions of prospective memory, which were inferred from behavioral data, do 

not hold when submitted to formal modeling (Strickland et al., 2018). Similarly, in this paper 

we show the long-held assumption of resource reallocation does not completely account for 

dual-task performance. 

Although the changes in the rate of information processing observed in the current study 

are consistent with the predictions of resource theory, our modeling further revealed 

additional processes underlying dual-task performance that are not consistent with a purely 

resource-based account. In line with Palada et al. (2018), we found that participants 

decreased their response caution on the primary task in response to greater time pressure. 
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This is presumably because the additional resources that were diverted from the DRT to the 

primary task were not sufficient to maintain performance at an acceptable standard. Unlike 

previous studies, response caution for the DRT did not vary with load. Castro et al. (in press) 

and Tillman et al. (2017) both found that participants increased their response caution for the 

DRT as primary task load increased. Again, the differences in findings are most likely due to 

differences in the types of primary tasks that have been used. The surveillance task used in 

the current study imposes a firm deadline for responding. In this type of environment, it 

makes sense for a participant to adjust their response threshold for the primary task, rather 

than the DRT, in order to ensure that they have responded to all of the items before the 

deadline.     

The current findings are consistent with a growing body of literature which suggests that 

people manage demands on competing tasks by strategically adjusting their response 

thresholds for the different tasks. For example, Strickland, Loft, Remington and Heathcote’s 

(in press) prospective memory decision control theory includes a proactive control 

framework, which suggests that individuals increase their response threshold for the primary 

task when a prospective memory task is present. The reason for raising the primary task 

threshold is to provide sufficient time for the prospective memory response to be made. This 

is because in a prospective memory paradigm, the prospective memory response has priority 

over the primary task response. In our paradigm, the primary task has priority over the DRT, 

and participants need to lower the primary task threshold in order to respond in time. In both 

cases, the results are consistent with the notion that participants are strategically adjusting 

their response thresholds to manage the demands of the competing tasks.   

For both tasks, we also found a slowing of non-decision time with a greater number of 

ships presented in the primary task. In contrast, Palada et al. did not observe this effect, 

though their study only used a single-task paradigm involving a similar maritime surveillance 
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task. We suspect that this may be due to response inference between tasks, since there was a 

greater likelihood of response production overlap across tasks as the total number of requires 

responses increased.  

Unlike Loft et al., (2009), we found no evidence that participants adjusted their response 

bias in order to manage increased load. In air traffic control, safety is more important than 

accuracy, and air traffic controllers are trained to increase their safety margin as load 

increases in order to ensure that they do not miss conflicts. In our maritime surveillance task, 

by contrast, the payoff matrix was symmetric, so there was little benefit in adjusting response 

bias as load increased. However, we did find that participants adopted a “target” response 

bias. We suspect that this strategy was adopted in attempts to improve target performance 

more generally, as target performance was considerably worse than non-target performance. 

An inherent constraint of the physical environment in our primary task is that speed and 

deadline are confounded. The speed at which the objects move could have effects that are 

independent to the time available to make the decision (i.e., deadline). For example, it is 

possible that participants’ ability to discriminate between target and non-target stimuli 

decreases as the speed increases, because it is harder to detect the features. We ran a small 

control study to test whether our observed effects on rates were perceptual (i.e., were due to 

stimuli moving faster across the screen), motivational (i.e., were due to the increase in 

resources under greater time pressure) or both. Four participants performed a task largely 

identical to our classification task, where a single ship travelled across the screen under a 6s, 

9s or 12s deadline. We found that response times speeded considerably with tighter deadlines 

and had a non-linear association with accuracy. We modelled performance using the Bvt0 

Wald model. Consistent with the original study, rate increased as deadlines became tighter, 

which reflects an increase in the rate of information processing. We also observed changes in 

discriminability, reflected by the difference between the matching and mismatching 
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accumulators under varying deadlines. These results show that manipulating time pressure 

via the speed at which objects move influences both perception (i.e., discriminability) and the 

rate of information processing.  The results highlight the ability of evidence-accumulation 

models to dissociate changes in information processing and changes in discriminability which 

are conflated in observed data.  

