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Abstract 

Performing deferred actions in the future relies upon Prospective Memory (PM). Often, PM 

demands arise in complex dynamic tasks. Not only can PM be challenging in such environments, 

the processes required for PM may affect the performance of other tasks. To adapt to PM 

demands in such environments, humans may use a range of strategies, including flexible 

allocation of cognitive resources and cognitive control mechanisms. We sought to understand 

such mechanisms by using the Prospective Memory Decision Control (Strickland et al., 2018) 

model to provide a comprehensive, quantitative account of dual task performance in a complex 

dynamic environment (a simulated air traffic control conflict detection task). We found that PM 

demands encouraged proactive control over ongoing task decisions, but that this control was 

reduced at high time pressure to facilitate fast responding. We found reactive inhibitory control 

over ongoing task processes when PM targets were encountered, and that time pressure and PM 

demand both affect the attentional system, increasing the amount of cognitive resources 

available. However, as demands exceeded the capacity limit of the cognitive system, resources 

were reallocated (shared) between the ongoing and PM tasks. As the ongoing task used more 

resources to compensate for additional time pressure demands, it drained resources that would 

have otherwise been available for PM task processing. This study provides the first detailed 

quantitative understanding of how attentional resources and cognitive control mechanisms 

support PM and ongoing task performance in complex dynamic environments.  

Keywords: prospective memory; cognitive control; capacity; resource theory; linear 

ballistic accumulator model
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             Event-Based Prospective Memory (PM) refers to the ability to remember to perform 

deferred task actions when a particular stimulus or event is encountered in the future (Einstein & 

McDaniel, 1990). Both at work, and in everyday life, people have to manage PM demands in 

complex dynamic environments. For example, air traffic controllers, pilots, surgeons, nurses and 

emergency response personnel often have to defer taking a critical action in order to deal with 

higher priority tasks (Dismukes, 2012; Grundgeiger, Sanderson, MacDougall, & Venkatesh, 

2010; Loft, 2014). This means that these experts need to be able to manage the demands of the 

PM task alongside the demands of ongoing tasks, which can be difficult when those ongoing 

tasks are highly demanding, and there is significant time pressure. Errors of PM (i.e., failing to 

execute a deferred intention) can have serious consequences both at work and in everyday life, 

making it important to understand how people coordinate the demands of PM with that of 

ongoing tasks. 

Over the past 30 years, a great deal has been learnt about PM using tightly controlled 

laboratory paradigms. One of the most consistent findings has been that PM interferes with 

ongoing task performance. In a typical PM study, participants complete a relatively simple 

ongoing decision-making task (e.g., lexical decision, categorization) by itself, or with a 

concurrent PM task. For example, the ongoing task might be a lexical decision task, and the PM 

instruction might be to press an alternative key if presented a category of word. Under PM load, 

individuals are slower to respond to items which do not require a PM response, a phenomenon 

known as PM cost (e.g., Einstein & McDaniel, 2005; Hicks, Marsh, & Cook, 2005; Loft & Yeo, 

2007; Smith, 2003). It is typically assumed that PM costs result from resource bottlenecks, in 

which the two tasks compete for the same limited-capacity cognitive resources (Navon & 

Gopher, 1979; Norman & Bobrow, 1976), and that the extent of PM cost reflects the extent to 
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which resources are shared between the PM and ongoing task (Einstein & McDaniel, 2005; 

Scullin, McDaniel, & Shelton, 2013; Smith, 2003).  

It has long been recognized that dual tasks may also engage cognitive control processes, 

which adapt the cognitive system to meet specific task demands (Braver, 2012; Braver, Barch, 

Gray, Molfese, & Snyder, 2001; Miller & Cohen, 2001; Miyake et al., 2000). Recently 

Strickland, Loft, Remington and Heathcote (2018) proposed a quantitative model of PM, 

Prospective Memory Decision Control (PMDC), which is able to disentangle the contributions of 

capacity sharing and cognitive control to PM and ongoing task performance. Applying PMDC to 

basic laboratory tasks indicated that the PM cost observed in the standard laboratory paradigm 

arises because participants set higher decision thresholds for the ongoing task when under PM 

load. This suggests that, rather than cost resulting from capacity sharing, it results from 

participants delaying ongoing task decisions to avoid pre-empting the PM decision (also see for 

example Heathcote, Loft, & Remington, 2015; Horn & Bayen, 2015; Strickland, Heathcote, 

Remington, & Loft, 2017; Strickland et al., 2018). Strickland et al.’s model revealed that 

cognitive control, and not capacity sharing with ongoing tasks, was critical to PM accuracy. 

We do not yet know whether the findings that PM relies upon cognitive control over 

ongoing task decisions, and does not affect capacity for the ongoing task, reflect essential 

characteristics of PM, or are more specifically tied to the types of tasks often used in the study of 

PM in the laboratory. The ongoing tasks used in laboratory studies of PM are often relatively 

simple and may not fully engage cognitive capacity. In this case, idle resources could be 

recruited when PM demands are added without reducing ongoing task capacity. In everyday life, 

however, PM can occur in the context of primary tasks that are highly demanding, and which 

generate significant time pressure. In these types of environments, the ongoing task may entirely 
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occupy capacity such that additional capacity required for the PM task must be drawn from 

ongoing task resources. Furthermore, simple laboratory paradigms may omit aspects of PM that 

are important in more representative conditions. That is, the relative contribution of cognitive 

control versus attentional resources in supporting PM in more complex dynamic environments 

tasks may differ from those previously identified for basic PM tasks.  

The aim of the current work is to investigate the potential of PMDC to explain how 

individuals deal with PM demands and time constraints in complex dynamic environments. To 

do this, we have participants perform an air traffic control conflict detection task while having to 

remember to carry out a deferred action. The conflict detection task was used because it is a 

prototypical example of a broad range of work tasks that require people to remember to perform 

deferred task actions while making judgements about objects moving on task displays (e.g., 

maritime surveillance, train control, unmanned vehicle control, air battle management, 

submarine track management; Dismukes, 2010, 2012; Loft, 2014). We fit PMDC to the accuracy 

and response time (RT) data from both the ongoing task and PM task simultaneously, enabling 

inferences to be drawn regarding the cognitive processes that drive both tasks, which prior to 

Strickland et al. (2018) had not previously been achieved in PM research. Our model provides 

the first detailed quantitative understanding of the attentional resources and cognitive control 

mechanisms that support PM and ongoing task performance in complex dynamic task 

environments. 

Prospective Memory Decision Control 

PMDC belongs to the broad class of evidence accumulation models (e.g., Brown & 

Heathcote, 2008; Ratcliff, 1978), which assume that decisions are made by accumulating 

evidence from the environment until a threshold amount is reached. Evidence accumulation 
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models provide a full quantitative account of both RT distributions and the accuracy of decisions 

in benchmark empirical phenomena occurring in simple decision tasks, including trade-offs 

between speed, accuracy and response bias, and subtle interactions between the speed of correct 

and error responses (see Rae, Heathcote, Donkin, Averell, & Brown, 2014, for perceptual-, 

lexical-, and memory-based examples). 

PMDC is an instance of the linear ballistic accumulator model (LBA; Brown & 

Heathcote, 2008), which formalizes decision making as a process of evidence accumulation 

among independent racers. The PMDC model uses three racing LBA accumulators; two 

correspond to the ongoing task responses and a third corresponds to the PM task response. 

Correct PM responses (PM hits) occur on PM trials when the PM accumulator reaches threshold 

before either of the ongoing task accumulators. PM misses occur when one of the ongoing task 

accumulators finishes before the PM accumulator. In Figure 1, we depict how this would apply 

in a relative trajectory judgment (conflict detection) task (e.g., deciding whether two aircraft are 

in conflict) with an additional PM requirement. There are three possible response alternatives, 

which correspond to indicating that the stimulus is a conflict, a non-conflict, or a PM target. 

Each response choice has its own accumulator that accrues evidence linearly (arrows in Figure 

1), starting from points (uniformly distributed over the interval 0-A) representing random trial-to-

trial biases. Evidence increases over time in a linear manner until the total in one accumulator 

reaches its response threshold (b). To avoid circularity, b is assumed to be set prior to the trial – 

if it could be altered contingent on the identity of the stimulus there would be no need to make a 

decision. The rate of accumulation – which varies normally from trial to trial with mean v and 

standard deviation sv – corresponds to the strength of evidence for a choice, and it is determined 

both by the quality of information available to the decision maker and the degree to which he or 
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she attends to that information. The time for non-decision processes (e.g., stimulus encoding and 

response selection, ter) is estimated by the difference between the observed RT and decision 

time (i.e., the time that evidence in the winning accumulator first equals the threshold).   

 

 
Figure 1. An LBA model of a PM task with a concurrent conflict detection task. Evidence for each response is 
initially drawn from a uniform distribution on the interval [0, A]. Over time, evidence accumulates towards each 
response at rates drawn from independent normal distributions with mean v, and standard deviation sv. The first 
accumulator to reach its threshold, b, determines the overt response. We refer in our results to B, which is b – A, 
where B > 0 and so b > A. Total RT is determined by accumulation time plus non-decision time. 

 

The aim of fitting the PMDC model is to measure the psychological quantities that 

underlie performance, and to ascertain what those quantities suggest about resource allocation 

and cognitive control. PMDC instantiates the proactive and reactive cognitive control 

mechanisms specified by Braver’s (2012) dual-mechanisms theory and measures the overall 

availability of resources, as well as the degree to which resources are shared between ongoing 

task processing and PM task processing. We now review how PMDC instantiates these 

mechanisms, and what has been found in the basic laboratory work with PMDC and other 

evidence accumulation models.  

 Proactive control. Proactive control refers to processes used to "bias attention, 

perception and action systems in a goal-driven manner" (Braver, 2012, p. 2). Consistent with 
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current theoretical (Bugg, McDaniel, & Einstein, 2013) and empirical PM research (e.g., Ball & 

Brewer, 2018), proactive processes are deployed deliberately, in advance of the target stimulus 

so that they are already active when the target stimulus is encountered. Proactive control should 

thus be observable in differences between the latent processes underlying responses to (non-PM) 

ongoing task items in PM blocks and control blocks. Under PMDC, participants proactively 

control task demands by raising their thresholds in PM blocks, so that on PM trials the ongoing 

task accumulators are less likely to complete before the PM accumulator, thereby reducing the 

probability of a PM miss. This claim, originally made by the delay theory of PM cost (Heathcote 

et al., 2015), follows from the fact that in evidence accumulation models, thresholds are the locus 

of a priori strategies that drive mechanisms such as the speed-accuracy trade-off (Liu & 

Watanabe, 2012) and response biases (Donkin, Brown & Heathcote, 2011; Mulder, 

Wagenmakers, Ratcliff, Boekel & Forstmann, 2012).  

Every evidence accumulation modeling study to date that has compared ongoing task 

performance between control and PM blocks has found elevated thresholds in the latter 

(Anderson, Rummel & McDaniel, 2018; Ball & Aschenbrenner, 2017; Heathcote et al., 2015; 

Horn & Bayen, 2015; Horn et al., 2011, 2013; Strickland et al., 2017, 2018), consistent with 

proactive control. Further implicating control, Strickland et al. (2018) showed that participants 

increased their ongoing task thresholds further when instructed that the PM task was important. 

Moreover, participants also exerted control over PM thresholds (i.e., the evidence required to 

make a PM response) as a function of PM demands. PM thresholds were lower when the PM 

task was important versus not important, and lower when the features that need to be assessed to 

detect PM targets were focal to ongoing task processing requirements, as compared to non-focal, 
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indicating that ongoing task thresholds and PM thresholds are both important loci of proactive 

cognitive control strategies.  

Reactive control. In contrast to proactive control, reactive control refers to automatic, 

stimulus-driven cognitive mechanisms that are deployed to influence responding "only as 

needed, in a just-in-time manner" (Braver, 2012, p. 2). Reactive control mechanisms are 'bottom-

up' processes and are assumed to operate automatically in response to inputs signalling the 

critical event. As such, reactive control processes relevant to PM occur specifically on PM trials. 

PMDC’s reactive control mechanisms are depicted in Figure 2.  

 

Figure 2. Reactive control of accumulation rates in PMDC, using the example of an air traffic control conflict 
detection task in which participants have a concurrent PM task. The encoding process includes detectors 
(rectangles) for each possible response to the task: ‘conflict’, ‘non-conflict’, and ‘PM’. The detectors receive 
input from stimulus features. Output from the detectors can directly increase (solid lines) the input to the 
corresponding evidence accumulator (excitation) or reduce (dashed lines) the input to competing accumulators 
(inhibition). 
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PMDC claims that as PM stimulus inputs are processed on PM trials, stimulus features 

consistent with PM excite the PM accumulator, increasing accumulation speed, and inhibit other 

accumulators (reactive inhibition), decreasing their accumulation speed. Thus, in addition to PM 

accumulation being faster on PM trials than non-PM trials, accumulation towards ongoing task 

decisions should be slower on PM trials than non-PM trials.1 The latter is the hallmark of 

reactive control. In line with this, Strickland et al. (2018) found that ongoing task accumulation 

rates were inhibited (reduced) on PM trials, and that this response competition brought about by 

reactive control was critical to PM performance in basic PM laboratory paradigms. This 

converges with other theoretical work (Bugg et al., 2013) and neurological data (McDaniel, 

LaMontagne, Beck, Scullin, & Braver, 2013) implicating reactive control in PM, as well as 

broader approaches to human error that contend that response inhibition is required for atypical 

task responses to be able to compete for retrieval with task responses more strongly associated 

with common environmental cues (Norman, 1981; Reason, 1990).  

