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Training gene expression data with supervised learning approaches can provide an alarm sign for early treatment of lung cancer to
decrease death rates. However, the samples of gene features involve lots of noises in a realistic environment. In this study, we present a
random forest with self-paced learning bootstrap for improvement of lung cancer classification and prognosis based on gene expression
data. To be specific, we proposed an ensemble learning with random forest approach to improving the model classification performance
by selecting multi-classifiers. Then, we investigated the sampling strategy by gradually embedding from high- to low-quality samples
by self-paced learning. The experimental results based on five public lung cancer datasets showed that our proposed method could
select significant genes exactly, which improves classification performance compared to that in existing approaches. We believe that
our proposed method has the potential to assist doctors for gene selections and lung cancer prognosis.
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1 INTRODUCTION

Cancer is a disease of the body’s cells. Typically cells grow and multiply in a controlled way, but this control may be
lost if something causes a mistake to occur in the cells’ genetic blueprints [1]. In terms of lung cancer, it is the leading
cause of cancer death, and common cancer diagnosed all over the world [2]. Lung cancer symptoms include shortness
of breath, wheezing, hoarseness, chest pain, coughing, or spitting up blood. To avoid this miserable situation, we need
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machine learning based models for the early detection and prevention of lung cancer. Taking medications during the
early stages of lung cancer increases medication efficacy and reduces recurrence [3]. Therefore, pre-emptive detection
and diagnosis of lung cancer may be clinically beneficial, especially for patients with undefined lung-related cancer.
Biologically, the pathogenic genes of lung cancer are found and confirmed by experiments, but most of the genes have
a low correlation with the disease. We need various experiments to prove if a gene is correlated with lung cancer,
which would cost lots of resources. However, machine learning algorithms can prioritize the most important 1% of the
disease-causing genes, and then prove through biological experiments, which can save a lot of resources.

The relationship between tumor diagnosis and disease-causing genes can be discovered by machine learning
approaches, which can be used for predicting cancer in an early stage. To be specific, some effective machine learning
algorithms have been reported in the literature, including the computer-aided diagnosis based on artificial neural
networks [4], ensemble-based feature selection methods [5], AdaBoost algorithm with support vector machine (SVM)
[6], enhanced probabilistic neural network [7], a hybrid approach combining the advantages of fuzzy sets, ant-based
clustering and multilayer perceptron neural networks classifiers [8]. Since ensemble learning can improve the robustness
and accuracy of the model by combining multiple weak classifiers [9], we assume that ensemble learning could be useful
in this study. Particularly, ensemble learning involved in bagging and boosting, and random forest can be considered as
a common bagging algorithm for the improvement of cancer classification.

Gene microarray technology has emerged as a prospective tool for diagnosis and classification of cancers, and
statistical or machine learning based methods have been applied to extract reliable gene features as the inputs of cancer
classification models. In terms of lung cancer data, the small sample size is a challenge for microarray data analysis
and training. If samples involved in some noise, it causes negative influences on the performance of training models.
Furthermore, the sampling strategy only randomly searches classifiers using the random forest, and a better choice that
we assumed sampling examples in the training stage by gradually embedding from high to low-quality samples. For
example, an alternative approach with self-paced learning as a new formulation is designed to identify high-quality
samples [10]. That is to say, by gradually increasing the penalty of the SPL regularizer during the optimization, more
samples are selected in the training stage from high- to low-quality modes. Of note, it has been enjoyed rapidly
increasing adoption, such as multi-task learning [11], image classification [12], molecular descriptor selection [13].
Therefore, in this study, we propose a novel random forest with self-paced learning (RFSPL), allowing us to extract
samples with high-quality effectively.

The contributions of this paper are listed as follows. Firstly, we proposed the bootstrap based on self-paced learning
with samples from high-confidence to low-confidence to train the model for cancer diagnosis and classification using
DNA microarray technology. Secondly, we presented a random forest with self-paced learning framework for lung
cancer diagnosis. Our proposed method is superior to existing classifiers in terms of accuracy, F1-score, and AUC.
Additionally, our proposed method could select a small number (< 1%) of highly relevant genes to facilitate the early
prognosis of the disease.