Individual differences are an important factor to consider when inferring workload, as 

the general inferences made may not hold across all individuals. Individuals can differ in the 

strategies used in attempts to protect performance under varying task load, with such 

individual differences being attributable to motivational factors, skills and experiences, as 

well as cognitive capacity (Eidels et al., 2010). However, we found that irrespective of such 

factors, individuals responded the same way to increased time pressure in dual-task contexts 

– by reallocating resources from the secondary to the primary task and adjusting response 

caution. We also provide evidence that the inferences made about workload via the DRT are 

robust against individual differences.  

Practical Implications 

Our results have practical implications for the assessment of workload via the DRT. 

Analyses on behavioral measures revealed that the DRT did not affect classification task 

performance. At best, compared to the single-task group, the addition of the DRT reduced 

classification response times by 10ms and decreased accuracy by 1%. Although this finding 

is consistent with driving studies (e.g., Strayer et al., 2014), Castro et al. (in press) found that 

the addition of the DRT decreased performance on an oscillating ball tracking task using a 

steering wheel as an interface, although in the standard ISO form of the DRT this decrease 

was only small. This small effect may be because participants are more likely to prioritize the 

primary task over the DRT when the primary task is more engaging (as in our maritime 

surveillance task) or safety critical (as in driving), and as a result, performance on the primary 
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task is prioritized. Nonetheless, our work illustrates the benefits in using the DRT as a 

workload measure beyond driving contexts, and towards high workload environments more 

generally. Indeed, our task is representative of a broad range of tasks in which people 

experience dual-task inference in a dynamic environment, including air traffic control, train 

control, unmanned vehicle control, air battle management, and submarine track management. 

We show how the DRT has the potential to be useful in controlled lab environments, as well 

as in the field – particularly in time pressured environments, which are a common feature in 

other safety non-driving contexts. However, we also acknowledge that there may be some 

contexts in which resource reallocation effects may not be observed, such as tasks where 

resources are sufficient to maintain performance on both tasks or where the individual uses 

alternate strategies to maintain task performance. In such cases evidence-accumulation  

models provide a framework to understand how the DRT is sensitive to primary task 

demands, and suggest that this modeling procedure should be used to validate novel 

applications.  

Although it is critical for a secondary-task measure of workload to have no appreciable 

effect on primary task performance, there is the concern that the secondary task may 

fundamentally change the processing of the primary task (Young, Brookhuis, Wickens & 

Hancock, 2015). We examined the qualitative trends of time pressure effects on model 

parameters for the single and dual-task groups and tested for latent classes which would 

approximate group type. Our analyses suggested a single latent class and provides evidence 

that the DRT did not influence the underlying cognitive processing in the classification task, 

further supporting its use as a workload measure in time pressured environments. Our work 

provides assurance that introducing the DRT as a workload measurement tool does not affect 

the inferences that are made about primary-task performance or processes.  
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The modeling of both the DRT and the classification task illustrate how system designers 

could, in principle, use evidence-accumulation models to gain insight to the cognitive 

processes underlying operator performance in multi-task environments. These models could 

be used to understand how operators respond to task demands, which carry significant 

implications for systems design, processes and procedures. For example, the models could be 

used to identify points at which resources are overloaded, which has implications for the 

assignment of task load, whereas observing changes in response caution may carry 

implications for training procedures.  

Overall, our results highlight the advantages of modeling primary-task performance to 

understand how DRT is sensitive to workload in a non-driving context. Modeling the primary 

task and the DRT, as well as our analysis of individual differences, allowed us to discount a 

range of potential caveats in finding support for the resource account of dual-task 

performance.  

Measuring workload is critical in identifying when individuals may be unable to perform 

safely and effectively. We have shown that the DRT is a sensitive workload measure in time 

pressured environments. Using evidence-accumulation models, we revealed how the DRT 

reflects the spare resources available to perform secondary tasks at least when the primary 

task is sufficiently demanding – a characteristic which is most important in safety-critical 

applications. We also showed that the DRT did not affect the processing or performance of 

the primary task, which is an important attribute in any workload measure (Young et al., 

