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Abstract Beneath the ice of East Antarctica lies a continent that is likely to be as geologically complex
as its neighbors in Gondwana. An improved model of the heterogeneous lithosphere is required to progress
research on Antarctica's tectonic evolution and support interdisciplinary studies of cryosphere and solid
Earth interaction. We make use of multiple data sets, which were updated following the field campaigns
and compilations of the International Polar Year of 2007/2008. Seismic tomography results, gravity
anomalies, and surface elevation are used in a novel method, which combines spatial multivariate data to
map possible boundaries as projected likelihood functions. Six multivariate combinations are tested and
compared with sparse geological observations in East Antarctica. The resulting lithospheric domain
boundaries contribute to our understanding of the deep continental structure. New boundaries are
suggested in the interior, and models agree with likely surface expressions of crustal tectonic boundaries
exposed along the coast.

1. Introduction

Important aspects of Antarctica's continental structure are unknown. Better working models of the deep
lithosphere are needed to progress investigations of the complex interaction between the solid Earth and
the cryosphere. For example, glacial isostatic adjustment in response to changes in ice load depends on
deep elastic and viscous properties (e.g., Kaufmann et al., 2005; Whitehouse, 2018; Whitehouse et al., 2006).
Geothermal heat is identified as a spatially variable and poorly constrained parameter in ice sheet models
(e.g., Burton-Johnson et al., 2017; Pollard et al., 2005). Deep boundaries subdivide the continental litho-
sphere into domains with similar physical properties. With a more detailed and robust map of lithospheric
boundaries and domains, we can better infer the tectonic evolution of the continent and assign physical
properties to provide a useful framework for interdisciplinary studies.

The main crustal domains in East Antarctica were identified along the perimeter and Transantarctic Moun-
tains from geological observations by the 1980s, but no constraints were available for the subglacial interior
(e.g., Craddock, 1972; Ravich et al., 1965; Tingey, 1991). Indirect observations of transported material from
marine cores and moraines can suggest the large-scale hidden geology (Cook et al., 2017; Goodge, 2018;
Tauxe et al., 2015), but the provenance of samples can be difficult to reconstruct. Some studies have pro-
jected coastal geology into the unexposed interior. Those predictions have been guided by extrapolation of
known geology from adjacent Gondwanan neighbors or by using geophysical data (e.g., Aitken et al., 2014;
Boger, 2011; Daczko et al., 2018; Ferraccioli et al., 2011; Fitzsimons, 2003; Jacobs et al., 2015; Veevers, 2012).
Over the past decades, geophysical studies and plate reconstructions have advanced the understanding of
Antarctica’s continental structure, but there are still conflicting interpretations of the blocks and boundaries
in the interior (Figure 1a).

We rely on geophysical data to map East Antarctica, and different data sets have particular strengths
and limitations. Early seismic tomography studies revealed general heterogeneities within the lithosphere
(Ritzwoller et al., 2001; Roult & Rouland, 1994; Roult et al., 1994). There were, however, few seismome-
ters in Antarctica at this time and seismic tomography using local sources is precluded due to the inherent
low seismicity (Reading, 2007). Global studies provide a reference but are often of low resolution due to
the limited data for Antarctica (Laske et al., 2013; Pasyanos et al., 2014; Ritzwoller et al., 2002; Schaeffer
& Lebedev, 2015; Shapiro & Ritzwoller, 2002). Transects and regional studies have revealed the basement
structure of the Transantarctic Mountains, Lambert Glacier region, Gamburtsev Subglacial Mountains, and
West Antarctica (e.g., Chaput et al., 2014; Gregory et al., 2017; Hansen et al., 2010; Heeszel et al., 2016;
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Figure 1. (a) Sketches of major boundaries suggested in previous studies and compilations. Blue solid lines (e.g., Boger,
2011), the continent defined as an extrapolation from the Gondwanan and Rodinian neighbors, or lack of such
candidates. Green dashed lines (e.g., Leitchenkov et al., 2016), Antarctica as an unknown entity with mainly inferred
geophysical properties. (b-d) Data sets used for this study and picked boundaries (black lines). Opacity illustrates the
relative accuracy and line widths indicate precision. (b) Seismic shear wave speed at 150 km as perturbation from
AK135 in absolute speed anomaly, modified from An et al. (2015a). (c) Gravity anomaly map EIGEN-6C4, modified
from Forste et al. (2014). (d) Bed elevation model BEDMAP2 modified from Fretwell et al. (2013). Examples of detected
boundaries are notated a for changes in value, b for changes in pattern; 0 indicates examples of artifacts that are not
interpreted.