The rest of this paper is organized as follows. Section 2 describes the related work, including lung cancer classification,
ensemble learning, and random forest approaches. Then, a random forest with self-paced learning is proposed in section
3, to process the noisy samples for improving the classification performance. Furthermore, section 4 presents that our
proposed method and comparable methods are tested based on simulation data and real experimental datasets. Finally,
we discussed and concluded our study in section 5.
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2 RELATEDWORK

In terms of cancer classification, cancers are classified by the type of cell that the tumor cells resemble and is therefore
presumed to be the origin of the tumor. The SVM, a discriminative classifier formally defined by a separating hyperplane,
is applied in the field of cancer prognosis. The SVM classifier needs to decide different types of the kernel function
in the training process. The previous experimental results showed the linear kernel, and radial basis function (RBF)
kernel methods can be the better choices for a small scale dataset. For a large scale dataset, SVM with RBF kernel can be
improved 10% of accuracy than the other classifiers [14]. In terms of logistic regression, it can develop a multi-parametric
model suitable for prospectively identifying prostate cancer, and the result is not statistically significant (P=0.090)
[15, 16].

Furthermore, three popular data mining techniques, such as decision trees, artificial neural networks (ANNs), and
SVM, are used to develop prediction or classification models for cancer survivability [17]. For example, breast cancer
survivability is evaluated by multiple data mining and statistical methods, and the results indicated that the decision
tree (C5) is the best predictor than other approaches [18]. On the basis of statistical learning theory, the ensemble
learning model can improve robustness, accuracy, and generalization of the classification models [19]. The ensemble
learning includes Bagging [20], Adaboost [21], random forest [22], rotation forest [23] et al. Therefore, the ensemble
learning models, including bagging, boosting and random forest measurement, are the potential to be applied in our
study.

Primarily, the random forest was investigated in cancer classification, which is considered as a gene selection model
for cancer classification. Prior studies showed that random forest could achieve better performance comparing to other
classification methods, including k-nearest neighbors (KNN) and SVM. Due to the small sets of genes in the selection
procedure [24], the random forest is only used in sub-sampling to train disease prediction in fully balanced samples.
The result shows an average area under the curve (AUC) of a random forest could achieve better performance than that
of SVM based on eight disease datasets [25].

To learn in a self-controlled pace, the self-paced learning (SPL), by mimicking the cognitive mechanism of humans
and animals, was proposed to learn from easy to hard samples gradually. Due to the characteristic of generality, prior
studies have been developed various types of SPL to embed curriculum design as a regularization term into the learning
objectives [26]. The SPL aims to achieve a better weighting strategy by determining the minimizer functions, and
a recent approach improved by artificially designing the specific form of SPL regularizers [27]. An example in [28],
showed that the alternative search strategy method could measure the majorization-minimization in SPL, and deduce
the underlying objectives of hard, linear, and mixture regularizers.

Early detection and diagnosis of lung cancers using a computed tomography (CT) may benefit the reduction of lung
cancer mortality [29]. With the development of deep learning and convolutional neural networks (CNNs), it can be
identified to analyze lung CTs for prognosis prediction and diagnosis [30]. Deep learning is accessible machine learning
toolbox for image processing. The lung cancer computed tomography (CT), a special image, can be used to predict
overall survival of non-small-cell lung cancer patients from CT data by deep learning network [31]. Furthermore, a
trained convolutional neural network (CNN, or ConvNet) can extract deep features from CT images to predict short-
and long-term survivors, leading to an enhancement of 12.5% than that of decision tree classifier [32]. Besides deep
learning applied in lung cancer, other types of medical images recognition task are learned by a deep convolutional
neural network (DCNN), such as breast cancer diagnosis [33].
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3 METHODOLOGY