 Capacity Sharing. PMDC measures capacity with the accumulation rate parameters, as 

have other models for measuring ongoing task capacity (Boywitt & Rummel, 2012; Horn et al., 

2011). Rates correspond to capacity because they estimate processing speed, which the majority 

of attention theory assumes should vary in proportion to the attentional capacity available (e.g., 

 
1 Readers familiar with the intention superiority effect, in which ongoing task RTs are faster on PM target trials than 
non-PM trials, may wonder whether reactive inhibition of rates on PM target trials is incompatible with the faster 
RTs observed in the intention superiority literature (e.g., Marsh, Hicks, & Watson, 2002). However, on PM target 
trials, accumulators for the ongoing task responses must compete with a much faster PM response accumulator. 
Overt ongoing task responses on PM trials are therefore more likely to be fast errors that outpace the PM 
accumulation process, a phenomenon known as statistical facilitation (Raab, 1962). As such, fast PM miss RTs are 
not incompatible with lower PM miss accumulation rates. In fact, we find both effects (see Table S5 in the 
supplementary materials and Model Analysis section below). 
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Bundesen, 1990; Gobell, Tseng, & Sperling, 2004; Kahneman, 1973; Navon & Gopher, 1979; 

Wickens, 1980). Empirical work has also justified this connection, with rates converging with 

other measures of cognitive capacity (Donkin et al., 2014; Eidels, Donkin, Brown & Heathcote, 

2010), and manipulations of capacity (e.g., adding a dual-task load) having the expected effects 

on rates (Castro, Strayer, Matzke & Heathcote, submitted; Logan et al., 2014). 

The PMDC model allows for finer-grained analysis of capacity effects than do simple 

resource theories. For example, the model distinguishes the quantity of evidence accumulation 

from the quality of evidence accumulation. The quantity of accumulation is given by summing 

the rates for the matching and mismatching accumulators (‘matching’ refers to the accumulator 

for the response that matches the stimulus, i.e., the ‘correct’ response; ‘mismatching’ refers to 

the accumulator for the response that does not match the stimulus, i.e., the ‘incorrect’ response), 

whereas the quality of accumulation is given by the difference between the rates for the matching 

and mismatching accumulators. This distinction between the quantity and quality of 

accumulation is not as apparent in the diffusion decision model (DDM; Ratcliff, 1978), which 

has been a commonly used measure of PM cost (e.g., Horn & Bayen, 2015).2  

As reviewed, most PM theories assume that PM cost to non-PM trials results from 

reduced ongoing task capacity, the idea being that individuals need to orient attention towards 

monitoring for PM in case they are presented a PM item (e.g., Einstein & McDaniel, 2005; 

Smith, 2003). Testing this idea requires comparing ongoing task performance with and without 

PM demand (i.e., comparing accumulation rates to non-PM items in PM blocks with 

 
2 Ratcliff, Voskuilen, and Teodorescu (2018) have recently suggested that similar distinctions may be made with the 
DDM by jointly examining mean accumulation rates and rate variability.  
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accumulation rates to non-PM items in control blocks). The majority of studies modeling PM 

costs have reported no change in either the quality or quantity of evidence accumulation to non-

PM items across PM and control blocks, suggesting no change in the allocation or availability of 

resources as a result of PM (Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 

2015; Strickland et al., 2017, 2018). In contrast, one recent study did find some evidence of 

reduced processing quality under PM load (Anderson et al., 2018). However, this experiment did 

not counterbalance PM and control conditions, so it is possible that the evidence of reduced 

capacity was due to order effects rather than PM. Further contributing to the ambiguity of this 

effect, it only appeared in the diffusion decision model, and not in the LBA which provided a 

better fit to the data.  

Prospective Memory in Complex Dynamic Tasks 

To summarize the reviewed findings, it appears that in basic laboratory paradigms, 

individuals primarily manage PM demands by exerting cognitive control over ongoing task and 

PM processes, and that the capacity of the ongoing task is not affected by PM demands. 

However, the previous data does not imply that PM monitoring never affects ongoing task 

resources. Indeed, a benchmark of resource theory is that tasks drawing on the same pool of 

resources may not interfere with each other unless the total demand for resources exceeds the 

capacity limit of the cognitive system (Navon & Gopher, 1979; Norman & Bobrow, 1976). As 

such, basic laboratory tasks may leave resources idle, meaning that there is sufficient capacity 

available for monitoring in PM blocks without diverting resources from the ongoing task or 

increasing the amount of available resources (see Rummel, Smeekens, & Kane; 2017). This may 

render basic paradigms unable to detect capacity effects of PM that emerge when greater 

demands are placed on the cognitive system.  
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Air traffic control is a prototypical example of a job in which people need to manage the 

demands of PM in a complex and dynamic environment (see Dismukes, 2010, 2012; Loft, 2014). 

Air traffic controllers are frequently faced with the requirement to remember to perform deferred 

actions. For example, a controller might need to remember to provide information to an aircraft 

when it passes a waypoint or reaches its top of descent. Alternatively, a controller might need to 

remember to change the route or level of one aircraft after giving a clearance to another aircraft, 

or to put an aircraft into a holding pattern. Controllers often do this when they are under 

significant time pressure (Loft et al., 2007). For these reasons there is a growing body of both 

laboratory and field research examining PM using air traffic control tasks. These studies have 

shown that PM produces numerous performance costs, including slower acceptance and hand-off 

of aircraft, slower detection of conflicts between aircraft, and increased rates of missed conflicts 

(Loft, Chapman, & Smith, 2016; Loft, Finnerty, & Remington, 2011; Loft, Pearcy, & 

Remington, 2015; Loft, Smith, & Remington, 2013; Loft & Remington, 2010; Loft, Smith, & 

Bhaskara, 2011; Loukopoulos, Dismukes, & Barshi, 2009). These costs observed by Loft and 

colleagues, which affected both accuracy and RT, appear more consistent with resource sharing 

than increased thresholds, inconsistent with the results from basic PM paradigms in which raised 

ongoing task thresholds typically allow participants to maintain similar ongoing task accuracy in 

control and PM blocks (e.g., Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & 

Bayen, 2015; Strickland et al., 2017, 2018).  

In the current study, we apply the PMDC model so that we can measure capacity and 

control as has been done in the basic research. In our study, participants make decisions about 

whether two aircraft will come into conflict at some point in the future. In some blocks of trials, 

in addition to detecting conflicts, participants are required to press an alternative PM response 
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key instead of a conflict or non-conflict ongoing task response for aircraft with a callsign 

containing two of the same letter (e.g., APA169, RTR451). Comparing model parameters 

between control and PM blocks allows us to examine how PM affects attentional resources (e.g., 

capacity-sharing) and cognitive control mechanisms. To further test the role of capacity sharing 

in PM cost, we introduce a further within-subjects manipulation of ongoing task demands: time 

pressure. This allows us to examine whether capacity for PM and ongoing processes trades off 

across different levels of time pressure, which is important because such trade-offs are a critical 

indicator of capacity sharing (Navon & Gopher, 1979). To impose time pressure on responses, 

we manipulated the number of items that needed to be sequentially responded to (trial load), and 

the total time available to make that set of responses (trial duration). This was done to check 

whether trial load and time available both induce quantitatively similar time pressure effects, 

since this is not always the case in air traffic control or similar complex dynamic tasks (Loft et 

al., 2007; also see Hendy, Liao, & Milgram, 1997; Palada, Neal, Tay, & Heathcote, 2018). We 

now discuss testing the PMDC model as it would apply to the air traffic control task. 

Testing Capacity and Cognitive Control 

One question of interest is whether PMDC is capable of fitting the performance data from 

our conflict detection task. Evidence accumulation models have proved useful for understanding 

conflict detection in the past (Neal & Kwantes, 2009; Vuckovic, Kwantes, Humphreys, & Neal, 

2014; Vuckovic, Kwantes, & Neal, 2013), accounting for accuracy and RT, and providing 

sensible psychological interpretations of the effects of manipulations of bias and speed-accuracy 

instructions. However, previous models required task-specific inputs such as relative speed and 

angle of approach, and thus have limited generalizability beyond the specific scenarios on which 

they are trained. Our goal here is a more general model, which requires fitting the model to each 
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individual’s RT distributions and observed responses simultaneously. For the most part, evidence 

accumulation models have only been fit in this way to short time scale decisions (typically < 1 

second), but recent studies have revealed promise for fitting to longer time scale decisions. For 

example, Lerche and Voss (2017) demonstrated good fits of the diffusion decision model to 

decisions with mean RTs over 7 seconds. Further, they found that tests of selective influence 

held, that is, manipulations affected rates where they were expected to (e.g., stimulus quality 

increased rates), and thresholds where they were expected to (e.g., strategy influenced 

thresholds). Palada et al. (2016; 2018) also found that evidence accumulation models (DDM and 

LBA) could fit slow RTs, pass tests of selective influence, and measure various forms of 

cognitive capacity, when fitting performance to a complex dynamic unmanned aerial vehicle 

surveillance task. Thus, we have reasonable grounds to expect that PMDC may fit to our data. 

Providing it can, the way in which it does so can give insight into the latent cognitive control and 

resource allocation mechanisms underlying the data, as we discuss further below.  

Proactive control. We expect that participants will use cognitive control to manage 

demands associated with time pressure, in line with previous modeling of the speed-accuracy 

trade off (e.g., Dutilh, Wagenmakers, Visser, & van der Maas, 2011; Forstmann et al., 2011; 

Usher, Olami, & McClelland, 2002). For example, participants may adjust their ongoing task 

thresholds to avoid hitting trial deadlines under high pressure (i.e., when there is little time 

available per decision), or to take advantage of lax trial deadlines under low pressure (i.e., when 

there is more time available per decision; Ratcliff & Rouder, 1998). Raising thresholds allows 

one to gather more evidence before responding, which results in slower but more accurate 

decisions. Lowering thresholds allows one to spend less time gathering evidence and make faster 

responses at the expense of accuracy. Participants may also adapt to time pressure via control 
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over response bias (i.e., prioritizing one response over another). For example, in air traffic 

control, failing to detect a conflict has far greater safety implications than erroneously classifying 

a non-conflict as a conflict. As such, expert controllers strategically shift bias towards making 

conflict responses under time pressure to ensure aircraft remain separated (Loft, Bolland, 

Humphreys & Neal, 2009). In terms of the model, response bias is reflected in differences in 

thresholds between competing accumulators, whereby responding is biased in favour of the 

accumulator with the lower threshold.  

We also expect to replicate the consistent findings from basic paradigms that individuals 

manage PM task demands by exerting proactive cognitive control over ongoing task thresholds 

(e.g., Heathcote et al., 2015; Strickland et al., 2017, 2018). That is, we expect to find higher 

ongoing task thresholds in PM blocks than in control blocks. Our relatively high PM frequency 

(see further below) may encourage stronger proactive control of ongoing task thresholds than in 

basic paradigms, as may the highly non-focal nature of the PM task. Further, if PM demands do 

decrease ongoing task capacity (also discussed further below), caution may also increase with 

PM to reduce ongoing task errors (as has been recently found with dual-task capacity costs; 

Castro, Strayer, Matzke & Heathcote, submitted).  

The demands associated with time pressure and PM load may interact, leading different 

cognitive control strategies to trade off. For example, when time pressure is low, participants 

have little reason not to increase their ongoing task thresholds in PM blocks, whereas when time 

pressure is high, increasing ongoing task thresholds too much could lead to failing to perform 

responses before the deadline (Palada et al., 2018). Thus, ongoing task thresholds in PM blocks 

should increase more (relative to control blocks) at lower time pressures compared to higher time 
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pressures. Participants may also lower PM thresholds with increased time pressure to ensure that 

a PM response, if appropriate, is made before the response deadline.  

Capacity Sharing.  As with previous work, we examine how task demands affect the 

availability and allocation of resources by comparing ongoing task accumulation rates between 

different experimental conditions. We test for differences in resource availability in terms of the 

quantity (sum of matching and mismatching) of accumulation rates. Quantity reflects the total 

amount of resources deployed by the cognitive system, which might increase and decrease to 

meet task demands. For example, the quantity of available resources may increase as time 

pressure increases. PM load may place demands on the cognitive system similar to time pressure, 

and thus have similar effects on resource availability. In particular, quantity may increase in PM 

blocks if PM load increases the resources needed to perform the task, and perhaps also to 

compensate for PM-induced proactive control over ongoing task thresholds, which makes it 

difficult to respond before trial deadlines. Moreover, ongoing task and PM rates may trade-off 

across different levels of time pressure (i.e., capacity may be shunted from PM to ongoing 

processes as demands increase). Such a trade-off would demonstrate capacity sharing. 

We also compare the quality of evidence accumulation (matching – mismatching 

accumulator ongoing task rates) across PM load and time pressure conditions. Palada et al. 

