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Abstract 

The generation of Negative Excess Pore-Water Pressure (NEPWP) due to the excavation of saturated soils under 

undrained conditions and the following dissipation of this phenomenon over time may result in different short- 

and long-term slope instability. The NEPWP generated due to excavation gradually decreases towards 

equilibrium or in some cases steady seepage. Hence, total pore-water pressures immediately after the excavation 

are lower than the ultimate equilibrium values, leading to the reduction of the average effective stresses in the 

slope and subsequently threatening the stability in the long term. In this research, the stability of three 

benchmark civil and mining excavations has been studied, considering the effects of generation and dissipation 

of NEPWP. A series of numerical simulations are conducted to determine the role of in-situ stresses and time in 

NEPWP dissipation as well as the consequent effects on the stability of the excavated slopes. To conduct a 

realistic time-dependent transient analysis, a fully-coupled hydro-geomechanical formulation has been 

employed. Results show that in general, higher removal of stress levels leads to higher NEPWP generation and 

higher factor of safety values in the short term. Thereafter, the dissipation of NEPWP threatens the long-term 

stability of the excavation. 
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1. Introduction 

Generation of either pore-water pressures or pore-water tension plays a key role in the stability of slopes (Ridley 

et al., 2004, Conte and Troncone, 2012, Zhang et al., 2011, Lollino et al., 2011, Yu-qi et al., 2005, Vaughan and 

Walbancke, 1973, Eigenbrod, 1975, Cai and Ugai, 2004).  When saturated soil is under compression in 

undrained condition, the system resists being compressed by generating excess pore-water pressure which leads 

to a reduction of effective stresses. By dissipating the developed excess pore-water pressure over time, the 

effective stress and shear strength increase gradually (Griffiths and Li, 1993, Bishop and Bjerrum, 1960, Day et 

al., 2001). This phenomenon can cause significant problems for the short-term stability of geotechnical projects. 

By removing a mass of material through excavation in undrained conditions, the reduction of total stresses  

leads to a pore-water pressure reaction while the pore-water pressure becomes depressed to compensate such a 

reduction. This phenomenon starts with the generation of excess pore-water tension or NEPWP in beneath and 

adjacent to the removed soil mass (Potts et al., 2009). By assuming unloading in a fully-saturated and under 

undrained conditions with linear elastic behaviour, the reduction in mean stress levels due to the unloading is 

equal to the generation of  NEPWP (L’Heureux et al., 2009, Bishop and Bjerrum, 1960, Eigenbrod, 1975, 

Bishop, 1953, Griffiths and Li, 1993, Bishop et al., 1975, Wang et al., 2003). The induced NEPWP 

subsequently increases the effective stresses and the shear strength of the materials. 

By the passage of time, the generated NEPWP dissipates, accompanied by swelling of the pit floor until steady-

state conditions are reached (Eigenbrod, 1975). Since the change of shear strength is associated with the 

development and dissipation of NEPWP, the shear strength of the influenced zone will decrease gradually due 

to the dissipation of  NEPWP and increase of total pore-water pressure (Bishop and Bjerrum, 1960). It follows 

that the stability of the formed slope may vary after excavation until reaching steady-state conditions at the rate 

at which swelling occurs (James, 1970b, Griffiths and Li, 1993, Vaughan and Walbancke, 1973). From the 

literature it is a well-known fact that several slopes have failed after the equilibration of the generated  NEPWP 

(Vaughan and Walbancke, 1973, Hughes et al., 2007, Potts et al., 2009, Kovacevic et al., 2011, Kovacevic et al., 

2004, Lollino et al., 2011). 