2015). We believe that this study supports the wider use of the DRT as measure of workload 

in performance and safety-critical contexts.   
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Figure 1. The choice Wald model and associated parameters: Response threshold (b), rate (v), start-point (A), and 
non-decision time (Ter).  
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Figure 2. Screenshot of classification task, with a non-target (red arrow) and target (green arrow) responses, a 
ship requiring classification in the unmasked lane, and a masked unclassified ship indicated with an outlined, 
unfilled arrow. Note. Noise and fog overlay are reduced for illustrative purposes.  
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Figure 3. Classification task: Effects of deadline and number of ships on Wald model parameters. Dots correspond 

to posterior mean. The bars show the 95% credible intervals.  
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Figure 4. Classification task: Effects of deadline, number of ships, and stimulus type on Wald model rate 

parameter for each accumulator. The dashed and solid lines refer to the correct (i.e., matching) and incorrect (i.e., 

matching) accumulators. Dots correspond to posterior mean. The bars show the 95% credible intervals.  
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Figure 5. Detection Response Task: The interaction between time pressure factors on mean rate (left panel) and 

the main effect of deadline on non-decision time (right panel). Dots correspond to posterior mean. The bars show 

the 95% credible intervals. 
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Table 1.  

M
odel param

eterization for the Classification Task for both groups (single-task and dual-task), detection response task (D
RT), and the num

ber of param
eters (NP) 

Task 
M

odel 
 

Start point 
variability 

(A
) 

Threshold 
(B) 

Rate 
(v) 

Rate variability 
(sv ) 

N
on-decision 

tim
e  

(ter ) 

Response 
O

m
ission 

(pf) 

Total 
N

P 

Classification  
Task 

W
ald: A

0 
Factors 

NA 
D

, N
S, R 

D
, N

S, M
, S 

NA 
D

, N
S 

D
, N

S 
72 

N
F 

18 
36 

9 
9 

W
ald: A

 
Factors 

- 
D

, N
S, R 

D
, N

S, M
, S 

NA 
D

, N
S 

D
, N

S 
73 

N
F 

1 
18 

36 
9 

9 

D
RT 

W
ald: A

0 
Factors 

NA 
D

, N
S 

D
, N

S 
NA 

D
, N

S 
D

, N
S 

36 
N

F 
9 

9 
9 

9 

W
ald: A

a 
Factors 

- 
D

, N
S 

D
, N

S 
NA 

D
, N

S 
D

, N
S 

37 
N

F 
1 

9 
9 

9 
9 

N
ote. Experim

ental factors are stim
ulus type (S), ships in trial (N

S) and deadline (D
). A

ccum
ulator factors are m

atch (M
) and response (R). “Total” refers the total num

ber of 
param

eters in the m
odel; N

F = num
ber of factors and NA = m

odel param
eter does not apply to m

odel.   
a. The selected vt0 for the D

RT dropped the tim
e pressure effects on threshold, and therefore only estim

ated one threshold value. The total num
ber of param

eters for the selected 
vt0 m

odel for the D
RT w

as 29.
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Table 2.  

Generalized linear mixed-model coefficients for perceived workload and classification task performance.  

Effect Workload Accuracy Correct RT Error RT Non-Responses 

S        - 
-0.46  

[-0.48, -0.44] 

-0.01  

[-0.02, -0.01] 

 0.03  

[ 0.02, 0.03] 

-0.03  

[-0.16, 0.10] 

NS       
0.61 

[0.53, 0.68] 

-0.11  

[-0.14, -0.08] 

-0.15  

[-0.16, -0.15] 

-0.16  

[-0.17, -0.15] 

 0.68  

[ 0.53, 0.83] 

D        
-0.98  

[-1.06, -0.90] 

 0.53  

[0.50, 0.56] 

 0.16  

[ 0.15, 0.16] 

 0.18  

[ 0.17, 0.19] 

-1.37  

[-1.52, -1.23] 

G        
0.70 

[0.33, 1.07] 

-0.01  

[-0.12, 0.10] 

0.00  

[-0.04, 0.03] 

 0.01  

[-0.03, 0.04] 

-0.20  

[-0.53, 0.13] 

S.NS     - 
 0.02  

[-0.01, 0.05] 

 0.01 

[ 0.00, 0.01] 

0.00  

[-0.01, 0.01] 

 0.03  

[-0.13, 0.18] 