3.1 Bootstrap with self-paced learning

The bootstrap involves resampling from one’s samples with replacement. Giving training dataset D = (xi ,yi )mi=1 withm
samples, where xi ∈ Rd is the i-th sample, yi represents its label, let L(yi , f (xi ,w)) denote the loss function, it calculates
the cost between ground truth label yi and estimated one f (xi ,w). Herew represents the model parameter inside the
decision function д. The SPL model includes a weighted loss term on all samples and a general self-paced regularizer
imposed on sample weights, expressed as:

min
w ,v ∈[0,1]m

E(w,v ; λ) =
m∑
i=1

viL(yi , f (Xi ,w)) + д(vi ; λ), (1)

where λ is a age parameter for controling the learning pace, and д(λ,vi ) is self-paced regularizer, whose intrinsic
conditions have been theoretically abstracted by [34]. By jointly learn the model parameterw and the latent weight
v = [v1,v2, ...,vm ]T by alternative search strategy algorithm with gradually increasing age parameter, more samples
can be automatically included into training form easy to comlex in a purely self-paced way. Specifically, giving sample
weightsv , the minimization overw is a weighted loss minimization problem, independent on regularizer д(vi ; λ); Giving
model parameterw , the optimal weight of i-th sample is determined in Equation (2),

v∗i =minviviL(yi , f (xi ,w)) + д(vi ; λ), (2)

where li = L(yi , f (Xi ,w)) denotes the loss of samples xi .
To solve v is Equation (2), the self-paced function д(vi ; λ) needs to be specified. Reference [35] has summarized the

general properties of a self-pace function in д(vi ; λ), it is convex w.r.t. vi ∈ [0, 1] to guarantee the uniqueness of v∗i .
v∗(Li ; λ is monotonically decreasing w.r.t. Li , which guides the model to select easy samples with small losses in favor
of complex samples with larger losses. Similarly, it is monotonically increasing w.r.t. λ, which means that a larger λ has
a higher tolerance to the losses and can incorporate more complex samples. We specify the self-paced function as the
one for mixture weighting, due to its overall better performance in the experiments:

д(vi ; λ, ζ ) = −ζ In(vi + ζ /λ), λ, ζ > 0, (3)

where an extra SPL parameter ζ is introduced in addition to λ. The corresponding optimal v∗i is given by:

v∗i =


1 li ≤ ζ λ/(ζ + λ)

0 li ≥ λ

ζ /li − ζ /λ otherwise

(4)

which is a mixture of a hard 0-1 weighting and a soft real-valued weighting.
The Bootstrap self-paced learning algorithm is shown in Algorithm 1.

3.2 Bagging with BSPL

Ensemble learning consists of building and combining multiple learners for a predictive task, it is usually used
to improve overall robustness and accuracy of the problem of regression or classification [36]. Giving a dataset
D = (xi ,yi )(|D | = m, xi ∈ Rn ),yi ∈ R, K additive functions are used in a ensemble model to predict the output, as
shown in Equation (5).
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Algorithm 1: Bootstrap with self-paced learning (BSPL) algorithm
Input: Training set (xi ,yi )mi=1; step size µ > 1.
Output: Model parameterw,v
Process: Initialize sample weights v∗ and parameter λ;
while not convergence do

Update (w∗,v∗) = arдminw ,vE(w,v ;λ) for finding optimal pseudo label in each selected instance randomly;
Augment(increase or decrease) λ by step-size µ .

end
Return:w,v

ŷi = ϕ(xi ) =
K∑
k=1

fk (xi ), fk ∈ F , (5)

where F = f (x) = wq(x )(q : Rm → T ,w ∈ RT ) represents regression trees. Meanwhile, the minimize objective function
is shown in Equation (6),

L(ϕ) =
∑
i
L(ŷi ,yi ) +

∑
k

ω(fk ), (6)

where ω(fk ) = γT + 1
2λ∥w ∥

2, L() represents the loss function, ω is complexity of the model.
Bagging (short for bootstrap aggregating) is a representative in parallel ensemble learning methods [37]. Boot-

strapped replicas obtain a diversity of bagging in the training data, i.e., different subsets are randomly drawn with
replacement from the whole training data. Bagging is particularly appealing when the available data is fewer. The
relatively large portions of the samples (75-100%) are drawn into each subset to ensure sufficient training samples in
each subset. In this case, the individual training subset has some noise instances. The SPL learners, especially the base
learners, can combine sampling with SPL strategy for bagging, to reduce variance. The pseudo-code of Bagging with
BSPL algorithm shows in Algorithm 2.