The redistribution of pore-water pressure caused due to excavation could be a function of several factors such as 

the excavation geometry, in-situ stresses, materials’ permeability, hydraulic boundary conditions, stratigraphy, 

seasonal variation and soils’ microstructures (De la Fuente et al., 2015, Lollino et al., 2011, Leroueil, 2001, 

L’Heureux et al., 2009, Rankka, 1994, Lafleur et al., 1988, Skempton, 1984). 
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Similar to the dissipation rate of pore-water pressure, in coarse-grained soils such as gravel and sand, NEPWP 

dissipates easily due to high permeability. However, in fine-grained soils such as clay and silt, the dissipation of 

NEPWP takes longer. During and after excavation, the stress redistribution due to dewatering, unloading and 

swelling can initiate new cracks and fissures, or open the existing ones. Such discontinuities act as seepage paths 

which increase the permeability of the soil mass and subsequently affect the rate of NEPWP generation and 

dissipation (Vaughan and Walbancke, 2009, Eigenbrod, 1975, James, 1970a, Cotecchia et al., 2015, Pedone et 

al., 2016, Vaughan and Walbancke, 1973, Griffiths and Li, 1993). Also, the dewatering and desaturating of soil 

may result in drying cracking (Hueckel et al., 2013, Peron et al., 2009). The suction development in drying 

cracking zones is a multi-physical process which depends on several factors such as vapor flux, air and water 

flow at the pore vessels and pore size distribution (Hueckel et al., 2013, Cafaro and Cotecchia, 2015). 

Furthermore, several studies (Hueckel et al., 2013, Peron et al., 2009, Cotecchia and Vitone, 2011, Cotecchia et 

al., 2015) have been conducted to investigate the effect of fissuring on the hydromechanical behaviour of soil at 

micro scales and it is widely accepted that the pore-water pressure and suction generation is strongly dependent 

on soil microstructure. 

Although the phenomenon of generation of NEPWP due to excavation has been investigated to some extent, the 

dissipation of NEPWP and its effect on the slope stability are rarely studied. In this study, for a greater 

understanding of the effect of this phenomenon on the stability of slopes, three different practical benchmarks 

with different values of the earth coefficient (k0) are investigated through a fully-coupled flow-deformation 

analysis by Finite Element (FE) method. It should be noted that the development of cracks and fissures is 

beyond the scope of this study, and the possible variation of permeability subsequent to cracking is not 

considered in the presented analyses. 

2. Methodology 

When excavating a saturated soil and dewatering a pit, the removed vertical and horizontal stresses are as 

follows: 

v t
h 

 
1. 

 

 '
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By removing the stresses, the change in pore pressure immediately after unloading and over time can be defined 

as follows (Vaughan and Walbancke, 1973, Skempton, 1954, Eigenbrod, 1975): 

 

 3 1 3u A       
 

3. 
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5. 

 
The dissipation of generated NEPWP can be considered as a reverse of the consolidation process which follows 

the conventional Terzaghi theory for consolidation (Yu-qi et al., 2005, Eigenbrod, 1975, Vaughan and 

Walbancke, 1973, Di Francesco, 2011) (see Eq. 6). 
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To evaluate the stability of slopes, there are several methods of analysis, of which the Limit Equilibrium Method 

(LEM) and Finite Element Method (FEM) are the two most commonly used (Abramson et al., 2002, Eberhardt, 

2003, Griffiths and Lane, 1999, Aryal, 2006, Hammah et al., 2010, Huang and Jia, 2009, Matsui and San, 1992, 

Ugai and Leshchinsky, 1995, Dawson et al., 1999, Liu et al., 2015, Tolooiyan et al., 2009, Vekli et al., 2012, 

Raghuvanshi, 2017, Krahn, 2003). 

In this study, to observe the effect of generation and dissipation of NEPWP after excavation on the stability of 

the formed slopes, the Shear Strength Reduction Finite Element Method (SSR-FEM) (Dyson and Tolooiyan, 

2018, Dyson and Tolooiyan, 2019, Aryal, 2006, Griffiths and Lane, 1999) is applied in PLAXIS 2D (PLAXIS, 

2018) and PLAXIS 3D (PLAXIS, 2017). 

3. Numerical modelling 

Three different benchmark analyses are conducted in this study (Figures 1-3). Benchmark 1 is a Two-

Dimensional (2D) simulation of a vertical urban excavation which is carried out in three stages (each 5m deep) 

over 3 days. As a common urban excavation project, the vertical wall is reinforced for the safety of the project. 

Hence, a 21m long concrete diaphragm wall with a thickness of 0.35m is installed in the ground. Also, the wall 
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is ditched to the surrounding soil with two rows of anchors with a total length of 18.8m (anchor rod and grout 

body) and inclination of 32 degrees (see Figure 1). 