Jordan et al., 2017; Reading, 2006; Shen et al., 2017, 2018; Winberry & Anandakrishnan, 2004). An et al.
(2015a, 2015b) presented an improved surface wave tomography model that is used to estimate crustal thick-
ness, temperature, and lithospheric thickness. Teleseismic surface wave tomography captures the character
of lithospheric blocks in the centers of domains but is less suited to the detection of their boundaries (An,
2012; Foulger et al., 2013). The edges of gravity anomalies are valuable in revealing boundaries between
lithospheric domains (Block et al., 2009; Ferraccioli et al., 2011), but interpretation can be ambiguous and
the resolution is often low. Gravity data can be obtained from ground measurements, airborne instruments,
and by satellite. GOCE and GRACE (Gravity Field and Steady-state Ocean Circulation Explorer and Grav-
ity Recovery and Climate Experiment) satellite missions have been important in Antarctica (Pail et al.,
2010; Visser, 1999). Variations in bedrock topography can to some extent provide indication of much deeper

STAL ET AL.

10,405



...........

Geophysical Research Letters 10.1029/2019GL083453

structure. In Antarctica, there are few direct observations. Instead, topography is inferred from, for exam-
ple, airborne radar surveys (Fretwell et al., 2013). Finer-scale features of topography may not be captured in
interpolated elevation models (Graham et al., 2017).

Geological and geochronological information have sparse coverage in East Antarctica, but good resolution.
Geophysical data sets might have good coverage, but often limited resolution. Combined geological and
geophysical studies to map and constrain the lithospheric structure has been conducted in Africa (e.g., Begg
et al., 2009) and Australia (e.g., Kennett et al., 2018). The lithospheric domains in those continents suggest
what we could expect to infer in Antarctica as data availability improves.

In this study, we introduce a novel method to identify domain boundaries in the lithosphere of Antarctica,
with a focus on East Antarctica. In contrast to previous studies, which make interpretations based on a com-
parative analysis of univariate data, we use a multivariate interpretation of the relative probability of inferred
boundaries. We map variations in geophysical observables that suggest deep boundaries or transitions. The
new domain maps aim to progress the understanding of the large-scale tectonic structure of the interior of
East Antarctica.

2. Data

To place constraints on domain boundaries within the lithosphere, we utilize three data sets: seismic shear
wave speed (S), free air gravity anomaly (G), and subglacial elevation (E). Data set selection is based on rea-
sonably consistent resolution across East Antarctica. The seismic data set used is the 150-km depth slice from
An et al. (2015a). Beneath East Antarctica, this depth is mainly within the lower lithosphere, which is the
focus of this study. Beneath West Antarctica and parts of coastal East Antarctica, we note that this depth falls
below the lithosphere-asthenosphere boundary. Gravity anomalies are taken from the Earth free air gravity
model EIGEN-6C4 compilation. This data set includes GRACE and GOCE data up to degree and order 2190
(Forste et al., 2014). In order to keep the data sets independent, we avoid the use of a Bouguer-corrected
gravity model, which incorporates the effects of topography. Subglacial elevation is taken from the digital
elevation model BEDMAP2 (Fretwell et al., 2013). The data sets were prepared for analysis by reprojection,
resampling, and clipping using, for example, the Python package rasterio (Gillies, 2018). The seismic data
are replotted using a diverging color map (Figure 1b) as a perturbation from AK135 shear wave speed model
at 150 km, 4.5060 km/s (Kennett, 2005). Gravity and elevation data are replotted as obtained from original
data sources.