(2018) found that time pressure could cause a ‘redline’ to be crossed, after which performance 

rapidly degraded. Imposing shorter trial deadlines led to reduced processing quality, which 

participants attempted to compensate for by increasing their rate of information processing (i.e., 

quantity). This suggests that higher time pressure blocks should be more demanding than lower 

time pressure blocks, leading participants to divert resources from lower priority tasks to higher 

priority tasks when under heightened time pressure. PM load may also affect the quality of 
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ongoing task processing. Lower quality processing for ongoing task decisions under PM load 

would indicate that resources are being repurposed from the ongoing task to the PM task. 

Capacity effects may also occur because the PM cues (callsign) in our task are visually separate 

from the stimulus cues relevant to the ongoing conflict detection task (circular icons representing 

aircraft, speed indicator, relative distance of aircraft from the intersection), meaning that 

detecting callsign cues will likely require participants to orient attention away from the visual 

location of the primary task, towards the PM cue.  

In addition to our behavioural measures of quantity and quality, we include subjective 

measures of effort, mental-, and temporal-demand (three subscales of the NASA-TLX; Hart & 

Staveland, 1988). This will let us check whether participants’ subjective experiences of PM 

demands and time pressure align with the resource availability and resource allocation 

mechanisms in our model.  

Reactive control. Trivially, we expect ‘reactive excitation’, in which PM accumulation 

rates are higher to PM items than non-PM items. In addition, previous applications of PMDC 

have found inhibition of ongoing task accumulation rates to PM items. That is, accumulation 

rates for conflict and non-conflict decisions should be lower for PM items, as compared with 

non-PM items from PM blocks. Because reactive control only affects responses to ongoing task 

stimuli when a PM item is present, it does not slow down overall responding very much, and so 

decreasing reactive control with increased time pressure is not likely to much improve the 

probability of meeting response deadlines. Thus, we do not have a strong reason to expect 

different levels of reactive control at different time pressures. 
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Method 

Participants 

Of 49 participants two were excluded (see Results), with 47 participants remaining (31 

females). Participants were recruited from the UWA undergraduate research pool and had no 

prior experience with the air traffic control task. Ages ranged from 18 to 62 years (M = 25.19, 

SD = 9.99). Participants completed one two-hour testing session. All procedures were approved 

by the UWA Human Research Ethics Office. 

Air Traffic Control Conflict Detection Task 

The conflict detection task was designed by Fothergil, Loft and Neal (2009) in 

consultation with subject matter experts using principles of representative design in order to 

balance the competing demands of task fidelity, generality, and experimental control. The task 

has been previously used to develop and test a performance theory and computational model of 

expert conflict detection in air traffic control (Loft et al., 2009) and study PM (Loft, Smith, & 

Bhaskara, 2011). As illustrated in Figure 3, each trial of the conflict detection task presented a 

single pair of aircraft cruising at identical altitudes and converging on a common intersection in a 

fictitious en-route sector. The total area of the airspace was 180 nm (nautical miles) by 112.5 nm. 

Each aircraft had a data block that displayed the callsign, the aircraft type, the flight level, and 

the speed in knots (nautical miles per hour). Aircraft appeared within a circular air traffic control 

sector with a neutral grey background and flew straight paths (indicated by black lines) which 

converged at a 90-degree angle in the centre of the display. Aircraft position was updated every 

20 ms. Participants had no control over the flight levels, velocities, or headings of the aircraft. 

They were required to classify each pair of aircraft as either 'conflict' or 'non-conflict' depending 
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on whether the aircraft would violate a 5 nm minimum separation distance at some point during 

their flight. On some trials one of the two aircraft would also contain a PM target feature which 

required execution of a PM response instead of the conflict or non-conflict ongoing task 

response. Within each trial, pairs of aircraft were presented sequentially; each pair disappearing 

from the screen once a response was made. As shown in Figure 3, the display included a 

countdown timer indicating the seconds remaining in each trial. Trials ended when the timer 

reached zero, after which any remaining aircraft not responded to would disappear and be 

recorded as non-responses. A 10 nm by 20 nm (approximately 2 cm by 4 cm on screen) scale 

marker, used as a reference for judging relative aircraft distance, was fixed on the left side of the 

display. Each aircraft had a probe vector line which showed the aircraft's heading and predicted 

position one minute into the future.  

 
Figure 3. Air traffic control simulator display. Information blocks next to each aircraft show callsign (e.g., 
RHS534), aircraft type (B737), current and cleared altitude (e.g., 308>308), and airspeed (e.g., 57). Note that the 
airspeed indicator omits the ending zero of the true speed (e.g., ‘57’ actually stands for 570 knots). 
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Experimental Stimuli and Design  

Table 1 specifies the range of values for the features of aircraft pairs and the distribution 

they were drawn from. The angle of approach between aircraft was fixed at 90 degrees to avoid 

interactions between angle and perceived conflict status (e.g., Loft et al, 2009; Vuckovic et al, 

2013). The flight level for all aircraft was fixed at 37,000 feet. To create the different conflict 

and non-conflict stimuli, each aircraft pair was assigned a miss distance (dmin: the distance 

between the aircraft at their point of closest approach) either less than or greater than the 5 nm 

separation standard. For conflict stimuli, dmin values were drawn from the uniform distribution 

[0,3] nm. For non-conflict stimuli, dmin values were drawn from the uniform distribution [7,10] 

nm. Because our primary interest here was in stable conflict detection performance, free from 

learning effects, we allowed other aircraft features to vary randomly. These features were speed, 

direction of approach, time to minimum separation (tmin), and order of passing at the crossing 

(i.e., faster aircraft first versus slower aircraft first). This ensured participants could not learn to 

use these features as predictive cues (Bowden & Loft, 2016; Loft, Neal, & Humphreys, 2007; 

Loft, Humphreys, & Neal, 2004). 
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Table 1  

Range of spatial variables of aircraft stimuli 

Spatial variable Lower Upper Units 

dmin (Conflicts) 0 3 nm 

dmin (Non-conflicts) 7 10 nm 

Airspeed 400 700 knots 

Direction of approach 0 360 degrees 

tmin 120 210 seconds 

Order of passing 0 1 0 = fastest first, 1 = slowest first 

 

Aircraft with callsigns containing two of the same letter (e.g., APA169, RTR451) were 

PM targets, thereby emulating the general task demand that operators monitoring perceptually-

demanding displays can face to remember to perform a deferred task action in the future when 

they observe a particular event (Loft, 2014). The PM target is non-focal to conflict detection 

(Einstein & McDaniel, 2005), meaning that the evidence required to make PM decisions (i.e., 

assess aircraft callsign) is not required to make ongoing task conflict/non-conflict decisions (e.g., 

which requires assessing airspeed, relative distance, and position). On PM target trials only one 

of the aircraft on screen ever contained a PM target, never both. Participants were instructed to 

respond to PM targets by pressing an alternate PM key (e.g., ‘j’ or ‘d’) instead of the typical 

ongoing task (conflict/non-conflict) keys.  



24 

 

As illustrated in Table 2, participants performed four sets of trials, each containing a 

block of control trials and a block of PM trials. Block order (control- or PM-first) was 

counterbalanced between participants. In control blocks, participants were presented with a 

randomized sequence of 80 aircraft pairs (40 conflict and 40 non-conflict), with no PM targets. 

In PM blocks, participants were presented with a randomized sequence of 240 aircraft pairs (120 

conflict and 120 non-conflict). Of these, a random 48 (24 conflict and 24 non-conflict) contained 

a PM target. Thus 20% (48/240) of PM block stimuli were PM targets.  

Table 2  

Details of experimental blocks with number of control and PM stimuli presented 

Trial load 
(Decisions per trial) 

Trial duration (s) 
(Overall time available) 

Time pressure (s) 
(Average time available 

per decision) 

Control block 
trials 

PM block 
trials 

2 12 6 80 240 

2 8 4 80 240 

5 20 4 80 240 

5 10 2 80 240 

 

To create time pressure (average available time per conflict detection decision), we 

manipulated trial load (decisions per trial) and trial duration (overall time available to respond to 

all decisions within a trial). Each trial had a load of either 2 or 5 (i.e., 2 or 5 aircraft pairs 

presented) with an associated trial duration (see Table 2). This resulted in 4 unique trial-load by 

trial-duration combinations; one with 6s per decision, two blocks with 4s per decision and one 

block with 2s per decision. Presentation order was counterbalanced across participants. We 

intentionally did not orthogonally cross trial load with trial duration. This was done to ensure 

trial load and trial duration remained at a reasonably engaging level of demand while also not 
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becoming impossibly difficult. Participants were informed of the trial load and trial duration 

prior to each block, giving them opportunity to adjust their strategies accordingly.  

Procedure 

Our primary goal when designing this experiment was to reliably model both ongoing 

task and PM responses in a more complex and dynamic task than is typically used in PM 

research. To this end, our task deviated slightly from traditional PM paradigms. Most PM studies 

conducted using the Einstein and McDaniel (1990) paradigm present only a small number of PM 

targets, and as such they do not produce enough data to reliably constrain a model of PM 

processes. Moreover, because the conflict detection task involves much slower RTs than typical 

laboratory paradigms, we were limited in the number of trials we could present to participants in 

a single 2-hour testing session. As such, we modified the paradigm by increasing the ratio of PM 

target trials to ongoing task trials to 1 in 5 trials (i.e., 20% of PM block stimuli were PM targets). 

This gives us more PM trials, which serve to reliably constrain our model, and increase the 

accuracy and precision of model fitting.  

Each testing session consisted of a training phase and a test phase with total duration of 2 

hours. During training participants received verbal task instructions, watched an on-screen 

demonstration, and completed a block of 40 training trials which included feedback after each 

response. PM targets were not included in training. During the experimental phase participants 

completed eight blocks of experimental trials, which did not include feedback. 

Participants responded to each aircraft pair by pressing the conflict key or the non-

conflict key. Participants were told that each aircraft pair would be presented sequentially (i.e., 

only two aircraft would appear on screen at a time), that all aircraft would be moving towards 

each other on converging flight paths which crossover in the centre of the display, and that a 
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number of spatial properties of the aircraft would vary from trial to trial, including their starting 

distance from the central crossing point, relative speed, and miss distance. Before each block of 

trials, participants saw visual instructions reminding them of the trial load and trial duration for 

that block. Depending on the block, participants received either control or PM instructions. 

Before control blocks, participants were instructed that they only needed to make conflict and 

non-conflict responses. Before PM blocks, participants were instructed to press a PM response 

key instead of the conflict or non-conflict keys when they detected a PM target. Participants then 

completed a short distractor task and saw a final reminder to respond as quickly and accurately 

as possible before commencing the block.  

Four response key assignments were counterbalanced across participants; 1) s = conflict, 

d = non-conflict, j = PM, 2) d = conflict, s = non-conflict, j = PM, 3) k = conflict, j = non-

conflict, d = PM, and 4) j = conflict, k = non-conflict, d = PM. So that we could assume equal 

motor response time in our modeling (see Voss, Voss, & Klauer, 2010), participants were 

instructed to rest their fingers on their particular response key combination throughout the task. 

A screen with the text 'Press [Space] to continue' preceded each trial, and each trial began once 

the space-bar was pressed.  

Trials ended when either all aircraft pairs had been responded to (2 pairs during blocks of 

low-load trials; 5 pairs during blocks of high-load trials) or when the response deadline expired 

(i.e., the timer reached zero). Aircraft pairs not responded to within the response deadline were 

recorded as non-responses. Participants were informed that conflict detection misses (responding 

non-conflict to conflict), conflict detection false alarms (responding conflict to non-conflict), PM 

misses (failing to make a PM response to a PM target), PM false alarms (making a PM response 

to a non-target), and non-responses, would be penalized equally. Aside from the training trials, 
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no further feedback was given concerning task performance. Participants took self-paced breaks 

between each block of trials and were also permitted short breaks at any point between trials if 

required. Subjective task demand after each block was assessed using the NASA Task Load 

Index (Hart & Staveland, 1988). The NASA-TLX comprises six items: three that tap task 

demand (i.e., mental, physical, and temporal demand) and three which tap the individual's 

subjective perception of exertion and task performance (i.e., performance, effort, and 

frustration). Each item is rated on a 21-point numerical scale, with higher scores being indicative 

of higher workload.  

 

Results 

Conventional statistical analyses are reported first in order to check whether our 

experimental manipulations had the expected effects on RT, accuracy, and non-response (miss) 

rate. Data from two participants was excluded; one participant who failed to complete all 

experimental blocks and one who made no PM responses at all. We excluded trials with outlying 

RTs, defined as less than 0.2s or 3 times the inter-quartile range / 1.349 (a robust measure of 

standard deviation) above the mean (1.52% of responses overall). Outliers were censored 

separately for each different time pressure condition. Overall, 6.3% of the data comprised non-

response misses, ranging from 2.5% in the lowest time pressure condition, to 14.8% in the 

highest. Two kinds of extremely rare responses – incorrect ongoing task responses to PM items 

(1.5% of PM block responses), and PM responses to control-block ongoing-task stimuli (0.4% of 

all responses) – are not analysed further. The conventional statistical analyses compare mean 

accuracy and RT by stimulus type (conflict, non-conflict, PM) PM block (control, PM) and time 

pressure. Because trial load and trial duration were not crossed orthogonally, time pressure is 
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compared separately for each level of trial load. That is, at low trial load (2 decisions per trial) 

we compare time pressures of 6 and 4 seconds per decision, and at high trial load (5 decisions 

per trial) we compare time pressures of 4 and 2 seconds per decision.  

