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Abstract
There are two independent serotonin (5-HT) systems of organization: one in the central ner-

vous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the

central nervous system. On the other hand, peripheral 5-HT also may play an important role

in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here

we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglyce-

mia and insulin resistance and completely prevented the enlargement of intra-abdominal

adipocytes without having any effect on food intake when on a high fat diet, but not on a

chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This

novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle

fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramati-

cally induced an increase in the mRNA expression of peroxisome proliferator-activated

receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these

gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor

(5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an

important role in the relief of obesity and other metabolic disorders by accelerating energy

consumption in skeletal muscle.
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Introduction
Serotonin (5-HT) is a monoaminergic neurotransmitter with activities that modulate central and
peripheral functions. The first step in the synthesis of 5-HT from tryptophan depends on the
enzyme tryptophan hydroxylase (TPH), which is also the rate-limiting enzyme in its biosynthe-
sis. TPH is known to possess two isoforms, TPH1 and TPH2 [1]. TPH1 is mostly present in the
pineal gland, spleen, thymus and intestinal enterochromaffin cells. TPH2 is expressed entirely in
neuronal cells, such as in the raphe nuclei of the brain stem. Peripheral 5-HT in TPH1 knockout
mice is not able to be replaced with 5-HT synthesized by TPH2 in the central nervous system [2].
Further, it is thought that 5-HT in the periphery cannot pass the blood-brain barrier [3, 4]. Thus,
there are two independent systems of organization for 5HT: one in the central nervous system
and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous
system, and close to 2% of the body’s 5-HT is stored there [5–10]. On the other hand, peripheral
5-HT has not been the subject of such intense study, particularly with respect to body fat and
lipid metabolism, even though approximately 98% of the body’s 5-HT exists in the periphery.

Accumulating evidence indicates that peripheral 5-HT plays an important role in glucose
and lipid metabolism. Recent studies have shown that the level of blood 5-HT and the number
of intestine enterochromaffin cells in obese mice was found to be much higher than that in lean
mice [11, 12]. Intraperitoneal (i.p.) injection of 5-HT to mice accelerates the metabolism of lipid
by increasing the concentration of circulating bile acids [13], and further, that 5-HT regulates fat
metabolism and feeding behavior through independent molecular mechanisms in Caenorhabdi-
tis elegans [14]. Additionally, TPH1 deficient mice have an impaired insulin secretion and signif-
icantly higher blood glucose concentrations than wild type animals in glucose tolerance tests
[15]. On the other hand, gut-derived serotonin enhances lipolysis in adipocytes through 5-HT
receptor (5HTR) 2B and gluconeogenesis in hepatocytes through 5HTR2B [16]. TPH1 deficient
mice are protected from obesity and insulin resistance by elevation of brown adipose tissue
activity [17]. These studies suggest that 5-HT may be a key factor with regard to glucose and
lipid metabolism, fat accumulation and obesity in not only the central nervous system but also
the periphery, as demonstrated through the various phenotypes of available knock out mice.

Skeletal muscle has important roles in energy metabolism and glucose utilization, especially
during excise. The existence of slow and fast type myosin heavy chain isoforms is observed in nor-
mal mature muscle fibers. Slow type muscle fibers have a high concentration of mitochondria
and produce energy by oxidative metabolism. In contrast, fast type muscle fibers use glycolysis as
the chief ATP source [18, 19]. Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1
a (PGC-1a), is identified as a nuclear receptor coactivator of PPARγ, and it is a principal physio-
logical regulator for slow type muscle fiber specification [19–21]. Skeletal muscle–specific PGC-
1α knockout mice have significantly impaired glucose tolerance [22], while obese humans have a
significantly lower percentage of slow type muscle fibers than humans with lower adiposities [23].

It is strongly suggested that 5-HT may be a key factor with regard to energy metabolism in
skeletal muscle, as recent study shows that a 5HTR2 agonist induces the elevation of PGC-1α
promoter activity [24]. To verify these hypotheses, we investigated the effect of long-term treat-
ment of mice with peripheral 5-HT on obesity and energy metabolism in skeletal muscle in
mice on the high fat diet.