Algorithm 2: The Bagging with BSPL algorithm
Input: D = (x1,y1), (x2,y2), ..., (xm,ym );
Based Learning algorithm L;
Number of learning rounds T .
Output: H ,D∗
Process:
for t ← 1 to T do
{w,v}=BSPL(D);
Dt =minx̂ ,ŷ

∑m
i=1viL(yi , f (xi ,w)) + д(vi , λ)

% Generate a bootstrap sample with high-confidence from D
ht = ψ (Dt );
% Train a base learner ht from the BSPL sample

end
Return H(x) =arдmaxy∈Y I (y = ht (x))
% the value of I(α ) is 1 if α is true, otherwise 0;
D∗ = Dt
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3.3 Random forests with BSPL

Random forest is easy to turn in the training process, due to only adjusting two parameters (the number of variables
and the number of trees in the forest). The fundamental structure of random forests adds one layer of randomness
to bagging. Each subset is constructed in the random forest using a bootstrap method. Each node is split using the
best split among all variables in standard classification trees of random forest. In our study, each node is trained with
a high-confidence subset by the BSPL method. This somewhat counter-intuitive strategy turns out to perform well
compared to many other classifiers and is robust against overfitting [38]. The random forest with BSPL is shown in
Algorithm 3.

Algorithm 3: Random forest with BSPL algorithm
Input: D as a training data; Depth of decision tree d .
Output: ŷ
Process:
for k← 1toK do

Obtained training data D∗k according Algorithm 2 input D;
Create a decision tree Tk (x);
while not converge ∥ tree_depth > dmin do

Randomly selected n feature from N feature in all; ;
Selected the best suitable feature and the optimal splitting point from n feature;

end
end
Random forest {Tk (x)}K1 ;
Vote ŷ= ϕ(X ) =

∑K
k= 1Tk (x).

Of note, 70% of sample are regarded as the training set, and 30% of sample are regarded as the testing set. In order to
assess the performance of model, Accuracy, Recall , Precision, and F1âĹŠScore are used in this paper, among partially
defined as follows,

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F1 − Score = 2 ·

Precision · Recall

Precision + Recall
,

where are true positive(TP), true neдative(TN ), f alse positive(FP), f alse neдative(FN ) . The area under the curve
(ROC-AUC) and p-value as an assess index was also used in this work [39].

4 EXPERIMENT RESULTS

In this section, we conducted the experiment analysis to test the classification performance and determine the features
influenced on lung cancer to evaluate our proposed RFSPL.

4.1 Lung cancer datasets

The testing process can assess the quality of a classification model by calculating the percentage of correct predictions
for a given data set. In this study, we used five lung cancer datasets to examine the validity of the proposed method.
These datasets contain the expression profiles, including GSE4115, GSE33356, GSE3141, GSE8894, and GSE40419 from
US National Library of Medicine National Institutes of Health. The details are shown in Table 1.

These datasets contain the expression profiles in the below Table 1. For instance, the GSE4115 dataset includes
187 samples, consisting of 97 tumor samples and 90 normal samples with 22283 genes. The results of classification
Manuscript submitted to ACM
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Table 1. Five public cancer datasets

Dataset Samples tumour samples normal samples No. of genes
GSE4115 187 97 90 22283
GSE33356 120 60 60 54675
GSE3141 111 58 53 54675
GSE8894 138 69 69 54675
GSE40419 164 87 77 22401

performance based on five lung cancer datasets are shown in Table 2. We demonstrate that RFSPL can achieve the best
classification performances with the least absolute error, which are much smaller than those of the other models.