3. Methods

3.1. Picking Boundaries

For each data set, boundaries are independently identified visually and manually picked as vector lines in a
GIS software environment (QGIS, 2015). Effort is made by the analyst not to be biased by previous knowledge
or other data sets. Rapid changes or obvious changes in trends are selected as boundaries (examples notated
a in Figures 1b-1d). Changes in pattern, particularly for the gravity and elevation data sets, are also taken to
indicate a domain boundary (examples notated b in Figures 1b-1d). The lines are not picked to be geological
meaningful; they represent visual variations in the data. Known and obvious artifacts, such as flight lines,
are avoided (examples notated 0 in Figures 1b-1d). Some boundaries fade out to become obscure and are
only mapped as far as they are traceable. Boundary identification is carried out on a map screen display,
which uses an Antarctic Polar Stereographic projection and shows minimal scalar distortion in continental
Antarctica.

Each picked line segment is associated with relative accuracy and precision ratings. The accuracy rating
represents the certainty of the picked line representing a lithospheric boundary. The precision is the spatial
uncertainty of the picking. Both ratings are given as a number between 1 and 10 and later converted to
likelihood value from 0 to 1, and standard deviation expressed as a distance.

3.2. Generating Individual Spatial Likelihood Maps

For each data set, D, we calculate a likelihood map representing the picked boundaries as follows:

Loyp=ap Y axstxy) N (4, y), (0, +0p)?). (1)

s(x.y)EL)
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Figure 2. Likelihood maps of domain boundaries for each geophysical data set used, here normalized to the maximum value within each data set. Brighter
shading indicates a higher likelihood of a domain boundary. (a) Seismic derived boundary likelihood map. (b) Free air gravity derived boundary likelihood map.
(c) Elevation derived boundary likelihood map. (d) Cross-section (A-A"), showing convolved distributions for likelihood of boundary from each data set and
combined distributions, as described in text.

where L(x, y) is the spatial likelihood function, projected to a (x,y) Polar Stereographic grid. s(x,y) denotes
the location of the line segments in the picked vector lines, L'; a, is the weighting for the boundaries for
each data set, and a, is the accuracy rating for each picked line segment. N, (u, 62) is a two-dimensional
Gaussian kernel, with u(x,y) = (0,0) and ¢ = o, + o, Where o, is a function of the user-defined precision
rating for each line segment and o, is the standard deviation for the data set used; a, and o, are stored as
attribute data in the vector file (L").

The width of the Gaussian kernel relating to the seismic data is indicated by the tomography methodology
and data density (An, 2012; Ritsema et al., 2004). At 150-km depth, periods of over 100 s dominate and for
most of continental Antarctica the resolution of features in the tomogram is in the range 300-500 km (An
etal., 2015a). The picked seismic boundaries are convolved with a Gaussian kernel with a standard deviation
o = 200 km (Figure 2a). The gravity field model EIGEN-6C4 has an estimated half-width resolution of
A ~ 80 km. The Antarctic interior has increased uncertainty due to the lack of ground-based observation
data. The picked gravity boundaries are convolved with a standard deviation o; = 100 km (Figure 2b). The
horizontal resolution of the digital elevation model (Fretwell et al., 2013) is 1 km, but the data in some areas
are coarser due to the acquisition methods. For the picked topography boundaries, a Gaussian convolution
with a standard deviation of 6; = 60 km is applied to also account for sloping crustal structures (Figure 2c).

The relative amplitude of the Gaussian kernel for each of the three data sets is the product of the total
weight for the data set and the weights for the segments of the picked boundaries. We assign equal weight
(ap = 0.33) to each likelihood function.