Materials and Methods

Animal studies
Male C57BL/6 mice were purchased from Japan SLC (Shizuoka, Japan). All mice were housed
in a temperature-controlled facility (23°C) with a 12-hour light/dark cycle and fed a chow diet
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(14.4 MJ/kg) containing 4.8% fat (Ch) or high-fat diet (17.0 MJ/kg) containing 13.6% fat (F)
(CLEA Japan, Inc., Tokyo, Japan). The mice were injected i.p. with serotonin (5-HT) (0.1 mg,
0.5 mg or 1 mg) (Sigma, St. Louis, MO) or phosphate buffered saline (PBS) twice a week
between the ages of 5 and 26 weeks. The body weight of mice was measured at the same time as
the injections were given. The mice were fasted 12 h before blood and tissues samples were har-
vested in all experiments. The food intake in each group mice was measured for 5 days when
they were 17 weeks of age. The rectal temperature was measured with a thermometer (BAT-
7001H; Physitemp Instruments Inc, Clifton, NJ) at 26 weeks of age. The experiments were per-
mitted by the Tohoku University Environmental & Safety Committee and conducted in accor-
dance with the Guidelines for Animal Experimentation of Tohoku University, which have
been sanctioned by the relevant committee of the Government of Japan.

The percentage of body fat and intra-abdominal fat
The proportion of fat in the whole body was determined by Folch’s method. All of the intra-
abdominal fat was removed from the body and the weighed. The proportions of total body and
intra-abdominal fat were normalized according to body weight.

Histology of white adipose tissues
Intra-abdominal white adipose tissues were obtained from the mice at 26 weeks of age. These
tissues were fixed in 4% paraformaldehyde/PBS, (pH 7.2) and then embedded in paraffin. The
staining with hematoxylin-eosin of intra-abdominal white adipose tissues was performed as
previously described [13]. The sizes of the intra-abdominal white adipocytes were determined
by measuring two hundred cells per sample (n = 5).

Plasma chemistry analysis
Blood samples were collected from 26 week old mice (n = 7–12) in ice-cold tubes containing
heparin (10 unit/tube) (Mochida, Tokyo, Japan), and immediately centrifuged at 20,000 g for
15 min. Plasma samples were stored at -80°C until analysis. All plasma concentrations of hor-
mones and metabolites were measured by commercially available kits supplied by Wako
(Osaka, Japan), other than that for leptin and adiponectin, which were supplied by R&D sys-
tems (Minneapolis, MN). All procedures were performed according to the manufacturer’s
recommendations.

Glucose and insulin tolerance tests
An i.p. glucose tolerance test was performed in 23 week old mice (n = 6). Glucose (Sigma) was
administered i.p. at a dose of 2 mg/g body weight. An i.p. insulin tolerance test was performed
in 25 week old mice (n = 6). Insulin (Sigma) was administered i.p. at a dose of 0.225 U/kg body
weight. Blood samples were collected from the caudal vein of each mouse at 0, 15, 30, 60, 90
and 120 min after treatment. Plasma glucose and insulin concentrations were measured using
the above-mentioned methods.

Indirect calorimetry
Whole-body energy metabolism was examined using an open-circuit indirect calorimeter
(Arco-2000; Arco System, Chiba, Japan). After the system was calibrated against standard gas
mixtures, mice were placed in individual acrylic calorimeter chambers with free access to food
and water. Energy expenditure, defined as oxygen consumption (VO2) and carbon dioxide
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production (VCO2) were measured during a period of 24 h from 16:00 hours at room tempera-
ture. The acclimation time was 1 h. Measurements were normalized by body weight.

Immunohistochemical analysis
Gastrocnemius and soleus muscles obtained from 14 week old mice were frozen in acetone
cooled by dry ice. In order to determine skeletal muscle fiber type, the cryosections were cut
using a cryostat microtome (Leica, Wetzlar, Germany) and subjected to immunohistochemis-
try. The sections were immunostained with anti-slow (clone M 8421, 1:600, Sigma) and anti-
fast (clone M 4276, 1:300, Sigma) myosin heavy chain monoclonal antibodies, specific markers
of type-I and type-II myofibers, respectively. Histofine Simplestain MAX-PO (M) (Nichirei,
Tokyo, Japan) was used as the secondary antibody. The proportion of each fiber type was deter-
mined in each section of the gastrocnemius and soleus muscles using a photomicroscope pho-
tograph (Keyence) and Scion Image software.

NADH-tetrazolium reductase (NADH-TR) Staining
Fresh-frozen sections of soleus and gastrocnemius muscles in mice at 14 weeks of age of each
group were incubated in 0.05 M Tris buffer (pH 7.2) containing NADH (Kohjin Co., Ltd.,
Tokyo, Japan) and nitoroblue tetorazolium (NBT) (Nacalai Tesque, Inc, Kyoto, Japan) for 30
min at 37°C. Staining was then cleared with 50% acetone and preserved with aqueous mount-
ing medium.