S.D      - 
 0.22  

[0.19, 0.25] 

-0.04  

[-0.05, -0.04] 

 0.01  

[0.00, 0.02] 

0.00  

[-0.14, 0.15] 

S.G      - 
-0.16  

[-0.18, -0.13] 

 0.00  

[ 0.00, 0.01] 

0.00  

[-0.01, 0.01] 

 0.06  

[-0.07, 0.20] 

NS.D     
0.07 

[-0.02, 0.16] 

 0.04  

[0.01, 0.08] 

 0.02  

[ 0.01, 0.02] 

 0.03  

[ 0.02, 0.05] 

-0.22  

[-0.38, -0.04] 

NS.G     
-0.04 

[-0.12, 0.04] 

 0.05 

[0.02, 0.08] 

 0.00  

[0.00, 0.01] 

-0.01  

[-0.02, 0.00] 

 0.04  

[-0.11, 0.19] 

D.G      
0.15 

[0.07, 0.23] 

 0.01  

[-0.02, 0.04] 

-0.01  

[-0.01, 0.00] 

 0.00  

[-0.01, 0.01] 

-0.37  

[-0.52, -0.22] 

NS.S.D   - 
-0.04 

[-0.08, 0.00] 

 0.00  

[0.00, 0.01] 

 0.01  

[-0.01, 0.02] 

-0.07  

[-0.24, 0.10] 

NS.S.G   - 
-0.01 

[-0.04, 0.02] 

 0.00  

[0.00, 0.01] 

0.00  

[-0.01, 0.01] 

-0.09  

[-0.24, 0.07] 

S.D.G    - 
-0.05 

[-0.08, -0.02] 

 0.00  

[0.00, 0.01] 

0.00  

[-0.01, 0.01] 

 0.05  

[-0.10, 0.19] 

NS.D.G   
-0.10 

[-0.20, -0.01] 

 0.03 

[-0.01, 0.06] 

0.00  

[-0.01, 0.00] 

-0.01  

[-0.02, 0.00] 

 0.02  

[-0.15, 0.19] 

NS.S.D.G - 
 0.07 

[ 0.03, 0.11] 

0.00  

[-0.01, 0.00] 

0.00  

[-0.01, 0.01] 

-0.08  

[-0.25, 0.09] 

 
Note. Experimental effects are stimulus type (S), number of ships (NS), deadline (D) and group type (G); RT = 
response times; 95% CIs are in square brackets.  
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Table 3.  
Generalized linear mixed-model coefficients for detection response task performance.  

Effect 
Valid response 

times 
Accuracy 

NS        
0.06 

[0.05, 0.07] 

-0.34 

[-0.43, -0.26] 

D        
-0.08 

[-0.09, -0.07] 

0.58 

[0.50, 0.67] 

NS.D        
-0.02 

[-0.04, -0.01] 

0.18 

[0.07, 0.28] 

 
Note. Experimental effects are number of ships (NS) and deadline (D); RT = response times; 95% CIs are in 
square brackets.  
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Table 4.  
Model fits of the simpler parametrizations of the Wald model with start-point variability summed over participants 
for the classification task (dual-task group and single-task group) and the detection response task (DRT). 

Task:  Classification Task  DRT 

Effect  NP 
DIC 

Dual-Task 

DIC 

Single-Task 
 NP DIC 

Bvt0 (top)  73 0 0  37 311 

Bv  65 439 608  29 255 

Bt0  41 1605 1399  29 3099 

B  33 2284 2239  21 763 

vt0  57 730 859  29 0 

v  49 2283 2150  21 676 

 
Note. Threshold = B, mean rate = v, non-decision time – t0; DIC = deviation information criterion. NP is the 
total number of parameters in the model. The “top” model refers to the most complex Wald model with start 
point variability; the naming of the models indicate which parameters were influenced by time pressure factors 
(number of ships and deadline).    
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Table 5.  
Linear coefficients for time pressure factor and response factor effects on selected Wald model parameters  
 

Task:  Classification Task  DRT 

Effect  Threshold 
(B) 

Mean Rate 
(v) 

Non-decision 
time (ter)  Mean Rate 

(v) 
Non-decision 

time (ter) 