The performance showed in Table 2. The average accuracy with RFSPL model achieves the highest accuracy based
on the five datasets, i.e., the proposed RFSPL is better than the traditional models, such as logistics regression or SVM
approaches. Similarly, the best outcomes of F1-Score belong to the RFSPL model as well. Furthermore, Fig. 1 shows
that comparison on Receiver Operator characteristic curves (AUC-ROC) using each method on the five datasets. In
terms of AUC, results from Fig. 1 show that the proposed RFSPL model is higher than that of the competitors. In terms
of sensitivity and specificity, the value of sensitivity less than specificity, suggesting that the tumor samples predict
normal samples, and the practicability of the model is so poor that impact patient treatment. The value of sensitivity
by RFSPL improve 18.92%, and the value of specificity improves 6.19%. In summary, in terms of accuracy, AUC, and
F1-Score measures, the performance of RFSPL model is higher than that of the competitors.

Table 2. Classification performance in various prediction models based on five lung cancer datasets

Metric Model GSE4115 GSE33356 GSE3141 GSE8894 GSE40419 Average

Accuracy

Random Forest 0.7193 0.8889 0.5882 0.5952 0.9388 0.7461
RFSPL 0.8261 0.9472 0.7059 0.6905 0.9796 0.8299
Adboost 0.7544 0.9167 0.5588 0.5476 0.9388 0.7433

Logistics regression 0.7368 0.9167 0.6176 0.5962 0.9184 0.7569
SVM 0.6667 0.8889 0.5882 0.6429 0.6122 0.6798

F1-
Score

Random Forest 0.7037 0.8889 0.4615 0.5854 0.9412 0.7161
RFSPL 0.8148 0.9444 0.7222 0.6829 0.9811 0.8291
Adboost 0.7586 0.9189 0.4828 0.5778 0.9412 0.7359

Logistics regression 0.7692 0.9189 0.6061 0.5405 0.9200 0.7510
SVM 0.6780 0.8947 0.7083 0.6341 0.7324 0.7295

4.2 Statistical analysis

To compare the statistical significance of performance of our proposed with existing methods, we adopted the Friedman
test used in the study [40]. The Friedman test can measure statistical differences in the various methods, according to
the performance ranking of different approaches on the five datasets. The Friedman test estimator FF is measured in
Equation (7).
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Fig. 1. AUC-ROC based on five public cancer datasets. The proposed RFSPL model always outperforms others in terms of AUC. We
also know sensitivity and specificity from ROC, which indicates that the greater value of sensitivity, the greater the "tumor are judged
to the tumor" (True Positive) and the smaller the "missed detection" (False Negative). Similarly, the higher the value of specificity, the
higher the "health is judged to be healthy" (True Negative) and the smaller the "false alarm" (False Positive). For example, the value of
sensitivity and specificity are 0.81 and 0.82 in the subfigure (a), respectively.

FF =
(ND − 1)χ2r

ND (NM − 1) − χ2r
,

χ2r =
12ND

NM (NM + 1)
(

NM∑
i=1

R2i −
NM (NM + 1)2

4
),

Ri =

∑ND
j=1 ri j

ND
, (7)
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where NM is the number of approaches, ND is the number of datasets compared, Ri is the average ranking for the
i-th approach, and r i j denotes the ranking of i-th method on the j-th dataset. For evaluated dataset, the model accuracy,
AUC, and F1-Socre are ranked from one to the number of approaches, respectively. A comparison of five approaches is
considered in this work. rαi j = 1 represents the highest accuracy, AUC or F1-Score, and rαi j = 5 represents the worst
accuracy, AUC or F1-Score. For model diagnosis variance test, rαi j = 1 is the lowest diagnosis accuracy, AUC or F1-Score
variation, and rαi j = 5 indicates the model with the highest accuracy, AUC or F1-Score variation as well. NM -1 and
(NM -1)(ND -1) freedom degrees of FF is a Fisher distribution, and the confidence level is set as 0.05 in this case. NM = 5
and ND = 5, with degree of freedom NM -1 = 4 and (NM − 1)(ND − 1) = 16 are applied, it can achieve a critical value of
the Fisher distribution F (4, 16) = 3.01.