NAD+/NADH ratio assay
Soleus and gastrocnemius muscles were obtained from 14 weeks old mice from each group.
About 5 mg of each muscle was used for the analysis of the ratio of NAD+/NADH. The concen-
trations of NAD+ and NADH were measured by using a NAD+/NADH Quantification Kit
(BioVision, San Francisco, CA). The procedure was performed according to the manufacturer’s
instructions.

mRNA expression analysis
Total RNA was extracted from frozen tissue samples using Trizol reagent (Invitrogen, Co.,
Carlsbad, CA). cDNA was synthesized from total RNA with the Superscript III reverse tran-
scription kit (Invitrogen, Co., Carlsbad, CA) using random primers. The real-time PCR mea-
surement of individual cDNAs was performed using the Thermal Cycler Dice Real Time
System Single (Takara Bio Inc., Siga, Japan). After incubation for 10 sec at 95°C, the cDNA was
followed by PCR for 40 cycles (95°C, 5 sec: 60°C, 30 sec). SYBR green fluorescence was detected
at the end of each cycle to monitor the amount of PCR product formed during that cycle. At
the end of each run, the melting curve profiles were recorded. The standard curve of each prod-
uct followed the calculation of the respective gene expressions. Values were normalized to
those of 18S ribosomal RNA. The primer sequences are listed in Table 1.

Effect of serotonin receptor antagonists
Ketanserin (Sigma), an antagonist for 5HTR2A, was dissolved in 0.1 M HCl, diluted with PBS,
and administered in a dosing volume of 0.1 mg/mouse. SB-204741 (Tocris Bioscience, Bristol,
UK), an antagonist for 5HTR2B, was dissolved in DMSO, diluted with PBS such that the final
concentration of DMSO was 0.1%, and administered in a dosing volume of 0.08 mg/mouse.
SB-269970 (Sigma), 5HTR7 antagonist, and methysergide (Sigma), a 5HTR1, 2 and 7 antago-
nist, were dissolved in PBS and administered in a dosing volume of 0.6 and 0.1 mg/mouse,
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Table 1. Primers used in quantitative real-time PCR analysis for determining expression of mRNA.

Genes Primer sequence Product size (bp)