NS       
 -0.70  

[-0.77, -0.64] 

 0.10  

[0.08, 0.13] 

 0.06  

[0.04, 0.08] 

 -0.31 

[-0.36, -0.26] 

0.00 

[-0.01, 0.00] 

D       
 0.53  

[0.46, 0.59] 

-0.28  

[-0.30, -0.25] 

 0.00  

[-0.02, 0.02] 

 0.41 

[0.35, 0.46] 

-0.02 

[-0.02, -0.02] 

NS.D      
  1.17  

[1.01, 1.34] 

-0.13  

[-0.20, -0.06] 

-0.08  

[-0.14, -0.03] 

 0.14 

[0.05, 0.23] 

0.01 

[0.00, 0.01] 

R        
 -0.04  

[-0.07, -0.02] 
- - 

 
- - 

 
Note. Factors are number of ships (NS), deadline (D), and response type (R); 95% CIs are in square brackets 

 
 
 



 

 

 1 

Supplementary Materials 
Performance Graphs 

 
Figure 1. Perceived workload: The three-way interaction between time pressure factors (numbers of ships and 
deadline) and group type on perceived workload. 

  
Figure 2. Classification task: The four-way interaction between time pressure factors (numbers of ships and 
deadline), stimulus type and group type on mean accuracy.  
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Figure 3. Classification task: The two-way interaction between time pressure factors (deadline and numbers of 
ships; left panel) and the two-way interaction between deadline and stimulus type (right panel) on mean correct 
response times.  

 

 
Figure 4. Classification task: The two-way interaction between deadline and stimulus type on mean error 
response times.  
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Figure 5. Classification task: The two-way interaction between time pressure factors (deadline and numbers of 
ships; left panel) and the two-way interaction between deadline and group type (right panel) on mean non-response 
rates.  

 
Figure 6. Detection response task (DRT): The two-way interaction between time pressure factors (deadline and 
numbers of ships) on valid response times (left panel) and hit rate (right panel).  
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Model Specifications 
The data and example scripts for modeling can be found at osf.io/rsn9j/. The Bayesian model estimations 

were fit separately to each individual participant. The number of chains for each model was three times the number 

of parameters specified; 168 chains were used for the classification task and 84 chains were used for the DRT. 

During the initial burn-in phase, the probability that a crossover step is replaced with a migration step was .05 

(Turner et al., 2013). After the burn-in period, only crossover steps were used in the sampling until the proportional 

scale reduction factor (i.e., the Brooks-Gelman-Rubin statistic; !") was less than 1.1 for all model parameters and 

the multivariate !" (Brooks & Gelman, 1998). As a result, the number of iterations varied between models, though 

the final chains were inspected visually to confirm convergence.  

Priors 
Priors were specified with the intention of being vague and having little effect on estimation. Where 

applicable, the same priors were used between tasks and between models. All priors assumed a normal distribution 

with a standard deviation of 2. For the LBA and Wald model allowing for start-point variability (A), the mean 

prior for A was 0.50; for the Wald model without start-point variability, A was fixed at 0. Threshold (B) had a 

mean prior of 2. For the choice models used for the classification task, the prior mean rate (v) for the “matching” 

accumulator was 2, whereas the prior mean rate for the “mismatching” accumulator was 1. For the simple models 

used for the DRT, the prior mean rate for the single accumulator had a mean rate of 1. Non-decision time (ter) had 

a mean prior of 0.30. The prior for non-response rates (pf) for the classification task and DRT were -1.95 and -

1.10 on a probit scale. For the LBA model, the prior for rate variability (sv) for the classification task and DRT 

were 1 and 0.85, respectively. For all models, B and sv priors were truncated below zero. The LBA and the Wald 

model allowing for start-point variability zero-truncated the prior for A. The non-decision time prior was bound 

between 0.1 and 1; the lower limit reflects the assumption that encoding and response production below 0.1s are 

implausible. Mean rate and non-response priors were unbounded.  