3.3. Combining Distributions

We demonstrate six methods of combining individual likelihood maps (Figures 2d and 3). Sum (Figure 3a)
is generated by adding the three map values for each grid cell. Product (Figure 3e) is generated by multiply-
ing the three map values for each grid cell. Union (Figure 3b) and intersect (Figure 3d) are achieved from
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Figure 3. Combined likelihood maps, generated using six different methods: (a) sum, (b) union, (c) squared sum,
(d) intersect, (e) product, and (f) squared intersect. Each map is normalized to the maximum value for each
combination.
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the inclusion-exclusion principle (Brualdi, 1992). In our simple case with only three sets of independent
distributions, we make the following calculation for union:

LULGUL, =L+ Lo+ Ly~ (LgXLg+LgXLp+LXLp)+LgX Lo X L. 2
and a similar calculation for intersect:

LoNLoNLp=LgX Lo+ LgXLp+LgXLy—LgXLyXLp. 3)

Squared sum (Figure 3c) and squared intersect (Figure 3f) emphasize the regions of highest likelihood of a
boundary. We note that the combined likelihood is not a joint probability distribution as the projected axes
represent spatial extent, not separate distributions. Figure 2d shows transects across the probability fields
along the 90°W and 90°E meridians through the South Pole. For clarity, each field is normalized according
to its maximum value.

4. Results

Of the six resulting likelihood maps derived from the multivariate approach (Figure 3), sum (a) and union (b)
are the method combinations that suggest the highest number of likely boundaries. An intermediate result
is given by squared sum (c) and intersect (d). The most conservative results, suggesting fewest lithospheric
boundaries, are product (e) and squared intersect (f). Conservative combinations indicate high likelihood
for the existence of actual lithospheric boundaries with reduced false positive detection. The maps suggest
high likelihood for lithospheric boundaries along the Transantarctic Mountains and subparallel to the coast
in Dronning Maud Land (geographical locations are given in Figure 4). The lithosphere appears most het-
erogeneous, showing high likelihood of intersecting boundaries, in the region of Coats Land and Shackleton
Range. In contrast, regions with lower likelihood of major lithospheric boundaries are suggested within
Wilkes Land, Princess Elizabeth Land and around the South Pole. In the discussion that follows, we use the
intermediate results, intersect (d). However, the range of maps is also informative. An analysis of shallower
neotectonic features in West Antarctica is beyond the scope of this contribution. With the data sets used in
this study, we capture only the most deep-seated lithospheric boundaries in West Antarctica.

5. Discussion

5.1. Limitations

Our objective is to define domain boundaries in the deep lithosphere. Crustal domains might be different.
We acknowledge that the different data sets used are sensitive to structure at differing depths and differing
depth ranges. Further, the different data sets may not reconcile with each other. Embedded in these data are
information on the upper crust and recent geomorphology. Hence, our method has an inherent assumption
that all major lithospheric boundaries may be approximated as vertical. As more detailed 3-D studies of
the lithosphere are carried out in the future, we expect this assumption to be refined. The 150-km depth
slice from seismic tomography is within the asthenosphere in some parts of continental Antarctica. Our
model does not capture West Antarctic lithospheric domain boundaries but indicates the presence of the
lithosphere-asthenosphere boundary. We note that more detailed seismic tomography studies are available
(e.g., Shen et al., 2018), which could constrain upper lithosphere segmentation for the given study region,
using the methods that we introduce in this contribution.

The total amplitude of the likelihood distributions is not meaningful in the scope of this study. The com-
bined likelihood maps on which we base the following discussion have been presented with brighter shading
indicating a higher likelihood over domain boundaries. The scaling of this brighter shading, each map being
normalized individually, has been made to facilitate comparison between different geographic areas.