Benchmark 2 is a 2D excavation of an open-pit mine where 70m of the material is excavated during 180 days 

(see Figure 2). 

Benchmark 3 is a Three-Dimensional (3D) excavation of an open-pit mine where 80m of the materials is 

excavated over 365 days (see Figure 3). 

For the soil materials constitutive modelling, the Hardening Soil (HS) model (Schanz et al., 1999) is employed 

and the model’s parameters are presented in Table 1. Also, for benchmark 1, the properties of structural 

elements are presented in Table 2. Different values of K0 are assumed to study the effect of in-situ stresses on 

the generation and dissipation of NEPWP. For the 2D FEM models, the element type is 15-node triangle and for 

the 3D model, is 10-node tetrahedral. 

To satisfy suitable boundary conditions, the geometries are extended sufficiently vertically from the ground 

surface, and horizontally from the toe and the crest of slopes. The vertical boundaries of the model are 

horizontally fixed while the bottom boundary is fully fixed (horizontally and vertically). In addition, the 

hydrostatic boundary conditions for analysis is defined as: 1) seepage through the vertical boundaries, 2) no 

seepage through the bottom of the model, and 3) groundwater table is set at the ground level. 

4. Analysis results 

By conducting a series of fully-coupled analyses of three different benchmarks with different in-situ stress 

levels, the generation and dissipation of NEPWP are investigated. It is noted that the distribution of generated 

NEPWP is not uniform and due to the major influence of the stress level removal, the maximum values have 

been generated in the zones below the foundation pits of the three benchmarks (see Figures 4-8). 

It can be seen that the greater K0 creates greater NEPWP levels that are due to more removal of stress levels in 

the excavation process and the magnitude of generated NEPWP can be more significant in deep excavations. 

Figures 9-11 presents the dissipation trends of the generated NEPWP below the foundation pits for different 

situations. The highlighted rectangles show the time period in which the most significant reduction of maximum 

NEPWP occurred. This period is approximately 20-30% of the total time required for reaching steady-state 

conditions and water pressure equilibrium. 

The distribution and variation of the generated NEPWP depend on several factors such as removal stress levels, 

excavation time, and drainage conditions. Furthermore, the maximum value of NEPWP is not necessarily 
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generated in the potential slip surface. Hence, the aforementioned time cannot be a critical time for evaluating 

the stability of slopes. Therefore, the effective time which equilibrates the pore-water pressure within the 

potential slip surface should be investigated. 

By conducting a back analysis, the points located at the maximum depth of the potential slip surface are chosen 

as reference points for three benchmarks (see Figure12). The effective time for dissipation of NEPWP in the slip 

surface can be found out by analysing the changes of total pore pressure trends at the reference points over time. 

The relationship between the total pore pressure at the reference point and time is generated  and can be written 

in the form of the one-site binding equation (see Eq. 10). 

 

active

t
P B D t E

C t
   

  
10. 

 
By equating the derived one-site binding equation to zero and solving the obtained quadratic equation, the 

effective time (see Eq. 11) for analysing the stability of the slopes can be derived as the time at which the 

change in the slope of total pore pressure versus time at the reference points becomes negligible. Table 3 

presents the required time for the dissipation of generated NEPWP at the potential slip surfaces. As shown in 

this table, the dissipation of generated NEPWP takes longer in those cases at which K0 values and stress level 

removals are higher. 
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Figures 4 (c), 5 (c), and 8 present the distribution of NEPWP for the three benchmarks just after excavation (at 

0.0te), while K0 =2. Also, Figures 13-16 present the distribution of NEPWP at 0.5te and 1.0te after excavation. 

By comparing the distribution of NEPWP, it can be seen that significant portion of the generated NEPWP 

dissipates before 0.5te is reached. 

 

Since the dissipation of NEPWP occurs over time, a time-dependent slope stability study is conducted. Figures 

17-19 present the evolution of FoS versus the normalised effective time (t/te). 
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The in-situ stress levels play a key role in the stability of the slopes formed by excavation in a saturated soil 

which is under a slow rate of drainage (due to low permeability or insufficient time). From Figures17-19, it is 

observed that the major reduction in FoS occurred during the time span from the excavation to the normalised 

effective time (t/te) equal to 0.2 - 0.3. Over this period, the generated NEPWP due to the excavation dissipates at 

a high rate while the effective stresses decrease simultaneously.  For the given benchmark analyses, the 

reduction of FoS for the time span before and after t/te=0.3 are presented in Table 4. 