Model Parameterization  
The parameterizations of the initial complex models are shown in Table 1 in the main text. The differences 

in the total number of parameters between models are due to differences in model architectures and constant 

parameter values. For the classification task, the LBA included three additional parameters compared to the Wald 

model with start-point variability due to the LBA having a rate variability parameter that varied with the match 

factor and stimulus factor; the variability for the “false” accumulator for non-target stimuli had a constant value 

of 1, hence, only three rate variability parameters were estimated). The Wald model without start-point variability 

had one less parameter than the Wald model with start-point variability, as the start-point parameter had a constant 

value (0). The same conditions account for the differences in parameters for the DRT; for the LBA, only one rate 

variability parameter was estimated for the matching accumulator.  

Model Selection 
The fits of the simpler model alternatives from the selected Wald model with start point variability are shown 

in Table 4 in the main text. The DIC differences between the best performing model and the alternative models 

are shown. The fits for the selected Wald model for the classification task (Bvt0) are shown in Figures 9 and 10 

for the dual-task and single-task groups, respectively. The fits for the selected Wald model for the DRT(vt0) are 
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shown in Figure 11. Analysis of the parameter estimates are provided in Table 5 of the main text, and the between-

group and individual differences mixture models are shown in Figures 15 and 17, respectively.  

 
LBA Analysis  

To check for inconsistent between model architectures, we ran the corresponding analyses on the LBA model 

including the mixture models, model fits and model analysis. The mixture model examining between-group 

differences in the processing of the primary task indicated that a single latent group best described the data (PEDs 

for k = 1 to 3: 1577, 1645, 2563; see Figure 16). The single-latent group model was also favoured for the mixture 

model examining individual differences in responding to time pressure factors (PEDs for k = 1 to 3: 332, 406, 

1634; see Figure 18).   

The model fits for the LBA for the classification task is shown in Figures 12 and 13 for the dual-task and 

single-task group, respectively. The model fit to the DRT is shown in Figure 14. The LBA provided a good 

account of the data for both tasks.   

A summary of the analysis on parameter estimates is provided in Table 1. The effects of time pressure factors 

on parameter estimated for the classification task are shown in Figure 7. There was a reliable interaction between 

time pressure factors on cognitive processes. The trends in threshold and non-decision time differed to the Wald 

model. Specifically, the decline in threshold with tighter deadlines only occurred in the 2-ship condition, and there 

was evidence for a decline in non-decision time with tighter deadlines for the 3-ship and 4-ship conditions. 

Consistent with the Wald model, the threshold for the “target” response was lower than the “non-target” response 

threshold (1.69 vs.  1.91, respectively). Also consistent with the Wald model, there was a clear increase in mean 

rate with tighter deadlines, with the effect being slightly stronger with an increase in the number of ships. For the 

DRT parameter estimate, shown in Figure 8, mean rate was considerably lower in the 6s deadline, though there 

was little difference between the 9s and 12s conditions. Finally, consistent with the Wald model, there was 

evidence for a slowing of non-decision time with tighter deadlines.  

 

  
Figure 7. Classification task: Trends in the interactions between time pressure factors on LBA parameters. Dots 

correspond to posterior mean. The bars show the 95% credible intervals.  
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Selected Model Parameter Analyses: LBA 
Table 1.  
Linear coefficients for time pressure factor and response factor effects on LBA model parameters  
 

Task:  Classification Task  DRT 

Effect  
Threshold 

(B) 
Mean Rate 

(v) 
Non-decision 

time (ter) 
 

Threshold 
(B) 

Mean Rate 
(v) 

Non-decision 
time (ter) 

SV        
 -0.47  

[-0.56, -0.38] 

 0.44  

[0.39, 0.50] 

-0.02  

[-0.05, 0.00] 

 0.01  

[-0.02, 0.04] 

-0.28  

[-0.36, -0.20] 

-0.01  

[-0.01, 0.00] 

D       
  0.26  

[0.17, 0.36] 

-0.73  

[-0.78, -0.68] 

 0.08  

[0.06, 0.10] 

 0.00  

[-0.02, 0.03] 

0.34  

[0.26, 0.43] 

-0.01  

[-0.02, -0.01] 

SV.D      
  0.70  

[0.46, 0.95] 

-0.32  

[-0.44, -0.20] 

 0.09  

[0.03, 0.15] 

 -0.02  

[-0.07, 0.03] 

-0.13  

[-0.27, 0.02] 

0.00  

[-0.02, 0.01] 

R        
 -0.15  

[-0.21, -0.10] 
- - 

 
- - - 

 
Note. Factors are number of ships (SV), deadline (D), and response type (R); 95% CIs are in square brackets 

 

 

 

 
Figure 8. DRT: Trends in the interactions between time pressure factors on LBA parameters. Dots correspond to 

posterior mean. The bars show the 95% credible intervals.  