Total PGC-1α F CCGTAAATCTGCGGGATGATG 114

R CAGTTTCGTTCGACCTGCGTAA

PGC-1α-a F GCTTGACTGGCGTCATTCG 59

R ACAGAGTCTTGGCTGCACATGT

PGC-1α-b F GACATGGATGTTGGGATTGTCA 61

R ACCAACCAGAGCAGCACATTT

PGC-1α-c F AGTGACATGGATGTTGGGATTG 66

R GAATGCCTCCGGTTACTCACTT

D2 F CTGCTCAGTCTGTGGTTGGATGTAG 91

R TGCACCATGACCCAAATGTTC

UCP-3 F CTGAAGATGGTGGCTCAGGA 144

R CCGCAGTACCTGGACTTTCATTA

NRF1 F GCTTGTGAAGTCCAGGGACAGAG 110

R AGGGCGTTTACCTGCCTGTG

PPARγ F TGTCGGTTTCAGAAGTGCCTTG 122

R TTCAGCTGGTCGATATCACTGGAG

Cyt-C F CCATTACCCTGGTGTGGCTTTC 70

R ACAGCAGCCATTAGCTACTTCATCA

COX4 F TATGCTTTCCCCACTTACGC 159

R CTGGATGCGGTACAACTGAA

HSL F TCCTGGAACTAAGTGGACGCAAG 93

R CAGACACACTCCTGCGCATAGAC

CPT-1b F GAGACAGGACACTGTGTGGGTGA 107

R TGGTACGAGTTCTCGATGGCTTC

5HTR1A F CCTGCCACATGAAGCCATTG 136

R GGTGTGGACACCCTACAGGCTTA

5HTR1B F TGGCCGCATCTATGTGGAAG 88

R TATCAACTGGGCTCGGGTCAA

5HTR1D F CATCTGCAGGGACTCTTGTTGG 124

R CGCTTGTCGAAAGTCTTCGTTG

5HTR1F F CAGATCGGAACTGAAGCATGAGAA 97

R ACCCAAGATCAATCCCAGGGTAG

5HTR2A F TAGCCGCTTCAACTCCAGAACC 117

R AAGACCTTCGAATCATCCTGTAGCC

5HTR2B F CGGGCTACTGCATTCATCAAGA 122

R AGCTCACAGGTGACATTGTGTGG

5HTR2C F CATGTTCCCAGTAACTGTGTTTCCA 120

R GCTCACTCCAAGGTGTGCAAGTAG

5HTR3A F AGCCAACAAGACTGATGACTGCTC 74

R CAACATGGCTGCAGTGGTTTC

5HTR3B F TTCAGGGTCAACATGTCTGATGAAG 85

R GGGCCATGCAGACGGTAAAG

5HTR4 F AAGTACATGTGTGCCTGCTGTTGAG 97

R TAGCCAACCAGTTCATGACACCA

5HTR5A F TTTACAGGGCGGCGAAAT 118

R CGGACCGTGAACACCATCT

5HTR5B F AGTTTCGATTCGGTCGCAGA 82

(Continued)
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respectively. All antagonists were i.p. injected at 30 min before the injection of 1 mg 5-HT.
After 120 min, samples were collected from skeletal muscle.

Statistical analysis
Values are reported as means ± SE. Statistical analyses were performed using Student's t test or
one-way and two-way ANOVA followed by Tukey’s test to evaluate statistical differences
among the groups. P values less than 0.05 were considered statistically significant.

Results

5-HT inhibits weight gain and adiposity of mice fed a high fat diet
Mice were fed a chow (Ch) diet or a high fat (F) diet and injected i.p. with 1 mg of 5-HT twice a
week between the ages of 5 and 26 weeks. Mice on the F diet gained significantly more weight
than the Ch fed mice at 8 weeks of age, and became markedly obese by 26 weeks of age. 5-HT
treated mice on the F diet gained weight until 10 weeks of age, however, their weight gain tailed
off after 13 weeks of age and they approached the average weight of the Ch fed mice (Fig 1A).
Interestingly, the administration of 5-HT did not affect the weight gain of the Ch fed mice.
Although the high fat diet increased the whole body mass (Fig 1B), the accumulation of intra-
abdominal fat (Fig 1C), and the percentages of total body fat and intra-abdominal fat (Fig 1D),
those in 5-HT treated mice on the F diet were not different from the control mice on the Ch
diet. The administration of 5-HT completely prevented the enlargement of the intra-abdomi-
nal adipocytes in mice on the F diet (Fig 1E). The anti-obesity activity of 5-HT in mice on the F
diet was observed from 18, 16 and 12 weeks of age following 5-HT injection of 0.1, 0.5 and 1
mg, respectively (Fig 1F). The effect was concentration-dependent when analyzed at 26 weeks
of age.

The blood concentrations of NEFA, cholesterol, triglyceride, glucose, insulin and leptin
increased in F diet-fed control mice following their body weight gain (Fig 2A). The concentra-
tions of these hormones and metabolites, other than for cholesterol, were maintained in 5-HT
treated mice on the F diet at the levels seen in the mice on the Ch diet. Although 5-HT has
been reported to inhibit adiponectin expression in the 3T3L1 adipocyte [25], there were no dif-
ferences in blood adiponectin levels between each group. Intraperitoneal glucose and insulin
tolerance tests show that 5-HT treatment protected against the hyperglycemia and an elevation
in insulin resistance observed in mice on the F diet (Fig 2B and 2C).

Using indirect calorimetry, energy metabolism, O2 consumption, CO2 production and
respiratory exchange ratio (RER) were higher in 5-HT injected mice on the F diet, but 5-HT

Table 1. (Continued)

Genes Primer sequence Product size (bp)