In our significance testing for accuracy effects we used generalized linear mixed models 

with a probit link function. In our significance testing for mean correct RTs we used general 

linear mixed models.3 Analyses were conducted using the R package lme4 (Bates, Machler, 

Bolker, & Walker, 2015), and significance assessed with Wald's chi-square tests (Fox & 

Weisberg, 2011), using an alpha level of 0.05. Post hoc tests applied Bonferroni’s correction for 

alpha inflation. The results of our analyses are tabulated in the supplementary materials (Tables 

S1-S4). All standard errors reported in text and displayed in graphs were calculated using the 

within-subject bias-corrected method (Morey, 2008). 

Conflict Detection (Non-PM) Trials 

Accuracy was lower for conflicts (67.4%) compared with non-conflicts (80.6%) and 

slightly lower under PM load compared with control (Control: M = 74.9%, SE = 3.2%; PM: M = 

73.1%, SE = 3.3%). Conflict detection accuracy decreased as time pressure increased, under both 

low trial-load (6s: M = 76.9%, SE = 2.7%; 4s: M = 74.8%, SE = 2.7%) t = 2.60, df = 46, p = .012, 

 
3 We used two methods of analysis to check that the inferences derived from each method agreed. For our accuracy 
analyses, we compared a binomial model with a probit link function on accuracy to a binary logistic regression 
model. The inferences derived from both methods were the same. For our RT analyses, we compared a Gaussian 
model on mean RT to a Gaussian model on the logarithm of raw RT, the latter having more statistical power than 
the former. The inferences derived from both were the same. The log(RT) method revealed two interactions 
(stimulus by PM block, and time pressure by PM block) on RT that were not present in the less powerful mean RT 
model, but because these effects were small and not of theoretical importance we report the mean RT analysis. 
Visual inspection of residual plots revealed that residuals were approximately normally distributed for accuracy, 
mean RT, and log(RT) models. 
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Cohen’s d = 0.38, and high trial-load conditions (4s: M = 75.7%, SE = 2.5%; 2s: M = 68.6%, SE 

= 2.6%) t = 7.82, df = 46, p < .001, d = 1.14. Conflict detection accuracy was not significantly 

affected by trial load when comparing cells with equal time pressure. There was a significant 

interaction between PM block and time pressure on accuracy, such that the cost to PM block 

accuracy was greatest when trial load and time pressure were also high (Control: M = 70.9%, SE 

= 2.1%; PM: M = 66.3%, SE = 2.5%), t = 4.25, df = 46, p < .001, d = 0.62.   

Mean RT was slower for conflicts (3.09s) compared with non-conflicts (2.75s), slower 

for errors (2.99s) compared with correct responses (2.91s), and slower during PM blocks than 

control blocks (Control: M = 2.65s, SE = 0.17s; PM: M = 3.07s, SE = 0.17s). Mean RTs were 

significantly faster under higher time pressure for both low trial-load (6s: M = 3.65s, SE = 0.14s; 

4s: M = 2.80s, SE = 0.08s) t = 7.14, df = 46, p < .001, d = 1.04, and high trial-load conditions (4s: 

M = 2.95s, SE = 0.10s; 2s: M = 2.04s, SE = 0.07s) t = 12.26, df = 46, p < .001, d = 1.79. Mean 

RTs were also slower under high trial load compared with low trial load when comparing cells 

with equal time pressure, t = -2.17, df = 46, p = .035, d = 0.32, although this effect was small. 

There was no significant interaction between PM block and time pressure on mean RT. 

To summarize, the addition of PM load resulted in slower (Mean Difference = 0.42s) and 

slightly less accurate (Mean Difference = 1.8%) ongoing conflict detection task performance, 

while increased time pressure led to faster (Mean Difference = 0.88s) but less accurate (Mean 

Difference = 4.6%) ongoing conflict detection task performance. 

PM Trials 

PM responses were scored correct if the participant made a PM response instead of an 

ongoing task (conflict/non-conflict) response on PM target trials. PM accuracy decreased as time 

pressure increased during both low trial-load (6s: M = 81.7%, SE = 1.8%; 4s: M = 74.1%, SE = 
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2.1%) t = 3.19, df = 46, p = .003, d = 0.47, and high trial-load conditions (4s: M = 73.8%, SE = 

1.9%; 2s: M = 58.6%, SE = 2.7%) t = 4.94, df = 46, p < .001, d = 0.72. PM accuracy was not 

significantly affected by trial load when comparing cells with equal time pressure. PM accuracy 

was weakly positively correlated with ongoing task accuracy (r = .21, p < .001).4 

Mean RT was slower for PM errors (2.73s) compared with correct PM responses (1.77s) 

(in PM blocks). Mean RT for correct PM responses was significantly faster at higher levels of 

time pressure during both low trial-load (6s: M = 2.00s, SE = 0.05s; 4s: M = 1.78s, SE = 0.05s) t 

= 3.96, df = 43, p < .001, d = 0.60, and high trial-load conditions (4s: M = 1.89s, SE = 0.05s; 2s: 

M = 1.58s, SE = 0.05s) t = 6.40, df = 44, p < .001, d = 0.95. PM RTs were slower under high trial 

load compared with low trial load when comparing cells with equal time pressure, t = -2.13, df = 

43, p = .039, d = 0.32, although this was a relatively small effect. There were no significant 

differences in PM accuracy or PM RT between conflict PM targets and non-conflict PM targets. 

PM false alarms (i.e., PM responses to non-PM stimuli in PM blocks) occurred on 0.56% of PM 

block trials with a mean RT of 2.45s. Mean PM RT was moderately positively correlated with 

mean ongoing task RT (r = .48, p < .001). To summarize, as with the ongoing task, increased 

time pressure led to faster (Mean Difference = 0.27s) but less accurate PM performance (Mean 

Difference = 11.4%). 

 
4 The correlation between ongoing task and PM accuracy is consistent with the strong role of proactive control 
(discussed below) over ongoing task thresholds in PM blocks in this study (i.e., higher thresholds lead to both higher 
ongoing task accuracy and higher PM accuracy). The correlation between ongoing task and PM RT is likely due to 
individual differences in response caution, or statistical facilitation (i.e., slower PM accumulators win more 
frequently against slower ongoing task accumulators). 
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Non-responses 

We ran a linear mixed effects model (Table S6 in the supplementary materials) to 

examine the effects of PM block and time pressure on non-response (miss) proportions (non-

responses included non-responses to PM and ongoing task stimuli). Non-responses were slightly 

more frequent in PM blocks compared with control (Control: M = 5.8%, SE = 1.6%; PM: M = 

5.9%, SE = 1.8%), and became more frequent as time pressure increased during both low trial-

load (6s: M = 2.2%, SE = 1.0%; 4s: M = 4.4%, SE = 0.9%) t = 2.71, df = 46, p = .009, d = 0.4, 

and high trial-load conditions (4s: M = 3.0%, SE = 0.8%; 2s: M = 13.8%, SE = 1.7%) t = 6.29, df 

= 46, p < .001, d = 0.92. The proportion of non-responses was not significantly affected by trial 

load when comparing cells with equal time pressure, t = -1.89, df = 46, p = .07, d = 0.28. There 

was a significant interaction between PM block and time pressure on non-responses, such that 

the increase in non-responses from control to PM blocks was greatest when trial load and time 

pressure were both high (Control: M = 12.0%, SE = 1.4%; PM: M = 14.7%, SE = 1.7%), t = 2.17, 

df = 46, p = .04, d = 0.32. This suggests a drawback of using the proactive control strategy under 

high time pressure. That is, higher ongoing task thresholds caused decisions to exceed the trial 

deadline more often, resulting in more non-responses to ongoing task stimuli. 

NASA-TLX Demand Ratings 

We ran a linear mixed effects model (Tables S7-S9 in the supplementary materials) to 

examine the effects of PM block and time pressure on self-report effort, mental-, and temporal-

demand ratings. Effort was significantly higher in PM blocks than control blocks (Control: M = 

12.08, SE = 0.68; PM: M = 13.50, SE = 0.71). Effort was also higher in high time pressure blocks 

during both low trial-load (6s: M = 11.38, SE = 0.57; 4s: M = 13.13, SE = 0.52) t = 2.80, df = 46, 

p = .007, d = 0.41, and high trial-load conditions (4s: M = 11.48, SE = 0.51; 2s: M = 15.18, SE = 
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0.46) t = 6.93, df = 46, p < .001, d = 1.01. Effort was lower during high trial load compared with 

low trial load when comparing cells with equal time pressure, t = 2.93, df = 46, p = .005, d = 

0.43. There was no interaction between PM block and time pressure on effort.  

Similarly, mental demand was significantly higher in PM blocks than control blocks 

(Control: M = 12.31, SE = 0.57; PM: M = 14.60, SE = 0.58). Mental demand was also higher at 

higher levels of time pressure during both low trial-load (6s: M = 12.47, SE = 0.48; 4s: M = 

13.41, SE = 0.39) t = 2.16, df = 46, p = .036, d = 0.31, and high trial-load conditions (4s: M = 

12.35, SE = 0.44; 2s: M = 15.60, SE = 0.51) t = 6.55, df = 46, p < .001, d = 0.96. Mental demand 

was lower during high trial load compared with low trial load when comparing cells with equal 

time pressure, t = 2.78, df = 46, p = .008, d = 0.41. There was no interaction between PM block 

and time pressure on mental demand.  

Temporal demand was significantly higher in PM blocks than control blocks (Control: M 

= 11.75, SE = 0.82; PM: M = 13.37, SE = 0.97). Temporal demand was also higher at higher 

levels of time pressure during both low trial-load (6s: M = 9.48, SE = 0.56; 4s: M = 13.15, SE = 

0.56) t = 6.02, df = 46, p = < .001, d = 0.88, and high trial-load conditions (4s: M = 10.61, SE = 

0.61; 2s: M = 17.01, SE = 0.54) t = 9.80, df = 46, p < .001, d = 1.43. Temporal demand was 

lower during high trial load compared with low trial load when comparing cells with equal time 

pressure, t = 3.58, df = 46, p = .001, d = 0.52. There was no interaction between PM block and 

time pressure on temporal demand. Taken together, the effort, mental-, and temporal-demand 
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findings give us confidence that our PM and time pressure manipulations were effective at 

inducing different levels of subjective task demand.5  

Model Analysis 

Our design includes several factors over which model parameters can vary, including 

latent response (i.e., conflict, non-conflict, and PM accumulators), and three manifest factors, 

stimulus type, time pressure/trial load, and PM demand. The latent response factor refers to the 

accumulators that can lead to each response (conflict, non-conflict, PM). The latent response 

factor corresponds to the accumulators, and not the response that was actually observed; the 

observed response is predicted by, not included in, the model. The stimulus type factor had four 

levels: non-PM conflict, non-PM non-conflict, PM conflict, and PM non-conflict. Since the trial-

load (2 versus 5 decisions per trial) and task-duration factors were not crossed orthogonally, they 

were captured by a four-level composite factor created by manipulating trial load and trial 

duration with the following levels: 6s per decision (2 decisions per trial), 4s per decision (2 

decisions per trial), 4s per decision (5 decisions per trial), 2s per decision (5 decisions per trial). 

The PM demand factor had two levels: control (i.e., no PM demand) and PM. 

To reduce model complexity, we applied several theoretically sensible a priori 

constraints on which factors each parameter could vary. First, we estimated one common A 

parameter for all accumulators and conditions, as is common practice in LBA modeling. Second, 

 
5 The correlations between the subjective effort ratings and various model parameters (e.g., rate quality and 
quantity) were small (r = 0.1-0.2) and mostly non-significant, but trended in sensible directions (i.e., rate quantity 
was positively correlated with effort, rate quality was negatively correlated with effort). The lack of statistical 
significance was likely due to the sample size and coarse nature of the self-report effort ratings. 
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we allowed the sv parameter to vary by stimulus and accumulator factors but not over PM block 

or time pressure. This is more flexible than most previous LBA modeling, which typically only 

allows sv to vary as a function of whether the latent accumulator matches or does not match the 

stimulus6 (but see Heathcote & Love, 2012; Osth, Bora, Dennis, & Heathcote, 2017; Strickland 

et al., 2018, for exceptions). We used this more flexible approach because in our model there are 

two types of 'correct' response for PM trials (i.e., correct PM and correct ongoing task decision). 

We fixed the sv parameter for PM false alarms (i.e., 'PM' responses to non-PM stimuli) at 0.5, 

because one accumulator parameter must be fixed to an arbitrary value as a scaling parameter 

(Donkin, Brown, & Heathcote, 2009).  

Third, we estimated only one non-decision time (ter) parameter for each participant. This 

was done because our design minimized any potential differences in the motor movement 

required to make each response (i.e., participants kept their fingers positioned above the response 

key which were all located on one keyboard row). In addition, previous research has shown non-

decision time does not play a role in PM cost for the LBA (e.g., Anderson et al., 2018; Heathcote 

et al., 2015; Strickland et al., 2017, 2018). Finally, due to very low numbers of PM false alarms 

(PM responses to non-PM stimuli in PM blocks) we pooled estimates of both accumulation rate 

and variance (v and sv) across all experiment factors to give one PM false alarm rate and one 

corresponding sv parameter (which was used as a fixed scaling parameter as mentioned above). 