 
  

●

● ●

1.5

2.0

2.5

3.0

3.5

6s 9s 12s
Deadline

M
ea

n 
R

at
e 

(v
)

● 2 Ships 3 Ships 4 Ships

● ●

●

0.0

0.1

0.2

0.3

6s 9s 12s
Deadline

N
on
−d

ec
is

io
n 

Ti
m

e 
(te

r)



 

 

 7 

Model Fits 

 
Figure 9. Dual-task group: Fits of the selected Wald model with start-point variability to mean accuracy (top 
graph), and .1, .5. and .9 quantiles of correct (middle graph) and error response times (bottom graph) of the 
classification task. Black points indicate mean data, whereas unfilled points indicate the posterior prediction. 
The bars show the 95% credible intervals. 
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Figure 10. Single-task group: Fits of the selected Wald model with start-point variability to mean accuracy (top 
graph), and .1, .5. and .9 quantiles of correct (middle graph) and error response times (bottom graph) of the 
classification task. Black points indicate mean data, whereas unfilled points indicate the posterior prediction. 
The bars show the 95% credible intervals. 
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Figure 11. Fits of the selected Wald model to .1, .5. and .9 quantiles of response times of the DRT. Black points 
indicate mean data, whereas unfilled points indicate the posterior prediction. The bars show the 95% credible 
intervals.  
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Figure 12. Dual-task group: Fits of the LBA to mean accuracy (top graph), and .1, .5. and .9 quantiles of correct 
(middle graph) and error response times (bottom graph) of the classification task. Black points indicate mean 
data, whereas unfilled points indicate the posterior prediction. The bars show the 95% credible intervals. 
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Figure 13. Single-task group: Fits of the LBA to mean accuracy (top graph), and .1, .5. and .9 quantiles of 
correct (middle graph) and error response times (bottom graph) of the classification task. Black points indicate 
mean data, whereas unfilled points indicate the posterior prediction. The bars show the 95% credible intervals. 
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Figure 14. Fits of the LBA model to .1, .5. and .9 quantiles of response times of the DRT. Black points indicate 
mean data, whereas unfilled points indicate the posterior prediction. The bars show the 95% credible intervals.  
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Between-person Effects: Mixture Model GLMM on UAV parameter estimates 

 
Figure 15. Single latent class of the classification task derived from mixtures of multivariate GLMM for the 
selected Wald model parameter estimates (mean rate, threshold, and non-decision times). Solid black line 
reflects the mean regression slope estimates for the single class, whereas coloured lines show participants’ 
trajectories and their corresponding group type (single-task vs dual-task).  
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Figure 16. Single latent class of the classification task derived from mixtures of multivariate GLMM for the 
LBA model parameter estimates (mean rate, threshold, and non-decision times). Solid black line reflects the 
mean regression slope estimates for the single class, whereas coloured lines show participants’ trajectories and 
their corresponding group type (single-task vs dual-task).  
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Individual Differences: Mixture Model GLMM on UAV and DRT parameter estimates 

 
Figure 17. Single latent class of the classification task and DRT derived from mixtures of multivariate GLMM 
for the selected Wald model parameter estimates for both tasks. The top three panels illustrate the trends in 
parameters for the classification task (mean rate, threshold, and non-decision times), whereas the bottom two 
panels show the DRT (mean rate and non-decision times). Solid black line reflects the mean regression slope 
estimates for the single class, whereas green lines show participants’ trajectories.  
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Figure 18. Single latent class of the classification task and DRT derived from mixtures of multivariate GLMM 
for the LBA parameter estimates for both tasks. The top three panels illustrate the trends in parameters for the 
classification task, whereas the bottom two panels show the DRT (mean rates, thresholds and non-decision 
times). Solid black line reflects the mean regression slope estimates for the single class, whereas green lines 
show participants’ trajectories.  
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