R TCAGACTCCGGAGGTGCTTC

5HTR6 F CTGACCACCAAGCATAGCAGGA 162

R CAGCCATGTGAGGACATCGAA

5HTR7 F CTAACGCACAATTCCCATGCTTC 142

R GCAACACATTCAACACGATGCTTAC

18S F CGGCTACCACATCCAAGGAA 125

R GCTGGAATTACCGCGGCT

F: Forward primer, R: Reverse primer

doi:10.1371/journal.pone.0147143.t001
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Fig 1. Effect of 5-HT on Adiposity of Mice Fed a High Fat Diet. A, Body weight of male C57BL/6 mice fed a
chow diet (Ch) or a high fat diet (F) were measured over 26 weeks (n = 12 to 20). Mice were intraperitoneally
injected with PBS or 5-HT (1 mg/mouse) twice a week. Open circles, chow plus PBS (Ch+PBS); filled circles,
chow plus 5-HT (Ch+5HT); open squares, F diet plus PBS (F+PBS); filled squares, F diet plus 5-HT (F+5HT).
B and C, Photographs are the gross appearance (B) and the abdominal cavity (C) of representative mice from
each group at 26 weeks of age. D, The proportion of whole body fat (n = 5) and intraabdominal fat (n = 10) of
each group of mice at 26 weeks of age. E, The adipose tissues of mice at 26 weeks of age were stained with
hematoxylin and eosin. Bars in histological sections indicate 50 μm. Figs show the size distribution of
adipocytes. Data are means ± s.d. Figs with a different superscript letter are significantly different (p<0.05). F,
The change in body weight of C57BL/6 mice treated with several doses of 5-HT were measured over 22
weeks (n = 14 to 20). The body weight of mice at 22 weeks of age shows the concentration dependent effect
of 5HT. Open circles, Ch+PBS; open squares, F+PBS; filled symbols, F+5HT at a concentration of 0.1 mg
(▲), 0.5 mg (◆) and 1.0 mg/mouse (&). Red colored symbols show significance in F+5HTmice against F
+PBSmice (p<0.05). Data are means ± s.e. All data were analyzed by two-way ANOVA without (F). Data in
(F) was analyzed by one-way ANOVA. Columns with a different letter are significantly different (p<0.05).
*p<0.05, **p<0.01 indicates significance in F+5HTmice against F+PBSmice.

doi:10.1371/journal.pone.0147143.g001

Fig 2. Metabolic Effect of 5HT on a High Fat Diet. A, The concentrations of blood NEFA, cholesterol,
triglyceride, glucose, insulin, leptin and adiponectin were measured in mice aged between 21 and 26 weeks
of age (n = 7–12). B and C, Glucose tolerance (B) and insulin tolerance (C) tests were performed in each
group of mice at 21 weeks of age (n = 7). Circles, Ch+PBS; filled circles, Ch+5HT; squares, F+PBS; filled
squares, F+5HT. Data are means ± s.e. Data in (A) were analyzed by two-way ANOVA. Data in (B) and (C)
were analyzed by Student's t test. Columns with a different letter are significantly different (p<0.05). *p<0.05,
**p<0.01 indicates significance in F+5HTmice against F+PBSmice.

doi:10.1371/journal.pone.0147143.g002
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did not affect these measures in mice on the Ch diet (Fig 3A). In contrast, 5-HT did not affect
food intake and rectal temperature in mice on either diet (Fig 3B and 3C). These results dem-
onstrate that the increase in energy expenditure following 5-HT treatment ameliorates the obe-
sity and diabetes of mice on the F diet, without any change of food intake.

5-HT elevates the proportion of slow type muscle fibers in the skeletal
muscle of mice on the high fat diet
In order to identify the target tissues of the effect of 5-HT on energy metabolism, we focused
on skeletal muscle, and especially the slow muscle fiber type, which has been shown to princi-
pally metabolize fatty acids by oxidative means. In the soleus muscle of mice on the F diet at 14
weeks of age, 5-HT significantly increased the proportion of slow muscle fibers and decreased
the proportion of fast muscle fibers (Fig 4A and 4C). However, these effects were not seen in
mice on the Ch diet. In addition, increases in the proportion of oxidative muscle fibers (darker
blue) and the NAD+/NADH ratio were observed in gastrocnemius muscle of 5-HT treated
mice on the F diet, though there was no difference between treatments in the soleus muscle
(Fig 4B and 4D).

Fig 3. Effect of 5-HT on Energy Metabolism. A, Energy expenditure, oxygen consumption, production of
carbon dioxide and respiratory exchange ratio were measured for 24 h in each group mice at 21 to 23 weeks
of age (n = 5–6). The acclimation time was 1 h. These values were normalized to body weight. B, The food
intake of each group of mice was measured for 1 day at 17 weeks of age (n = 6). C, The rectal temperatures
of each group mice at 22 weeks of age are indicated (n = 14). Data are the mean ± s.e. Data were analyzed
by Student's t test (A) and two-way ANOVA (B). Columns with a different letter are significantly different
(p<0.05). *p<0.05, **p<0.01 indicates significance in 5-HT-treated mice against PBS-treated mice.

doi:10.1371/journal.pone.0147143.g003
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PGC-1α is a master regulator that promotes mitochondrial biogenesis and a fiber switch to
slow muscle fiber type in skeletal muscle [19–21]. It has been recently reported that PGC-1α
mRNA has three isoforms, PGC-1α-a, b and c [26]. Therefore, we measured the mRNA expres-
sions of PGC-1α isoforms (Fig 5A). 5-HT increased the expression of total PGC-1α in soleus
muscle of mice on the F diet, following the dramatic elevation of PGC-1α-b and c expressions.