These a priori restrictions resulted in an 89 parameter most flexible 'top' model with one A, one 

 
6 We also fit a version of the model with only one sv parameter. This model had fewer parameters (75), produced 
visually similar fits, and either preserved or exaggerated the direction of all effects found in the more flexible model. 
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ter, 20 B, 57 v, and 10 sv parameters. We compared this flexible top model against several 

simpler, more constrained variants as outlined in the Model Selection section below. 

Sampling 

We estimated model parameters using the DMC software (Heathcote, et al., 2018) to 

perform Bayesian estimation, which results in probability distributions that reflect the certainty 

about parameter values. Although in principle we could have fit a hierarchical model to estimate 

the common population distributions of each parameter, we estimated parameters separately for 

each participant for several reasons. First, since this is the first time that such a model has been 

fit to this kind of task, we did not have adequate knowledge of the appropriate form of the 

population-level distributions. Because inappropriate population-level assumptions can introduce 

inappropriate shrinkage effects in hierarchical models, fitting to individual participants avoids 

such issues. Second, because of the large number of participants in our sample and the 

complexity of our models, hierarchical methods proved too computationally expensive to fit 

(estimated at several months of multi-core server time per fit). 

Bayesian analysis requires that the researcher specify prior beliefs about the probabilities 

of parameters and the form of their distributions before observing the data. However, because of 

our large sample sizes and use of inference based on posterior probability distributions, the 

influence of our particular choice of priors on the final parameter estimates was negligible. Since 

these analysis techniques have not been used on a dynamic complex task, we did not have strong 

reasons to prefer one particular set of priors over others. We used relatively non-informative 

priors similar to Strickland et al. (2018), but with higher threshold priors to account for our 

slower mean RTs (Table 3). All prior values were the same over control and PM blocks and the 

different levels of time pressure. 
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Posterior parameter distributions were estimated using the differential evolution Markov-

chain Monte-Carlo (DE-MCMC) algorithm (Turner, Sederberg, Brown, & Steyvers, 2013). DE-

MCMC is more adept than conventional samplers at handling the high parameter correlations 

common to accumulate-to-threshold models. The number of chains was three times the number 

of parameters (e.g., for an 84-parameter model there were 252 chains per parameter). Chains 

were thinned by 20, meaning that one iteration in every 20 was kept. Sampling continued for 

each participant until a small Gelman's (2014) multivariate potential scale reduction factor (<1.1) 

indicated convergence, stationarity, and mixing. Convergence, stationarity, and mixing were 

verified by visual inspection. We retained the same number of samples for each participant: each 

of the 252 chains was 120 iterations long, producing 30,240 samples of each parameter's 

posterior distribution for each participant. 

Table 3 

Prior distributions 

Parameter Distribution Mean SD Lower Upper 

A Truncated normal 3 1 0 10 

B Truncated normal 2 1 0 None 

v (Matching ongoing task response) Truncated normal 1 2 None None 

v (Mismatching ongoing task response) Truncated normal 0 2 None None 

v (PM hit) Truncated normal 1 2 None None 

v (PM false alarm) Truncated normal 0 2 None None 

sv Truncated normal 0.5 1 0 None 

t0 Uniform  1 0.1 1 
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Model Results 

Model Fits: Accuracy and RT 

To evaluate fit, we sampled 100 posterior predictions for each participant and then 

averaged over participants. The model provided good fits to both ongoing task and PM accuracy 

(Figures S1-S2 in the supplementary materials) and gave a good account of the entire distribution 

of response times (Figures S3-S5). The model provided a close fit to the differences in manifest 

accuracy and RT observed across PM and control blocks and across different time pressures.  

Model Fits: Non-response Proportions 

As noted earlier, our data contained significant differences in non-response proportions 

between time pressure blocks. Because non-responses were not included in model fitting, this 

gave us an opportunity to test PMDC’s consistency with unseen data. That is, we assessed how 

well the model could make out-of-sample predictions of empirical non-response proportions. In 

order to do this, we simulated data out of the selected model (see Table 4) and matched the order 

of the simulated stimuli and responses to the actual presentation order experienced by each 

participant (this was done to ensure that the simulated trials had the same stimulus-response 

content as the empirical trials). Whenever the cumulative sum of simulated RTs within a trial 

exceeded that trial's deadline, a non-response was predicted. Using this method, 100 posterior 

predictions for non-response proportions were sampled for each participant and predictions were 

then averaged over all participants. We then compared the predicted non-responses with 

observed non-response proportions across the different levels of time pressure (i.e., different 

response deadlines) for both low and high trial-load conditions in control and PM blocks. Figure 

4 shows observed versus predicted non-response proportions. Predicted non-response 
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proportions closely match the empirical non-response proportions, demonstrating the ability of 

the model to predict data out of sample.  

 

Figure 4. Model fits to non-response proportions by PM block and time pressure. Data effects are represented by 
unfilled circles. Model predictions are represented by filled circles with 95% credible intervals. 
 
 

Model Selection 

We applied model selection to assess whether we could justify constraining model 

parameters over blocked experimental conditions (e.g., PM block, time pressure) to obtain a 

simpler model with fewer parameters. To select between models, we used the Deviance 

Information Criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002), a measure 

which considers both goodness of fit and model complexity (number of parameters). In general, 
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models with smaller DIC values are to be preferred. Table 4 shows each model we compared, its 

number of parameters, and DIC value. 

 

Table 4 

DIC model selection. Lower DIC indicates more preference for the model. 

Model Parameters DIC DIC – minimum DIC 

Top model 89 187068 976 

Selected model 84 186092 0 

Thresholds fixed over PM block 81 190690 4598 

Rates fixed over PM block 73 188370 2278 

Thresholds fixed over time pressure 74 190640 4548 

Rates fixed over time pressure 47 190742 4650 

 

Starting with the fully flexible top model, we built several simpler variants by 

systematically constraining ongoing task threshold and ongoing task rate parameters over PM 

and time pressure. This allowed us to assess whether it was necessary to vary ongoing task 

thresholds and/or rates to account for the observed PM demand and time pressure effects (i.e., to 

test whether proactive control and/or capacity-sharing were necessary mechanisms in the model). 

PM thresholds and rates were left free. We compared the following four constrained models to 

the top model: a model in which rates could vary across PM and control blocks but thresholds 

could not; a model in which thresholds could vary across PM and control blocks but rates could 

not; a model in which rates could vary by time pressure but thresholds could not; and a model in 

which thresholds could vary by time pressure but rates could not. 
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As Table 4 shows, in each case the simpler model was rejected in favour of the fully 

flexible top model, suggesting that it is necessary to allow both ongoing task threshold and 

ongoing task rate parameters to vary over PM and time pressure (i.e., both parameters are 

influenced by PM and time pressure manipulations and are important in explaining the observed 

data). 

Finally, we tested an additional model (the selected model) that, like the top model, 

allowed both rates and thresholds to vary over both PM and time pressure but included a slight 

simplification: the PM rate parameter was constrained to not vary over stimulus type (i.e., PM 

conflicts and PM non-conflicts had the same rate). This simplification makes theoretical sense, 

since the evidence used to make a PM decision was independent of the evidence used to make 

either conflict or non-conflict ongoing task decisions. This slightly simpler model produced the 

smallest DIC value and was thus selected as our preferred model for further analysis. 

The results of model selection suggest that both rates and thresholds have some role in 

explaining ongoing task and PM accuracy and RT under different levels of PM demand and time 

pressure. However, we wanted to further break down how each part of the model contributes to 

observed accuracy and RT. To this end, in the next section we test the direction and magnitude 

of differences between conditions in the parameters of the selected model. Testing the direction 

of effects is important because it allows us to identify how cognitive control and resource 

allocation mechanisms contribute to performance, and thus to distinguish between competing 

theories of PM and task demand, whose predictions are also directional (e.g., capacity-sharing 

theories predict lower rates in PM blocks than in control blocks). Testing the magnitude of 

effects is similarly important, as it indicates which processes contribute the most to a given effect 
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(such as costs to accuracy and RT) and which are most affected by a given experimental 

manipulation (such as time pressure). 

Model Summary 

To summarize the parameters of the group of participants, we created a subject-average 

posterior distribution. This was obtained by computing the mean of each posterior sample over 

all participants for each parameter. Our primary theoretical interest was in threshold and rate 

parameters for the ongoing and PM tasks, which we explore in detail in the following sections. 

The other parameters all had reasonable values. The non-decision time mean of the subject-

average posterior distribution was 0.35 seconds (posterior SD = 0.01 seconds). The A posterior 

mean was 3.34 (posterior SD = 0.04). The sv posterior means and SDs are summarized in Table 

5. Consistent with other LBA studies, sv parameters for the ongoing task are lower for matching 

response accumulators compared with mismatching response accumulators when it was a non-

PM stimulus. For PM stimuli there was little difference in sv between accumulators. The 

accumulation rate for PM false alarms was -1.30 (posterior SD = 0.05).  

Table 5 

Mean (SD) of the average posterior sv parameter samples 

 Stimulus 

Accumulator Conflict Non-conflict PM (Conflict) PM (Non-conflict) 

Conflict 0.35 (0.01) 0.54 (0.01) 0.52 (0.02) 0.59 (0.03) 

Non-conflict 0.53 (0.01) 0.46 (0.01) 0.53 (0.03) 0.63 (0.02) 

PM Fixed at 0.5 1.14 (0.03) 
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The direction and magnitude of differences in ongoing and PM threshold and rate 

parameters for the selected model across conditions were examined to assess how well they 

correspond to the theoretical predictions of capacity sharing, proactive control, reactive control, 

and arousal/availability. We calculated posterior distributions of the differences between 

experimental conditions. For example, to test the difference between ongoing task response 

thresholds in control and PM blocks (i.e., testing the proactive control account of PM costs), we 

subtracted the control block threshold from the PM block threshold for every posterior sample, 

thus obtaining the posterior probability distribution of the difference between control and PM 

thresholds. Differences were calculated independently for each participant before being averaged 

across participants to create a subject-averaged posterior difference distribution. For each 

subject-averaged difference distribution we report a Bayesian p-value (Klauer, 2010), which 

indicates the one-tailed probability that the effect does not run in the most sampled direction. 

Due to the large number of trials per participant in our design, almost all our observed 

parameter differences have p-values very close to zero, indicating a very high probability that an 

effect was present. However, some of our parameter differences were much larger in magnitude 

than others. As such, we illustrate the magnitude of the effect by reporting the standardized 

difference between parameters (i.e., M / SD of the posterior difference distribution). Because our 

posterior parameter distributions are approximately normal, this standardized statistic can be 

interpreted in a similar way to a Z-score. We therefore refer to this statistic as Z from here on. Z-

score effect sizes and p-values for parameter comparisons are shown in Tables S10-S19 in the 

supplementary materials. 
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Proactive Control of Thresholds under Time Pressure and PM Demand 

Figure 5 (top panel) compares ongoing task thresholds across control and PM blocks for 

each time pressure condition (averaged over accumulators). Consistent with proactive control, 

ongoing task thresholds were higher in PM than control blocks for both conflict (Z = 35.80, p < 

.001) and non-conflict (Z = 44.32, p < .001) accumulators. In both control and PM blocks, 

average ongoing task thresholds decreased as time pressure increased, under both low trial-load 

(Control: Z = 3.09, p = .001; PM: Z = 7.16, p < .001) and high trial-load (Control: Z = 4.33, p < 

.001; PM: Z = 21.34, p < .001) conditions. Average ongoing task thresholds were also slightly 

lower in high trial-load compared to low trial-load conditions when comparing cells with equal 

time pressure (Control: Z = 2.84, p = .002; PM: Z = 3.33, p < .001). These effects suggest that 

participants adapt to PM and time pressure demands by making a priori threshold adjustments, 

consistent with proactive control.  

PM-induced proactive control of ongoing task thresholds interacted with time pressure. 

Specifically, the magnitude of ongoing task threshold adjustments between control and PM 

blocks got smaller as time pressure increased. As shown in the top panel of Figure 5, the average 

size of PM block-control block threshold differences decreased under high time pressure relative 

to low time pressure during both low trial-load (Z = 2.67, p = .004) and high trial-load (Z = 

12.38, p < .001) conditions. The magnitude of PM block-control block ongoing task threshold 

differences was not significantly affected by trial load when comparing cells with equal time 

pressure (Z = 0.25, p = .40).  
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Figure 5 (bottom panel) shows PM thresholds under different levels of time pressure for 

low trial-load (2 decisions per trial) and high trial-load (5 decisions per trial) conditions. PM 

thresholds decreased under high time pressure relative to low time pressure during both low trial-

load (Z = 7.98, p < .001) and high trial-load (Z = 8.64, p < .001) conditions, but did not differ 

significantly by trial load when comparing cells with equal time pressure (Z = -0.73, p = .23). 