Table 4 shows that the greater K0 values result in greater reduction of FoS as the consequence of NEPWP 

dissipation. This is due to the fact that the higher K0 generates higher in-situ stress levels. Greater stress level 

removal due to excavation imposes more generation of NEPWP levels and higher FoS values in the short term. 

After the dissipation of the generated NEPWP, the cases with higher stress level removal, show the higher 

reduction of FoS in the long term. 

5. Conclusion 

Ground excavation causes a decrease in mean stress and an increase in shear stress. When the removal of 

materials is under undrained condition with insufficient time or low permeability, there will be an associated 

generation of NEPWP in the soil mass. Generally, the higher K0 values and the greater depth of excavation, the 

greater effective stress removal, and consequently greater NEPWP generation. 

The process of equalisation of the generated NEPWP and the resultant reduction of the effective stresses in the 

slope is a significant factor which affects the stability of a slope over time. The results presented in this paper 

show that the rate of equilibration of generated NEPWP after excavation is rapid firstly and after some time, the 

trend continues slightly. Reaching full pore pressure equilibration may take a long time depending on factors 

such as geometry and drainage conditions. However, in general, roughly 20-30% of this time is equal to the 

effective time at which rapid reduction of NEPWP completes. 

Immediately after excavation, the stability FoS values for the slopes are much higher than those calculated at the 

steady state conditions (very long-term) when NEPWP has dissipated. Furthermore, since, the greater K0 and 

removal stress resulted in greater NEPWP, over dissipation of NEPWP, greater reduction of FoS are resulted as 

a function of K0. In overall, it can be concluded that depends on several factors such as stress level removal and 

drainage conditions, pore-water tension equalisation can be a significant trigger of instability in excavation walls 

in the long term. 
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List of notations 

σν is the removed total vertical stress 

γt is the total unit weight of the soil 

h is the depth of excavation 

σh is the removed total horizontal stress 

K0  is the earth pressure coefficient at rest 

σv′ is the removed effective vertical stress 

u is the total pore pressure 

γw  is the unit weight of water 

Δu is the changes in total principal stresses due to loading 

Δσ3 is the changes in minimum principal stress 

A is Skempton’s pore pressure parameter 

Δσ1 is the changes in maximum principal stress 

u0 is the initial total pore pressure 

u is the pore-water pressure 

Δu is the changes in pore water-pressure 

Δue is the changes in excess pore-pressure 

ut is the pore pressure at the stabilised groundwater conditions 

ch is the horizontal coefficient of consolidation 

cv  is the vertical coefficient of consolidation 

E50
ref

  is the secant stiffness in standard drained triaxial test 

Eoed
ref

  is the tangent stiffness for primary oedometer loading 

Eur
ref

  is the unloading/reloading stiffness 

Pactive is the active pressure 

B is the maximum specific binding 

t  is the time 

C  is the equilibrium binding constant 

D is the slope of nonspecific binding 

E is the amount of nonspecific binding 

te is the effective dissipation time 
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Table captions 

 

Table 1. Properties of the materials for benchmarks 1, 2 and 3 

Table 2. Properties of the structural elements for benchmark 1 

Table 3. Effective dissipation time 

Table 4. FoS reduction over time 

 

Table 1. Properties of the materials for benchmarks 1, 2 and 3 

Benchmark Benchmark 1 Benchmark 2 Benchmark 3 

Type of material 
Material 

(I) 

Material 

(II) 

Material 

(III) 

Material 

(IV) 

Material 

(V) 

Material 

(VI) 

Dry unit weight 

(kN/m
3
) 

19 22 22 21 18 20 

Saturated unit weight 

(kN/m
3
) 