Table 3. Friedman test results on the five datasets

Test item RRFSPL χ2r FF (3.01) Decison
Accuracy 1 13.6 8.5 Positive
AUC 1.2 13.12 7.62 Positive

F1-Score 1 14.24 9.88 Positive

The accuracy, AUC, and F1-Score of Friedman test results are shown in Table 3. We know from Table 3 that average
ranks of RFSPL (RRFSPL ) are the best value on the experimental models in terms of the multiple assessment performance
measures. Additional, a significant result of the statistical difference of the ranking in the accuracy, AUC, and F1-Score
are shown in Table 3.

4.3 Gene selection

Some of the genes which emerged nearly in five experiments are displayed in Figure 2 via RFSPL, and the possible
functions of the part of the selected genes are also provided by searching them on the NCBI database. For instance, the
function of Binds with low affinity to interleukin-13 (IL13) in the GSE4115 with IL4RA together can form a functional
receptor. It also serves as an alternate accessory protein to the typical cytokine receptor gamma chain for interleukin-4
(IL4) signaling, but it cannot replace the function of IL2RG in allowing enhanced interleukin-2 (IL2) binding activity.

5 DISCUSSION AND CONCLUSION

As a typical method of ensemble technique, the random forest can address the classification problem of cancer prognosis
data. Based on five lung cancer datasets, RFSPL can achieve higher accuracy, AUC, and F1-Score values in each class,
compared with other methods. We believe that, during the tumorigenic process, our proposed method can select some
important genes and can be considered as a reference for bioinformatics experts. As a valid learning style, our proposed
method has the potential to identify in other different cancer types, including breast cancer, colorectal cancer, pancreatic
cancer, and other similar applications [41, 42].

In terms of the comprehensive comparisons, the effectiveness of RFSPL is better than other classification models
based on all datasets. RFSPL remains the best performance concerning the average of Accuracy, AUC, Sensitivity,
and Specificity, relative to other classification models. For the GSE4115 dataset, RFSPL generates the best-ranking
output, and especially the AUC of RFSPL outperforms the second best model by 5.5-19.4%. Regarding all datasets, the
accuracy of RFSPL achieves 9.5-21.9% improvement over that of other classifies. For metrics F1-Score, the variances of
values from different replications significantly reduced all effectiveness metrics in the RFSPL model. In this study, we
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Fig. 2. Selected important genes in the five datasets. Transverse axes represent feature value in the model of RFSPL, and longitudinal
axes represent the selected important genes. For p-value compared, the value of appendix A is less than 0.01 in all, which indicates
whether hypothesis tests are statistically significant.

proposed a random forest with self-paced learning (RFSPL) analysis of cancer, which is important progress in applied
soft computing and bioinformatics. The biological data commonly is high-dimensional and small-sample size, it causes
a big challenge on mining and learning algorithms. Our proposed RFSPL method can reduce the noise of datasets and
improve the classification performance to solve the dimension disaster problems.

Several aspects can be extended in future work. The SPL can learn from high- to low-quality samples, yet the
limitation of learning from the diversity, which indicates that we can investigate to incorporate diversity information
into the proposed method. More specific, the random forest model structures also can be widely devoted to other types’
cancer datasets, and the model feature preparation process also works for some relevant feature selection and extraction
techniques. Then, the other types of bagging methods can also be found in other disease diagnoses, such as thyroid
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cancer, oral cancer, and diabetes. For the computation time, parallel computation techniques can accelerate the training
process for the RFSPL model efficiently. What is more, it cost time and human resources if we need to achieve some
useful monitoring information (category labels). Since it is easy to obtain lots of unlabeled samples, the semi-supervised
classification may count for the future research direction. Additionally, deep learning has been successfully applied in
various tasks, such as images. However, deep learning has some limitations; for example, deep learning is suitable in a
large amount of data instead of small samples. The most sophisticated models take days to train using many expensive
GPUs. There is not a strong theoretical foundation to support the outcomes, as the determining of the training method
or hyperparameters is a black art.
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