Overall, these shifts in PM thresholds with time pressure are consistent with prior modeling of 

 
Figure 5. Average ongoing task and PM thresholds by time pressure and PM block. Central symbols represent 
posterior means. Error bars represent +/- 1 posterior standard deviation. 
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the speed-accuracy trade-off and support a proactive control account in which thresholds are 

strategically lowered to facilitate fast responding at the expense of accuracy. 

Proactive Control of Response Bias under Time Pressure 

Figure 6 plots response threshold bias (i.e., the difference between conflict and non-

conflict thresholds) by time pressure. The dotted horizontal line represents the zero-bias point; 

the point where conflict and non-conflict thresholds are equal. Values above the zero-line 

indicate that non-conflict thresholds were lower than conflict thresholds (i.e., a bias toward 

responding 'non-conflict'). Likewise, values below the zero-line indicate that conflict thresholds 

were lower than non-conflict thresholds (i.e., a bias toward responding 'conflict'). Response bias 

tended to shift from favouring non-conflict responses under lower levels of time pressure to 

favouring conflict responses when time pressure is higher during PM blocks. This occurs under 

both low trial-load (Z = 1.76, p = .04) and high trial-load (Z = 2.07, p = .02) conditions. The 

same trend occurred (i.e., increased bias towards responding 'conflict') during control blocks but 

did not reach significance. Figure 6 shows that the same trend occurred from control blocks to 

PM blocks, suggesting the additional demands of the PM task also led to a shift in bias. Overall, 

this indicates that as task demands increase, participants tended to set lower conflict thresholds 

relative to non-conflict thresholds, although we note that these effects were relatively small. This 

strategy facilitates faster conflict responses and helps ensure that conflicts are not mis-

categorised as non-conflicts but increases the frequency of conflict false alarms (i.e., ‘conflict’ 

responses to non-conflicts).  
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Capacity Sharing (Resource Quantity and Quality) 

Quantity. As can be seen in Figure 7 (top panel), ongoing task rates increased as time 

pressure increased. To assess changes in processing quantity with time pressure, we compared 

the summed total of matching and mismatching ongoing task rates in lower time pressure blocks 

with the summed total of matching and mismatching rates in higher time pressure blocks. The 

total processing quantity (matching + mismatching rates) increased from lower to higher time 

pressure blocks under both low trial-load (Conflicts: Z = 19.94, p < .001; Non-conflicts: Z = 

16.24, p < .001), and high trial-load conditions (Conflicts: Z = 31.10, p < .001; Non-conflicts: Z 

 
Figure 6. Ongoing task threshold bias by time pressure. Central symbols represent posterior mean difference 
between conflict and non-conflict thresholds. Error bars represent +/- 1 posterior standard deviation. Dotted 
horizontal line represents the zero-bias point (i.e., equal thresholds). Above the zero-line indicates lower non-
conflict than conflict thresholds. Below indicates lower conflict than non-conflict thresholds. 
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= 24.76, p < .001). Total accumulation decreased, however, from low to high trial load when 

comparing cells with equal time pressure (Conflicts: Z = -7.83, p < .001; Non-conflicts: Z = -

6.20, p < .001).   

 

We also examined the effects of PM demands on ongoing task processing quantity. The 

total amount of available ongoing task resources (matching + mismatching rates) increased from 

control to PM blocks (Conflicts: Z = 19.58, p < .001; Non-conflicts: Z = 13.99, p < .001), 

indicating that more resources were deployed under PM demand. Overall, this indicates that PM 

 
Figure 7. Average ongoing task and PM accumulation rates by time pressure and PM block. Central symbols 
represent posterior means. Error bars represent +/- 1 posterior standard deviation. 
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demands and greater time pressure led to greater resource availability; participants deployed 

more resources under PM load, and as the time available to complete the task decreased.  

In contrast to the quantity of ongoing task accumulation rates, rates for the PM 

accumulator decreased with time pressure under both low trial-load (Z = -3.78, p < .001) and 

high trial-load (Z = -3.62, p < .001) conditions, as can be seen in Figure 7 (bottom panel). PM 

accumulation rates tended to be lower during high versus low trial load when comparing cells 

with equal time pressure, although this trend did not reach significance (Z = -1.34, p = .09). This 

indicates a trade-off in how resources are allocated or shared between the ongoing and PM tasks, 

which is affected by changes in time pressure. Specifically, as the ongoing task uses more 

resources to compensate for additional time pressure demands, it usurps resources that would 

have otherwise been allocated to the PM task.  

Quality. To test for changes in processing quality at different levels of time pressure, we 

compared the difference between matching and mismatching ongoing task rates in lower time 

pressure blocks with the difference between matching and mismatching rates in higher time 

pressure blocks. Figure 7 (top panel) shows rates for ongoing task stimuli (i.e., conflicts and non-

conflicts that were not PM targets) across different levels of time pressure. With the exception of 

low trial-load conflicts, the quality of ongoing task processing was poorer in higher time pressure 

blocks compared with lower time pressure blocks during both low trial-load (Conflicts: Z 

= -1.24, p = .11; Non-conflicts: Z = -5.99, p < .001), and high trial-load conditions (Conflicts: Z 

= -6.55, p < .001; Non-conflicts: Z = -7.85, p < .001). Increased time pressure, therefore, reduced 

the quality of ongoing task processing. Processing quality improved, however, from low to high 

trial load when comparing cells with equal time pressure (Conflicts: Z = 2.04, p = .021; Non-

conflicts: Z = 3.03, p = .001).  
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We also tested how ongoing task processing quality varies with PM demands. Consistent 

with a capacity-sharing effect, the difference between matching and mismatching rates was 

smaller under PM load compared with control (Conflicts: Z = -7.63, p < .001; Non-conflicts: Z = 

-5.80, p < .001). That is, the quality of ongoing task processing was poorer in PM blocks 

compared with control. There was no significant interaction between time pressure and PM block 

on ongoing task processing quality.   

Taken together, these results are indicative both of an overall increase in the quantity of 

available resources under time pressure and PM demand, and a degradation in processing quality 

under time pressure and PM demand. Increasing time pressure produced a decrease in processing 

quality, which individuals compensated for by increasing the overall rate of information 

processing (i.e., by working faster). PM load produced similar effects consistent with resource 

demands: poorer quality processing under PM load, accompanied by an increase in processing 

quantity. Increasing processing quantity under PM load may have also served to compensate for 

the slowing associated with higher ongoing task thresholds in PM blocks. We found that higher 

ongoing task demand led to larger ongoing task quantity but less PM accumulation. This trade-

off between ongoing task and PM rates across time pressure conditions demonstrates capacity 

sharing. That is, individuals shared resources between the ongoing and PM tasks as time pressure 

increased (i.e., when the available resources were insufficient to compensate for the increased 

time-pressure demands). The effects of PM load and time pressure on the ongoing task are thus 

both consistent with a capacity-sharing/resource account.  

Reactive Control (PM versus Non-PM Trial Accumulation) 

Previous PMDC modeling found ongoing task rates to be lower on PM trials than on non-

PM trials due to reactive or stimulus-driven inhibitory control by the PM stimulus detector. 
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Figure 8 shows rates for ongoing task stimuli that did, and did not, contain a PM target. 

Consistent with previous results, ongoing task rates were lower for stimuli containing a PM 

target compared with stimuli that did not contain a PM target (Conflicts: Z = 13.36, p < .001; 

Non-conflicts: Z = 13.04, p < .001). This supports the idea that, when the PM detector identifies 

a PM target, the accumulation process for the competing ongoing task response is suppressed or 

inhibited. These findings are consistent with accumulators competing with each other based on 

their inputs; in the presence of a PM item, evidence accumulation processes for conflicts and 

non-conflicts are inhibited relative to when a PM item is absent. 

The strength of the reactive control effect did not interact with time pressure, although 

the difference in reactive control strength for non-conflict error accumulation rates did reach 

significance, with stronger inhibition in higher time pressure blocks (see Table S16). Overall, 

however, reactive control processes were mostly unaffected by changes in time pressure.  

 
Figure 8. Ongoing task accumulation rates with PM item present versus absent. Central symbols represent 
posterior means. Error bars represent +/- 1 posterior standard deviation. 
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Model Exploration 

In this section we attempt to tease out the individual contribution to accuracy and RT 

provided by different parameters and mechanisms in the model. It is our aim to give a clearer 

picture of the relative importance of key mechanisms in accounting for the observed effects. To 

do this, we first replace the parameter of interest with the average either across control/PM 

blocks or across time pressure levels (e.g., replacing control block and PM block ongoing task 

thresholds with the average of the two), and examine the associated misfit of the model with the 

removed effect relative to the full model with the effect included. 

We generated posterior predictions for all PM and time pressure effects for the selected 

model, and then separately for models with two different sets of parameters averaged over either 

PM or time pressure blocks: ongoing task rates, and ongoing task thresholds. In the 

supplementary materials, we include fit graphs comparing the full model to the two versions with 

proactive (threshold) and reactive (rate) mechanisms systematically turned off.  

Here we focus our discussion on time pressure and PM effects and the contribution of 

each cognitive mechanism. First, we assess how much of the PM accuracy and RT effects were 

accounted for by the different models, and whether each model adequately fit these effects. 

Second, we assess how much of the time pressure accuracy and RT effects were accounted for 

by the different models, and whether each model adequately fit these effects. Finally, we 

examine the misfit associated with selectively turning off proactive control mechanisms, reactive 

control mechanisms, or both in terms of fit to overall accuracy and RT. 

Time Pressure Effects. The selected model provided a very close account of accuracy 

differences across different levels of time pressure under both low and high trial load (Figure 

S6). The selected model also closely fit RT differences between time pressure blocks for both 
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correct and error ongoing task responses and PM responses. Averaging ongoing task thresholds 

made the model over-predict the cost to ongoing task accuracy under increased time pressure for 

conflicts, that is, the model predicted lower conflict accuracy in the high time pressure blocks 

than was observed. Conversely, the model under-predicted the cost to ongoing task accuracy 

under increased time pressure for non-conflicts, that is, it predicted higher non-conflict accuracy 

in the high time pressure blocks than was observed. 

Similarly, the averaged-threshold model under-predicted RT differences between higher 

and lower time pressure blocks for both correct and error ongoing task responses (i.e., it 

predicted less of a speed-up from lower to higher time pressure than was observed). That is, the 

primary consequence of lowering ongoing task thresholds under high time pressure was an 

overall increase in the speed of responding. This provides further evidence that proactive control 

mechanisms are critical for explaining empirical speed-accuracy trade-offs in ongoing task 

performance under different levels of time pressure. 

Averaging ongoing task rates resulted in a model that under-predicted the cost to ongoing 

task accuracy under increased time pressure (actually predicting an accuracy advantage for 

conflicts under higher time pressure instead of the observed cost). Likewise, the averaged-rates 

model under-predicted RT differences between high and low time pressure blocks for both 

correct and error ongoing task responses, predicting less of a speed-up from low to high time 

pressure than was observed. That is, changes in accumulation rates between low and high time 

pressure conditions increased the speed but reduced the accuracy of ongoing task responses in 

high time pressure blocks, which is consistent with our findings of increased availability and of 

reduced quality of ongoing task processing when there is less time available to complete the 

task(s) at hand.  
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The averaged-threshold model maintained close fits to PM accuracy, but severely under-

predicted PM RT differences between high and low time pressure (Figure S7). In contrast, the 

averaged-rates model maintained close fits with PM RT, but under-predicted PM accuracy 

differences between high and low time pressure (i.e., predicted higher PM accuracy under high 

time pressure than was observed). That is, PM RT was more dependent on ongoing task 

thresholds than rates, while PM accuracy was more affected by ongoing task rates than 

thresholds. Taken together, both proactive and reactive control mechanisms appear necessary to 

account for the full range of accuracy and RT differences in ongoing task and PM performance 

under different levels of time pressure.  

PM Effects. As shown in Figure S8 (supplementary materials), the selected model 

accounted for the costs to ongoing task accuracy and RT associated with PM demand, providing 

close fits to the difference between control and PM accuracy for both conflict and non-conflict 

stimuli, and to correct and error ongoing task RT. Averaging ongoing task thresholds between 

control and PM blocks made the model over-predict the cost to ongoing task accuracy, more so 

for conflicts than non-conflicts, and dramatically under-predict the cost to both correct and error 

ongoing task RT (so much so that the model in fact predicted a PM advantage to ongoing task 

RT rather than a cost). That is, the model predicts that reallocating resources from the ongoing 

task to the PM task would have had more of a cost to accuracy if proactive control had not been 

used. Adopting higher ongoing task thresholds under PM load, therefore, facilitated accurate 

ongoing task performance under PM load, but was also the primary driver of the PM costs in 

terms of ongoing task RT. This further indicates that proactive control of thresholds is an 

important mechanism in explaining PM costs effects, particularly costs to ongoing task RT. 
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In contrast, averaging ongoing task rates between control and PM blocks caused the 

model to under-predict costs to ongoing task accuracy (predicting an accuracy advantage for 

conflicts) and over-predict costs to both correct and error ongoing task RT. That is, changes in 

accumulation rates between control and PM blocks improved the speed but reduced the accuracy 

of ongoing task performance under PM load. This is consistent with our findings of increased 

resource availability and of resources being reallocated from the ongoing task in PM blocks, and 

it supports the idea that cognitive control of rates is an important mechanism in explaining the 

differences in ongoing task accuracy and RT that occur under PM demand. 