22 24 23 23 20 22 

E50
ref 

(MPa) 40 100 300 200 100 80 

Eoed
ref

 (MPa) 40 100 300 200 100 80 

Eur
ref

 (MPa) 120 300 900 600 300 240 

Cohesion (kN/m
2
) 20 30 70 5 140 110 

Friction angle  

(degree) 
32 25 25 33 25 20 

Permeability (m/day) 0.01 0.001 0.0002 0.002 0.0001 0.0001 

K0 1, 1.5, 2 1, 1.5, 2 1, 1.5, 2 1, 1.5, 2 1, 1.5, 2 1, 1.5, 2 

 

Table 2. Properties of the structural elements for benchmark 1  

Concrete diaphragm wall 

Normal stiffness 

(kN/m) 

Flexural rigidity (kN m
2
/m) Weight (kN/m/m) Poission’s ratio 

1.2e7 1.2e5 8.3 0.15 

Anchor rod 

Normal stiffness (kN/m) Spacing out of plane (m) 

5e5 2.5 

Grout body 

Elastic modulus 

(kN/m
2
) 

Diameter (m) Pile spacing (m) Skin resistance (kN/m) 

7.07e6 0.3 2.5 400 
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Table 3. Effective dissipation time 

Benchmark 1 te (day) 

K0=1 14 

K0=1.5 25 

K0=2 50 
 

Benchmark 2 te (day) 

K0=1 8030 

K0=1.5 10585 

K0=2 19345 
 

Benchmark 3 te (day) 

K0=1 18250 

K0=1.5 60225 

K0=2 123370 
 

 

Table 4. FoS reduction over time 

Case 
Benchmark 1 Benchmark 2 Benchmark 3 

K0=1 K0=1.5 K0=2 K0=1 K0=1.5 K0=2 K0=1 K0=1.5 K0=2 

Total reduction 

(%) 
8.57 12.15 15.97 10.65 17.64 20.22 13.03 22.66 24.26 

Reduction during 

t/te≤0.3 (%) 
8.24 11.37 14.6 10 16.37 17.17 12.65 21.92 22.8 

Reduction during 

t/te>0.3 (%) 
0.33 0.78 1.37 0.65 1.27 3.05 0.38 0.74 1.46 
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Figure captions 

 

Figure 1. Two-dimensional civil excavation (Benchmark 1) 

Figure 2. Two-dimensional mining excavation (Benchmark 2) 

Figure 3. Three-dimensional mining excavation (Benchmark 3) 

Figure 4. Generated NEPWP just after excavation for benchmark 1. (a): K0=1, (b): K0=1.5, and (c): K0=2 

Figure 5. Generated NEPWP just after excavation for benchmark 2. (a): K0=1, (b): K0=1.5, and (c): K0=2 

Figure 6. Generated NEPWP just after excavation for benchmark 3, K0=1. (a): 3D view, (b): plan view, and (c): 

middle 2D cross section 

Figure 7. Generated NEPWP just after excavation for benchmark 3, K0=1.5. (a): 3D view, (b): plan view, and 

(c): middle 2D cross section 

Figure 8. Generated NEPWP just after excavation for benchmark 3, K0=2. (a): 3D view, (b): plan view, and (c): 

middle 2D cross section 

Figure 9. Dissipation of NEPWP versus time (Benchmark 1) 

Figure 10. Dissipation of NEPWP versus time (Benchmark 2) 

Figure 11. Dissipation of NEPWP versus time (Benchmark 3) 

Figure 12. Typical distribution of total displacement vectors; (a): benchmark 1, (b): benchmark 2, and (c): 

benchmark 3 

Figure 13. NEPWP distribution for benchmark 1, K0=2. (a): after 0.5 te, (b): after te 

Figure 14. NEPWP distribution for benchmark 2, K0=2. (a): after 0.5 te, (b): after te 

Figure 15. NEPWP distribution for benchmark 3 after 0.5 te, K0=2. (a): 3D view, (b): plan view, and (c): middle 

2D cross section 

Figure 16. NEPWP distribution for benchmark 3 after te, K0=2. (a): 3D view, (b): plan view, and (c): middle 2D 

cross section 

Figure 17. Changes of FoS versus normalised effective time for benchmark 1 

Figure 18. Changes of FoS versus normalised effective time for benchmark 2 

Figure 19. Changes of FoS versus normalised effective time for benchmark 3 
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