Additionally, the expressions of key genes in energy homeostasis, such as type 2 iodothyro-
nine deiodinase (D2) and uncoupling protein (UCP) 3 were elevated by 5-HT injection in both
diet groups (Fig 5B). 5-HT selectively increased the mRNA expressions of peroxisome-prolif-
erator-activated receptor γ (PPARγ), hormone-sensitive lipase (HSL) and the genes related to
mitochondrial biogenesis and activities, such as nuclear respiratory factor (NRF) 1, cytochrome
c (Cyt-c), and cytochrome c oxidase subunit (COX) IV in mice on the F diet, other than carni-
tine palmitoyltransferase 1b (CPT-1b). These data suggest that 5-HT may be able to increase
the oxidative muscle fiber type and the energy metabolism of skeletal muscle.

Mechanism of elevation of energy expenditure in skeletal muscle by
5-HT
In order to clarify the mechanism by which PGC-1α-b and c are elevated by 5-HT, we mea-
sured the mRNA expression levels in soleus muscle of mice at 8 weeks of age after a single
injection of 5-HT. The expressions of these mRNA were dramatically elevated in soleus muscle

Fig 4. 5-HT elevates the proportion of slow type muscle fibers in the skeletal muscle of mice on the
high fat diet. A, Mice fed a chow diet (Ch) or a high fat diet (F) were i.p. injected with PBS or 5-HT (1 mg/
mouse) twice a week. After 8 weeks of treatment, the frozen sections of soleus and gastrocnemius muscles
of 14 weeks of age mice were immunostained using anti-slow and anti-fast myosin heavy chain antibodies,
specific markers of myofiber type-I and type-II, respectively (n = 5). S and G in (A) indicate the positions of
soleus and gastrocnemius muscles, respectively. Bars in histological sections indicate 200 μm. B, The
activities of oxidative enzyme in soleus and gastrocnemius muscles of mice at 14 weeks of age of each group
were examined by enzymatic staining using NADH-tetrazolium reductase (NADH-TR) shown with a blue
precipitate. Bars in histological sections indicate 50 μm. C, The proportions of slow, fast and intermediate
type muscle fibers in soleus muscle of each group of mice were calculated by evaluating the type of all soleus
muscle fiber in each immunostaining section in (A) (n = 5). D, Intracellular levels of NAD-to-NADH ratio were
measured in soleus and gastrocnemius muscles of mice at 14 weeks of age (n = 5–7). Data are the mean ± s.
e. Data were analyzed by two-way ANOVA. Columns with a different letter are significantly different (p<0.05).

doi:10.1371/journal.pone.0147143.g004
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after the injection of 5-HT (Fig 6A). In addition, soleus muscle had higher expressions of
5HTR2A, 2B and 7 (Fig 6B). In order to determine what kinds of 5HTR were related to the ele-
vation of PGC-1α-b and c gene expressions in soleus muscle, mice were pre-treated with sev-
eral 5-HTR antagonists at 30 min before 5-HT injection. In soleus muscle, the elevation of
these mRNA expressions at 120 min after the 5-HT injection were significantly inhibited by
methysergide (5HTR1, 2 and 7 antagonist), ketanserin (5HTR2A antagonist) and SB-269970
(5HTR7 antagonist), but not SB-204741 (5HTR2B antagonist) (Fig 6C). These data indicate

Fig 5. Effect of 5-HT onmRNA expression in soleusmuscle. The relative mRNA expression levels of
Total PGC-1α, PGC-1α-a, PGC-1α-b, PGC-1α-c, D2, UCP3, PPARγ, NRF1, Cyt-c, COXIV, HSL and CPT-1b
were analyzed in soleus muscle of each group of mice at 14 weeks of age by quantitative real-time RT-PCR
(n = 6–8). Data are the mean ± s.e. Data were analyzed by two-way ANOVA. Columns with a different letter
are significantly different (p<0.05).