Importance of Cognitive Control for PM Performance. Finally, we examine the 

overall importance of proactive and reactive control mechanisms in terms of how well the model 

fits observed accuracy and RT on PM trials. As shown in Figure S9, the full model (which 

includes both proactive and reactive control mechanisms) provided an almost exact fit to PM 

accuracy (100.02% of the effect), while slightly over-predicting overall PM RT (RT over-

predicted by 1.44%). 

In contrast, when proactive control of ongoing task thresholds is removed, and the model 

only allows for reactive control, we get severe misfit to both overall PM accuracy and RT, with 

the model under-predicting both effects by a large margin (PM accuracy under-predicted by 

17.1% of the effect [i.e., ~60% versus ~72%], PM RT under-predicted by 8.7%). Similarly, when 

reactive control is removed from the model and only proactive control included, we get less 

severe but still substantial under-prediction of both PM accuracy and RT (PM accuracy under-

predicted by 9.8% of the effect [i.e., ~65% versus ~72%], PM RT under-predicted by 4.4%). 

Lastly, when both proactive and reactive control mechanisms are turned off (i.e., the 

model includes neither mechanism), the model produces the worst overall fit to PM accuracy and 
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RT, under-predicting both by a larger margin than either the proactive-only or reactive-only 

models (PM accuracy under-predicted by 30.2% of the effect [i.e., ~50% versus ~72%], PM RT 

under-predicted by 15.8%). This provides strong evidence that both proactive and reactive 

cognitive control mechanisms play critical and complimentary roles in accounting for the speed 

and accuracy of PM task performance. 

 

General Discussion 

We used PMDC, a comprehensive computational model of PM, to investigate the 

cognitive mechanisms underlying performance as a function of PM load and time pressure in a 

complex dynamic conflict detection task. Our primary aim was to assess the utility of PMDC in 

modeling a more complex and dynamic task than has been previously studied in the PM 

literature and gain insight into how cognitive control processes and the quality and quantity of 

resources drive performance. PMDC provided good fits to ongoing task and PM accuracy and 

closely accounted for the full distribution of RTs for both ongoing task and PM responses across 

all of our experimental manipulations. The model accounted for changes in accuracy and RT 

across different levels of time pressure and fit all PM cost effects. In addition, the model 

provided out-of-sample predictions of non-response proportions that closely matched empirical 

non-response data. 

Our model fits implicated Braver’s (2012) proactive control (increased ongoing task 

thresholds in PM blocks) and reactive control (inhibited ongoing task accumulation rates to PM 

items) in PM performance, replicating work with the PMDC model on simple laboratory 

paradigms in a complex dynamic task environment (Strickland et al., 2018). As discussed in the 

sections below, we also extend Strickland et al by finding evidence that PM load affected 
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ongoing task capacity (i.e., the quality of rates was poorer in PM compared to control blocks). 

Furthermore, manipulating time pressure caused a trade-off between ongoing task accumulation 

and PM accumulation – higher ongoing task demand led to larger ongoing task quantity but less 

PM accumulation. That is, while the resources available to the cognitive system increased under 

time pressure and PM load (increased arousal), with higher time pressure more resources were 

allocated to the ongoing task at the expense of the PM task, consistent with capacity sharing. 

Time pressure also reduced the quality of information entering the decision process. Finally, we 

extended Strickland et al. by showing that PM load-induced proactive control over ongoing task 

decisions was reduced under higher time pressure.  

Capacity Sharing and Resource Availability: Quantity and Quality 

Quantity. We found that the total amount of ongoing task information processed 

(matching + mismatching accumulation rates) was higher in PM blocks than in control blocks, 

and higher during periods of high time pressure compared with low time pressure. These 

findings suggest an increase in the amount of resources available to the cognitive system under 

PM load, and under high time pressure. However, as demands exceeded the capacity limit of the 

system, resources were reallocated (shared) between the ongoing and PM tasks. This was 

particularly evident in the trade-off between ongoing task and PM accumulation rates across 

different levels of time pressure; as the ongoing task used more resources to compensate for 

additional time pressure demands, it drained resources that would have otherwise been available 

for PM task processing. This is the critical test of capacity sharing (Navon & Gopher, 1979). Our 

participants’ subjective reports of effort, mental demand, and temporal demand supported this 

account, and it is consistent with research suggesting that the reallocation of resources amongst 

competing tasks requires cognitive control (Hockey, 2013; Hockey, Coles, & Gaillard, 1986; 
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Kleinsorge, 2001; Sanders, 1983; Schmidt, Kleinbeck, & Brockmann, 1984; Spitz, 1988; 

Wickens, 1986). We also note that modeling this trade-off between concurrent tasks provides 

another way of revealing capacity-sharing effects that does not rely on comparing performance 

to a separate ‘control’ block, which is often not feasible for some tasks or experimental settings. 

Quality. PMDC indicated that the quality of ongoing task processing was reduced during 

high time pressure blocks (when there was less time available) compared with low time pressure 

blocks, in terms of smaller differences in accumulation rate between the matching and 

mismatching accumulators. This is consistent with modeling studies showing reduced 

accumulation rates7 during high versus low time pressure or when the speed of responding is 

emphasized (e.g., Heitz & Schall, 2012; Ho, Brown, van Maanen, Forstmann, Wagenmakers, & 

Serences, 2012; Rae, et al., 2014; Starns, Ratcliff, & McKoon, 2012; Vandekerckhove, 

Tuerlinckx, & Lee, 2008). These studies have argued that time pressure reduces the quality of 

information entering the decision process, either because less diagnostic information can be 

sampled during the shorter response window, or because certain cognitive processes become less 

efficient at extracting stimulus information. Our findings are also consistent with applied 

research showing that sufficient time pressure can induce a ‘redline’ or performance bottleneck 

(e.g., Palada et al., 2018), whereby increased task demands lead to poorer quality processing.  

Similarly, quality was poorer in PM blocks compared with control blocks, consistent with 

participants reallocating attention from ongoing task decisions towards the PM task when under 

PM demand. This contrasts with previous studies that used simple laboratory tasks and found no 

 
7 These studies did not distinguish between accumulation rate quality and quantity, but note that DDM rates 
correspond most closely to our concept of quality. 
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capacity effects (Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 2015; 

Strickland et al., 2017, 2018). This may be because the task was more demanding, exhausting the 

cognitive system such that any more capacity used for PM monitoring required repurposing 

resources from the ongoing task. It may also be because our PM targets were highly non-focal as 

they required a different locus of visual attention (callsign) than ongoing task decisions 

(comparing aircraft location, speed and trajectory) (Einstein & McDaniel, 2005). Overall this 

suggests that the mixed results regarding capacity sharing and resource allocation in the basic 

PM literature may be partly due to typical laboratory ongoing tasks being insufficiently 

demanding to fully engage capacity.   

In terms of overt performance, a reduction in processing quality should mainly lead to 

lower accuracy. At low time pressure, any reduction in accuracy due to the decline in processing 

quality from control to PM blocks appears to have been washed out by the higher ongoing task 

thresholds during PM blocks (proactive control), which allowed similar levels of accuracy to be 

maintained. However, at high time pressure, there was a robust 5% PM block cost to ongoing 

task accuracy, which was not present at low time pressure. This shows that, at high time pressure 

and when under PM load, proactive control was not effective in maintaining the accuracy of 

ongoing task decisions. One important implication of this is that capacity-sharing effects that 

may not affect performance under low time pressure can produce errors under high time 

pressure. This also highlights that our modeling approach can detect the action of resource-

sharing mechanisms whose overt effects may be masked by compensatory mechanisms (e.g., 

proactive control), and thus not evident in manifest accuracy and RT.  

Taken together, these quantity and quality effects are indicative both of an overall 

increase in arousal under PM load and time pressure, and a degradation in processing quality 
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under PM load and time pressure, consistent with capacity-sharing/resource demand effects. 

Arousal may increase because the ongoing task becomes subjectively more difficult or engaging 

when PM demand and time pressure are introduced, leading participants to compensate for 

greater demands/poorer quality by deploying more resources and changing how resources are 

allocated between various subtasks. There is a strong neurological basis for this idea (e.g., 

Banquet, Smith, & Guenther, 1992; Beierholm, Guitart-Masip, Economides, Chowdhury, Düzel, 

Dolan, Dayan, 2013; Botvinick & Braver, 2015; Chiew & Braver, 2013; Gallistel, 1985); studies 

have suggested that heightened task demands lead to the potentiation of neural structures related 

to cognitive processing, for example by increasing the probability that certain neurotransmitters 

will be released (Jimura, Locke, & Braver, 2010; Niv, Daw, & Dayan, 2007; Schmidt, Lebreton, 

Clery-Melin, Daunizeau, & Pessiglione, 2012). This has the effect of boosting processing 

intensity or increasing the signal strength of evidence sampled from stimuli, thus facilitating the 

flow of information (Kleinsorge, 2001; Wickens, 1986). In the model, such effects would be 

reflected in changes in the quantity and/or quality of evidence accumulation. An interesting 

avenue for future research would be to map neural activity to changes in model parameters under 

different time pressure and task demand manipulations. 

Importantly, our findings reveal a potential limitation with using simple laboratory tasks 

to study PM, which the present work addresses. That is, certain resource availability and 

allocation effects may not manifest in simple laboratory tasks if the demands of the task rarely 

exceed the supply of resources (i.e., if the cognitive system is rarely pushed to its capacity limit). 

In contrast, the current work shows that such effects become readily apparent in more complex 

paradigms that impose sufficient demands on the cognitive system. Indeed, this issue may have 

led some of our previous PM research to underemphasize the role of capacity and resource 
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allocation mechanisms, at least when trying to explain PM in the wild. In contrast to the basic 

literature, cognitive control and resource management mechanisms play important roles in 

explaining decision making under PM demand in complex dynamic task environments.  

Cognitive Control Processes 

Proactive Control. Consistent with proactive control (Braver, 2012), ongoing task 

thresholds were higher in PM blocks than control blocks, indicating that subjects strategically 

delayed ongoing task decisions to avoid pre-empting the PM process (Heathcote et al., 2015). 

The model indicated that this control was the cause of PM cost (i.e., the slower ongoing task RTs 

in PM blocks). This is consistent with many modeling studies from simple paradigms that 

indicate costs are driven by increased thresholds to make ongoing task decisions (e.g., Ball & 

Aschenbrenner, 2017; Heathcote et al., 2015; Horn & Bayen, 2015; Strickland et al., 2017, 

2018). Further, the model indicated that proactive control over ongoing task thresholds 

contributed to PM accuracy (about 12% of observed PM responses would have been omitted 

without proactive control over ongoing task thresholds [i.e., ~60% versus ~72% observed]).  

Ongoing task and PM thresholds decreased as time pressure increased, meaning 

participants set lower thresholds when there was less time available. This is consistent with much 

choice-RT modeling of the speed-accuracy trade-off which indicates individuals strategically 

control thresholds in favour of fast responding when time pressure is high (e.g., Dutilh, 

Wagenmakers, Visser, & van der Maas, 2011; Forstmann et al., 2011; Usher, Olami, & 

McClelland, 2002). More interesting, however, was the novel finding that PM-induced proactive 

control interacted with time pressure. Specifically, the difference between control block and PM 

block ongoing task thresholds got smaller as time pressure increased. This suggests that strategic 

adjustments to PM demand were smaller under high time pressure compared with low time 
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pressure. That is, higher levels of time pressure induced a trade-off between raising thresholds to 

give the PM accumulator more time to finish and lowering thresholds to respond within the trial 

deadline. This was consistent with the observed drop in PM accuracy in high time pressure 

blocks, and the observed PM-control differences in ongoing task accuracy and non-response 

rates, which only reached significance under high time pressure. The drop in PM accuracy under 

high time pressure indicates that participants were unable to delay responding long enough (due 

to the short deadline) to prevent ongoing task accumulators out-pacing the PM response. These 

findings suggest that people may be particularly prone to making PM errors during periods of 

heightened time pressure, and that the way in which time pressure and PM demands interact 

could be important to consider in situations in which high PM accuracy is important.  

Time pressure also affected threshold bias for the ongoing task (i.e., the amount of 

evidence required to respond ‘conflict’ versus ‘non-conflict’). Bias shifted from favouring non-

conflict responses at lower levels of time pressure to favouring conflict responses at higher levels 

of time pressure. Under high time pressure, subjects set lower conflict thresholds relative to non-

conflict thresholds, which facilitates faster conflict responses but increases the frequency of 

conflict false alarms, reducing overall accuracy. This finding is in line with Loft et al. (2009), 

who reported that air traffic controllers apply larger safety margins by shifting bias towards 

conflict responses when under perceived time pressure. Although this strategy increases the 

frequency of conflict false alarms, the bias has the effect of ensuring safety over strict accuracy. 