5.2. Correlation With Geological Observations in East Antarctica

The data used for this study are not targeted on shallow geology; however, our findings agree well
with crustal boundaries identified from geological field observations, geochronology, and geochemistry
(Figure 4). Six major domain boundaries near exposed outcrops have been identified in East Antarctica
(reviewed by, e.g., Boger, 2011; Fitzsimons, 2000; Harley et al., 2013). For example, the Shackleton Range
is identified with high likelihood to include intersecting major boundaries (Figure 4a), which are indeed
seen on the ground or identified subsequently from rock samples (Clarkson et al., 1995; Tessensohn et al.,
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Figure 4. The intersect likelihood map (center, enlarged from Figure 3d) related to major terrane boundaries exposed
near outcrops in East Antarctica. (a) Shackleton Range (e.g., Will et al., 2009). A major boundary separating rocks of
Archean and younger ages which intersects a further boundary with even younger rocks, east of longitude 20°W.

(b) Dronning Maud Land (e.g., Marschall et al., 2010). A boundary between Maud Belt south of Grunehogna Craton.
(c) Enderby Land (e.g., Sheraton et al., 1987). The transitional boundary between the Archean and Paleoproterozoic
Napier Complex and the reworked Rayner Complex. (d) Miller Range (e.g., Goodge et al., 2001). The boundary
between Archean and Paleoproterozoic Nimrod and younger Ross-Delamerian orogenic domains. (e) Mertz Glacier
region (e.g., Di Vincenzo et al., 2007). The Archean Terre Adélie Craton is exposed in the west, and Ross-Delamerian
domain in the east. (f) Prince Charles Mountains with the Mawson Escarpment (e.g., Boger & Miller, 2004; Corvino

et al., 2008; Phillips et al., 2009). This region contains multiple major boundaries currently under debate. Symbols
indicate relative ages of examples of geochronological samples from referenced literature. Yellow prisms denote oldest
rocks, often Archean. Red pentagons denote younger orogenic rocks. Blue triangles are even younger ages in the
Shackleton Range. Black striped lines in insets are geological boundaries modified from original studies for guidance.
Brown shade indicates the outline of rock outcrops (Burton-Johnson et al., 2016). AP = Antarctic Peninsula;

CL = Coats Land; DML = Dronning Maud Land; EL = Enderby Land; GC = Grunehogna Craton; GSM = Gamburtsev
Subglacial Mountains; KL = Kemp Land; MG = Mertz Glacier; MR = Miller Range; MRL = MacRobertson Land;

PB = Prydz Bay; PCM = Prince Charles Mountains; PEL = Princess Elizabeth Land; SP = South Pole; SR = Shackleton
Range; TA = Terre Adélie; TAM = Transantarctic Mountains; WA = West Antarctica; WL = Wilkes Land.
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1999; Will et al., 2009, 2010). The southern boundary of the Archean Grunehogna Craton in Dronning
Maud Land (Figure 4b) is identified by our method and agrees well with geological studies (Bauer et al.,
2003; Board et al., 2004; Jacobs et al., 1998, 2015; Moyes et al., 1995; Luttinen & Furnes, 2000; Marschall
et al., 2010). The Miller Range in the Transantarctic Mountains (Figure 4d) has a high likelihood of a
lithospheric domain boundary running along its length. This agrees with geological and geochronological
studies as well as magnetic data (Goodge et al., 1992, 2001; Goodge & Finn, 2010). The Mertz Glacier region
is also identified with a high likelihood of a major lithospheric boundary (Figure 4e) and matches well
with ground observations and subsequent analysis (Di Vincenzo et al., 2007; Lamarque et al., 2016; Ménot
et al., 2005, 2007; Peucat et al., 1999; Stuwe & Oliver, 1989). The interpretation of the geology in Prydz Bay
area (Figure 4f) is under debate (Boger et al., 2001; Boger & Miller, 2004; Corvino et al., 2008; Fitzsimons,
2000; Kelsey et al., 2008; Phillips et al., 2006, 2009). Notwithstanding the challenges in interpreting the
crustal structure, we identify the area with high likelihood for deep lithospheric boundaries. Enderby Land
(Figure 4c) contains the Archean and Paleoproterozoic Napier Complex, and the Meso-Neoproterozoic
Rayner Complex (Fitzsimons, 2000; Halpin et al., 2007; Kelly, 2002; Kelly & Harley, 2005; Morrissey et al.,
2016; Phillips et al., 2009; Sheraton et al., 1980, 1987). We detect the southern boundary of the Napier Com-
plex with a lower likelihood than the exposed locations discussed previously. This complex reworking of
MacRobertson Land and Kemp Land (Halpin et al., 2005, 2007; Morrissey et al., 2016) with lithospheric
thinning could be the main reason why this particular boundary is less evident from the data sets used.