doi:10.1371/journal.pone.0147143.g005

Fig 6. Elevation of mRNA Expressions of PGC-1α-b and PGC-1α-c by 5HT. A, In 8 weeks of age mice,
the mRNA expression levels of PGC-1α-b and PGC-1α-c were measured in soleus muscle and after i.p.
injection of 1 mg 5-HT by real time PCR (n = 6–8). B, The relative mRNA expression levels of 5-HTR were
measured in soleus muscle of mice at 8 weeks of age by using real time PCR (n = 6–8). C, At 30 min before
the administration of 1 mg 5-HT, mice were injected with several 5-HTR antagonists: Methysergide
(antagonist for 5-HTR1, 2 and 7, 0.1 mg/mouse), SB-269970 (5-HTR7, 0.6 mg), Ketanserin (5-HTR2A, 0.1
mg/mouse) and SB-204741 (5-HTR2B, 0.08 mg/mouse). The mRNA expressions of PGC-1α-b and PGC-1α-
c in soleus muscle were determined at 120 min after 5-HT injection by real time PCR (n = 6–8). The mRNA
expression levels in PBS-pretreated mice injected with 5-HT are designed as 100. Values in soleus muscle
were normalized to those for 18S. Data are means ± s.e. Data were analyzed by Student's t test (A) and one-
way ANOVA (C).*, P<0.05; **, P<0.01 relative to basal values at 0 min of PGC-1α-b. #, P<0.05; ##, P<0.01
relative to basal values at 0 min of PGC-1α-c. Columns with a different letter are significantly different
(p<0.05).

doi:10.1371/journal.pone.0147143.g006
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that 5-HT increases the mRNA expressions of PGC-1α-b and c through 5-HTR2A and 7 in
soleus muscle.

Discussion
Neural 5-HT is believed to modulate numerous sensory, motor and behavioral processes, and
be also involved in the control of feeding in the mammalian nervous system. It has been previ-
ously reported that neural 5-HT has a suppressive effect on food intake and tends to decrease
body weight gain [5–10]. 5HTR2C, a prominent G-protein-coupled receptor, is widely
expressed throughout the brain and spinal cord and has been proposed to mediate numerous
central nervous system actions of 5-HT [27]. 5HTR2C deficient mice are overweight as a result
of an abnormal control of feeding behavior, establishing a role for this receptor in the seroto-
nergic control of appetite [8, 28]. In contrast, peripheral 5-HT did not cause any change in
food intake behavior in mice in the present experiment, not only on the F diet but also on the
Ch diet. In addition, the peripheral injection of 5-HT also did not cause any change in the rate
of body weight gain in mice on the Ch diet. A study on 5-HT signaling in Caenorhabditis ele-
gans reported that serotonergic regulation of fat was molecularly distinct from feeding regula-
tion, and that obesity and thinness were not solely determined by feeding behavior [14]. As
peripheral 5-HT is thought to be unable to pass the blood-brain barrier, 5-HT likely had an
independent mechanism affecting obesity in the periphery, and not through any central ner-
vous system involvement [3, 4].

Mice on the F diet gained weight until 10 weeks of age with or without the peripheral 5-HT
treatment, though 5-HT inhibited their body weight gain after 13 weeks of age. However, it
remains unclear why 5-HT decreased body weight gain in mice on the F diet, but not on the Ch
diet. In skeletal muscle, 5-HT intriguingly induced an elevation of energy expenditure-related
gene expressions, as well as morphological changes in the mice, on the F diet more so than on
the Ch diet. It has been reported that the alterations in fat accumulation in the intra-abdominal
organs, such as visceral adipose tissue and the liver, induce hormonal and neuronal signaling
pathways, resulting in cooperative metabolic regulation among tissues/organs throughout the
body [29]. In addition, hepatic activation of extracellular regulated kinase (ERK) signaling
induced pancreatic β cell proliferation through a metabolic relay from the liver to the pancreas
[30]. 5-HT also stimulates the contraction of the gallbladder and the excretion of bile, and
accelerates the metabolism of lipid and the function of liver by increasing the concentration of
bile acids in circulation [13]. These reports indicate that metabolic regulation in mammals
requires communication between multiple organs and tissues, and that 5-HT may prevent or
even reverse fat accumulation and body weight gain after the consumption of surplus energy
following F diet feeding.