That non-expert (novice) participants adopted a conflict bias in the current study without an 

explicit incentive to do so speaks to the face validity of the conflict detection task. That is, 

participants treat missing an aircraft conflict (i.e., possible passenger fatalities) as worse than 

making a false alarm (i.e., possibly increasing aircraft travel time) (see Neal & Kwantes, 2009; 
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Vuckovic et al., 2013, 2014). This finding supports the idea that people can make deliberate 

strategic adjustments to threshold bias in order to avoid failing to detect critical events (e.g., 

potential conflicts). Together, these threshold findings highlight the dynamic ways individuals 

can exert cognitive control over their own decision making in order to balance competing 

objectives (e.g., safety of aircraft versus efficient traffic flow). An interesting avenue for future 

research would be to manipulate the relative importance of the ongoing task responses to see if 

participants adopt different biases based on which types of response are associated with more 

serious safety consequences.  

Reactive Control. Consistent with PMDC’s reactive inhibition mechanism, ongoing task 

accumulation rates were lower on PM trials compared with non-PM trials. That is, rates were 

lower for stimuli containing a PM target compared with the same stimuli not containing a PM 

target. This supports the idea that, when a PM item is present, the PM detector inhibits input to 

the competing ongoing task accumulators. At a strategic level, inhibiting ongoing task rates on 

PM trials increases the likelihood that the PM accumulator will reach threshold and trigger a PM 

response before either of the ongoing task accumulators. This finding replicates the reactive 

control demonstrated by Strickland et al. (2018) in simple laboratory PM tasks, and is in line 

with theoretical work (Bugg et al. 2013), neurological data (McDaniel et al. 2013), and broader 

approaches to human error (Norman, 1981; Reason, 1990) that have implicated reactive control 

in PM. Norman (1981), for example, contends that response inhibition is required for atypical 

task responses to be able to compete for retrieval with task responses more strongly associated 

with common environmental cues.  

In general, the strength of reactive control was unaffected by changes in time pressure, 

meaning the level of inhibition did not vary under different levels of time pressure. This lack of 
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interaction is consistent with Braver’s (2012) description of reactive control as an automatic, 

stimulus-driven control process. Moreover, because reactive control is only active on PM trials, 

any potential differences in the strength of reactive control can only have a modest effect on 

overall accuracy in a given block of trials, meaning it would not be an effective mechanism for 

dealing with changes in time pressure that affect entire blocks of trials. 

Trial Load 

Trial load (compared across cells with equal time pressure) had several effects. Higher 

trial load was associated with lower resource availability (quantity) and slightly slower RTs 

(ongoing and PM). However, higher trial load also led to improved processing quality, slightly 

lower ongoing task thresholds, and lower subjective reports of effort, mental demand, and 

temporal demand. This suggests participants found it easier to discriminate conflicts from non-

conflicts when they were given 20s to make five decisions, than when they were given 8s to 

make two decisions, with the lower thresholds and reduced availability possibly reflecting some 

degree of ‘satisficing’ via a reduction in the depth of processing (e.g., Donkin, Little, & Houpt, 

2014). This pattern of results is consistent with research on temporal discounting (e.g., Ballard, 

Vancouver, & Neal, 2018), showing that individuals tend to work harder when given more 

immediate deadlines. Our participants likely perceived having 20s to make five decisions to be a 

less demanding deadline than having 8s to make two decisions, despite having equal time 

available per decision on average. One potential explanation for this is the possibility of a fixed 

start-up time on each trial, which would leave more subsequent processing time on 20-second/5-

decision trials compared with 8-second/2-decision trials.  



64 

 

Summary and Further General Implications 

In work and everyday life, people must often adapt to PM demands and time constraints 

in complex and dynamic environments. In the current paper, we present and test a model of the 

cognitive control and capacity allocation mechanisms that enable PM performance in such 

settings. Our model provides a cogent explanation for a complex set of empirical phenomena that 

would be difficult to interpret using standard statistical analyses of observed behaviour, 

producing several implications for theories of PM. The theoretical insights provided by our 

model, summarized below, are critical to understanding both PM processes and multiple task 

performance more generally. For example, the comprehensiveness of PMDC’s account is critical 

for safety-critical work contexts where a characterization of performance fluctuations is 

necessary to predict and manage risks associated with worst-case performance. The critical 

‘redline’ of workload is the breakpoint of performance as individuals enter the ‘overload region’, 

such that they have no capacity to meet further demands and performance deteriorates (Hart & 

Wickens, 2010). Prior work has typically used self-reported workload to identify the overload 

region (e.g., Colle & Reid, 2005), but self-reported workload is often dissociated from 

performance (Yeh & Wickens, 1988). This is because whether performance degrades depends on 

the strategy that the individual uses (Loft et al., 2007). The PMDC model can be used to explain 

why performance does or does not decline as workload increases, how performance is protected, 

and to predict when performance will degrade considerably in a given situation with the use of a 

specific cognitive strategy or process. By identifying the cognitive redline and the specific 

cognitive processes responsible for performance decrements under different conditions, our 

approach can potentially aid the development of work design interventions (e.g., automation, 
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training, decision aids, interface design) to improve decision making and PM in complex 

dynamic environments (see Byrne & Pew, 2009). 

Our findings demonstrate the importance of using sufficiently demanding tasks to study 

capacity allocation. As mentioned, our demanding relative judgment task allowed us to detect 

two robust capacity cost effects: a within-subjects trade-off between PM and ongoing task 

accumulation rates as task demand (time pressure) increased, and a cost to ongoing task 

processing quality from PM load, an effect that had been unclear or absent in data from simple 

laboratory PM paradigms (e.g., Ball & Aschenbrenner, 2017; Heathcote et al., 2015; Horn & 

Bayen, 2015; Strickland et al., 2017, 2018). Going forward it will be important for researchers to 

study PM processes in sufficiently representative tasks to get a clear picture of the processes 

potentially involved in a given applied task setting (Morrow, 2018; Stokes, 2011). 

Overall, our capacity allocation effects are in line with the ecological rationality approach 

to human behaviour, which contends that decision makers compensate and adapt to 

environmental constraints in order to achieve the most effective possible outcomes (Brunswick, 

1943; Simon, 1956; Todd & Gigerenzer, 2007). Poorer quality ongoing task processing under 

PM load and time pressure could reflect participants reducing the amount of information 

processed (i.e., satisficing) by changing their depth of processing (Donkin, Little, & Houpt, 

2014) or by using heuristics (Gigerenzer & Gaissmaier, 2011). The finding that PM demand and 

time pressure led to heightened resource availability is in line with observations that arousal 

levels can change while a person is performing a task (Stearman & Durso, 2016). For example, it 

is possible that a rapid increase in demand, caused by a sudden increase in the number of stimuli 

to be processed, can produce an increase in arousal, thus providing additional resources to meet 

task demands. However, although more resources may become available to meet task demands, 
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the current modeling results highlight that the cognitive system is limited; when demands exceed 

the capacity of the system, resources must be reallocated from lower priority tasks to higher 

priority tasks. The present work is a case in point that researchers cannot rely solely on 

generalizing findings from simple laboratory paradigms to PM in complex dynamic tasks.  

It is important to note, however, that our capacity allocation effects were small in 

comparison to the proactive and reactive control effects we found here and in previous work 

(e.g., Heathcote et al., 2015; Strickland et al., 2017; 2018). Moreover, our novel finding that PM-

induced proactive control interacted with time pressure (i.e., the size of ongoing task threshold 

adjustments between control and PM blocks got smaller as time pressure increased, producing 

costs to PM-block accuracy that were largest under high time pressure) suggests that although 

attentional capacity is clearly a useful concept for our understanding of PM and ongoing task 

decision making, it needs to be situated within a cognitive control framework in order to form a 

complete picture of the processes that drive overt performance. 

Limitations and Future Directions 

We used an aircraft conflict detection task because it is representative of a broad range of 

work tasks that require people to remember to perform deferred task actions while making 

judgements about objects moving on task displays, such as maritime surveillance and submarine 

track management. The task captured the essential elements of the target phenomenon, because it 

requires participants to rapidly assess whether moving objects on crossing trajectories will, or 

will not, violate the applicable separation standard, whilst maintaining an intention to perform a 

deferred action. Nevertheless, the need for modeling constraints and the need for experimental 

control dictated that the task be simpler than conflict detection in air traffic control in several 

ways. For example, in our task, subjects were presented with one stimulus (aircraft pair) at a 
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time. This is simpler than real air traffic control, in which operators are often required to attend 

to many aircraft and simultaneously monitor many unfolding potential conflicts with variable 

onsets and durations. Multi-stimulus environments should be even more demanding than our task 

and should therefore elicit greater resource reallocation and capacity-sharing effects than seen 

here. Extending the present modeling to multi-stimulus environments where individuals are free 

to switch attention among several stimuli represents an interesting avenue for future PMDC 

work. However, it represents a complex modeling problem, because it removes one of the major 

constraints on the way participants can adapt to changes in time pressure; they can respond not 

only by changing threshold, bias and managing cognitive resource availability and allocation, but 

also how they allocate spatial attention. For example, participants may use a serial strategy, in 

which they focus on a single stimulus until they make a response, prioritising on the basis of 

order of onset or deadline. Alternatively, they may use an interleaving strategy, in which many 

small increments in evidence are made by rapidly switching among stimuli depending on the 

effort required to move attention, and the dynamically unfolding priority or expected value of the 

stimuli (see Wickens, Goh, Horrey, Helleberg, & Talleur, 2003). 

In our task, subjects made PM responses instead of the typical ongoing task response. 

This was done because, in many real-world settings, the most serious PM errors are often due to 

‘habit capture’, whereby the individual intends to substitute an atypical action for a habitual one, 

but inadvertently executes the unintended habitual action (Grundgeiger, Sanderson, & Dismukes, 

2015; Reason, 1990). However, this paradigm differs from ‘dual-task’ PM (Bisiacchi et al., 

2009), in which PM responses are made in addition to the ongoing response. Because proactive 

and reactive control strategies involve some degree of competition between responses, it is 

unclear whether similar effects will be present in dual-task paradigms in which subjects are 
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instructed to make both responses. Heathcote et al. (2015) modeled ongoing task trials in a dual-

task PM paradigm and found similar proactive control effects. However, because PM trials have 

not yet been modeled in dual-task PM, it is unclear whether reactive control processes will 

operate in a similar way.  

A further point, with potential implications for PM theory, is that the current model did 

not include a mechanism for PM ‘trigger failures’ (Matzke, Love, & Heathcote, 2017) – trials on 

which the PM intention is not retrieved in the first place (i.e., where the PM accumulator does 

not enter the race). In PMDC, the PM accumulator always runs on PM trials, meaning PM 

failures are always due to the PM accumulator losing the race to one of the ongoing task 

responses. As such, the current modeling framework cannot distinguish between PM failures due 

to PM evidence not reaching threshold and those due to complete failures to run the PM process. 

This may be an issue for modeling tasks in which PM errors are expected to be due to retrieval 

failures, or in designs with features expected to induce forgetting (e.g., spatial context 

manipulations, see Loft, Finnerty et al., 2011; very low frequency PM targets, see Loft et al., 

2016; time-based PM, see Huang, Loft, & Humphreys, 2014; remembering to perform a task 

after a significant period of interruption, see Wilson, Farrell, Visser, & Loft, 2018). Extending 

the model to include a trigger-failure mechanism would be relatively straightforward and could 

allow future work to titrate the two kinds of PM failures.  

Finally, future work should look at how cognitive control (proactive/reactive) and 

resource allocation mechanisms (quantity/quality) are affected by the relative importance of 

different aspects of the task (Walter & Meier, 2014). One might expect the magnitude of 

proactive and reactive control effects to be larger when the PM task is prioritized over the 

ongoing task compared with when the ongoing task or speed of responding are the main priority. 
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Similarly, one might expect greater ongoing task capacity costs (i.e., reduced ongoing task 

quality) when the PM task is prioritized (e.g., due to more resources being shunted to the PM 

task), or heightened arousal (i.e., increased quantity) when the speed of responding is 

emphasized. As such, a useful follow-up to the present work would be to investigate how 

individuals adjust cognitive control and resource allocation strategies to meet the demands of 

different task priorities.  

Conclusion 

This study applied the PMDC model to account for PM and ongoing task performance in 

a complex dynamic conflict detection task designed to be representative of many real-world 

environments in which PM is performed. Drawing on Braver’s (2012) dual-mechanisms theory 

of cognitive control, our analyses showed that resource allocation and cognitive control 

mechanisms each have an important role in explaining the effects of PM and time pressure on 

decision making in demanding task environments. Our finding of robust resource availability and 

reallocation effects associated with PM demand and time pressure, using a cognitively 

demanding task performed under sufficient time pressure, illustrates the utility of studying PM in 

representative environments. This work provides the first comprehensive quantitative 

understanding of how attentional resources and cognitive control mechanisms support PM and 

ongoing task performance in complex dynamic environments.  

Context 

This research is related to other works by the authors across several different research 

fields, including computational modeling of decision making (e.g., Palada, Neal, Tay, & 

Heathcote, 2018; Trueblood, Brown, & Heathcote, 2014), prospective memory (e.g., Heathcote, 

Loft, & Remington, 2015; Strickland et al., 2017, 2018), and applied cognition/human factors 
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(e.g., Loft, 2014; Loft, Chapman, & Smith, 2016; Loft, Finnerty, & Remington, 2011; Loft, 

Pearcy, & Remington, 2015). This project bridges gaps between these different fields by using a 

comprehensive computational modeling framework to test cognitive theory and model latent 

cognitive control and attentional processes involved in performing a complex task with dynamic 

time pressure and memory demands.  
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