In this study, we confirmed that treatment with 5-HT induced a shift of the profile of muscle
fiber type from fast/glycolytic type to slow/oxidative type in soleus muscle, especially in mice
on the F diet. In addition, the injection of 5-HT increased the mRNA expressions of PGC-1α-b
and c and genes related to the oxidation of fatty acids in skeletal muscle in mice on the Ch diet,
and dramatically so for mice on the F diet. Recent studies demonstrated that transgenic mice
overexpressing PGC-1α-b or c in skeletal muscle induced higher gene expressions involved in
mitochondrial biogenesis and fatty acid oxidation [26]. Exercise capacity and oxygen uptake
were also increased in skeletal muscle in mice over-expressing PGC-1α-b [31]. The expressions
of PGC-1α-b and c mRNA in skeletal muscle were remarkably elevated by exercise [26]. Addi-
tionally, 5-HT controls the biogenesis of mitochondria by increasing the PGC-1α promoter
activity through 5-HT receptors in renal proximal tubular cells [24]. Taken together, our data
indicate that 5-HT may prevent fat accumulation and body weight gain by morphological
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changes of skeletal muscle through an elevation of PGC-1α-b and c expressions in mice with
surplus energy during F diet feeding. However, there are few studies on an effect of an intestinal
hormone on the ratio of muscle fiber type without the effect of exercise or the knockout of one
or more genes. Therefore, it is a novel finding that 5-HT can induce a shift from glycolytic to
oxidative metabolism in muscles.

Different findings have been found with regard to 5-HT function in glucose and lipid
metabolism between genetic and treatment studies with 5-HT. A recent study demonstrated
that gut-derived 5-HT signaling through the 5HTR2B promotes lipolysis in adipocytes and glu-
coneogenesis in hepatocytes, but inhibits glucose uptake in hepatocytes in the TPH1 deficiency
mice model [16]. Genetic inhibition of Tph1 protects or reverses the development of F diet
induced obesity and dysglycemia via activation of UCP1-mediated thermogenesis in brown
adipose tissue [17]. Additionally, 5-HT suppresses glycogen synthesis at micromolar levels but
promotes it at nanomolar levels in hepatocytes by serotonergic mechanisms [32]. In contrast,
5-HT increases net hepatic glucose uptake in hyperglycemic and hyperinsulinemic conditions
[33]. Our previous study shows that 5-HT injection induces an increase in the hepatic glycogen
content, and the decrease of hepatic triglyceride content [13]. In this study, in mice on the F
diet at 14 weeks of age, 5-HT significantly decreased the liver weight and hepatic triglyceride
content, however, there was no change in the expressions of β oxidation related gene in the
liver of mice injected with 5-HT (data not shown). These data suggest that 5-HT indirectly
decreases the fat accumulation in the liver after an elevation of energy expenditure by 5-HT.
Fourteen 5HTRs are identified and 5-HT is thought to cause its effects through these mem-
brane bound receptors [34]. In this report, we have observed that an injection of 5-HT induced
an elevation of PGC-1α-b and c mRNA expressions in soleus muscle through 5HTR2A and 7.
Taken together, these results suggest that 5-HT may have an important role in glucose and
lipid metabolism and energy expenditure in some tissues through the 5HTRS.

The studies on the molecular mechanism of up-regulation of PGC-1α show that the cAMP
response element (CRE) sequence was required for contractile-induced activation of PGC-1α
promoter [35], and that the transducers of CRE-binding protein (CREB) and coactivators of
CREB (TORCs) markedly activated PGC-1α transcription and mitochondrial biogenesis [36].
Because TORC is activated by cAMP [37], cAMP is mainly involved in an increase of PGC-1α
expression. As 5-HT stimulates cAMP accumulation in 5HTR7-transfected CHO cells [38],
5-HT may be able to increase the expression of PGC-1α directly through 5HTR7. However,
almost all agonists and antagonists of 5HTR can pass the blood-brain barrier; 5-HT studies in
the central nervous system have received a lot of attention in recent years. Therefore, it is diffi-
cult for us to pinpoint the peripheral effect of 5-HT completely. There is a clear need for the
development of 5HTR agonists and antagonists that act only in the periphery in order for fur-
ther progress in the understanding of the other peripheral functions of 5-HT.

In conclusion, we have elucidated that the intraperitoneal injection of 5-HT prevents obesity
by inducing an increase in the activity of mitochondria and an elevation of energy metabolism
in skeletal muscle of mice on a high fat diet. We speculate that peripheral 5-HT action may
well offer new strategies for developing therapeutic drugs for the treatment of metabolic dis-
eases such as hyperlipidemia, diabetes and obesity.
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