5.3. Comparison With the Continent of Australia

The approach is also tested for Australia, where the inland geology is better known (supporting information).
The Australian example shows that craton boundaries are detected using the multivariate method, but
superimposed orogens are more difficult to discern. False detection of major boundaries is unlikely when
using a conservative product combination, where all individual likelihood maps must agree (Figure 3e). The
Australian example also provides insight into relating surface geological boundaries to deep lithospheric
boundaries. Major surface and deep boundaries appear to have a robust mutual association, lending weight
to our inferences for East Antarctica. However, we note again that geological boundaries within such con-
tinental domains may not have a signature in the deep lithosphere, in particular, for younger lithosphere
such as eastern Australia and West Antarctica. Boundaries detected in the deep lithosphere associated with
continental extension would not necessarily be seen in the surface geology. We show in the supporting
information the extent to which boundaries may be traced between continents in the deep lithosphere.

5.4. New Insights Into the Lithosphere of Antarctica

The new maps that we present enable insights regarding of the nature of the East Antarctic lithosphere
to be drawn from geophysical data sets. By combining multiple data sets, in our case three data sets, we
manage the possibility of including an arbitrary interpretation. The impact of false detections is mitigated
by using accuracy and precision ratings in the calculations that result in the likelihood maps. Our maps
show domain boundaries suggesting a complex interior. Coats Land and Dronning Maud Land appear to
show lithospheric heterogeneity, while the interior of Wilkes Land is much less segmented, being divided
by few boundaries. These suggestions are consistent with more detailed regional studies, where those exist
(e.g., Aitken et al., 2014; Jacobs et al., 2015; Ruppel et al., 2018). A complex interior also agrees with recent
geological studies that find large age variations in marine cores (Cook et al., 2017), glacial deposits in the
Transantarctic Mountains (Goodge, 2018), and what might be expected from other Gondwana continents
(e.g., Begg et al., 2009; Korsch & Doublier, 2016; Kennett et al., 2018).

The structure of the lithosphere is the result of its tectonic evolution. With robust constraints for the inte-
rior boundaries, we can better infer the nature of the East Antarctic continental assembly. Our likelihood
maps suggest that the interior has more domains than shown in previous interpolations as in Figure 1a.
For example, it is unlikely that Terre Adélie, Miller Range, and Shackleton Range belong to the same large
uninterrupted domain. As a general comment, the extrapolation of major boundaries into the East Antarc-
tic interior seems to be justified for a scale length of approximately 1,000 km. In the interior, at greater than
1,000 km inland, it is very likely that new domains and hence cross-cutting boundaries will be encountered.
Possible plate tectonic implications of the newly identified domains are subject of ongoing work. Enigmatic
interior domains, with no coastal expression, are highly likely.

Recent studies using different approaches than we present in the current paper also find interior domains
or regions. Ebbing et al. (2018) infer a number of domains in the East Antarctic interior from the curvature
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index of gravity field with topographic and isostatic correction and suggest the extent of cratonic lithosphere
and orogens. Studies that includes both gravity and seismic data also find a heterogenous interior and pro-
vide strong arguments to suggest existence of domains (Baranov & Morelli, 2013; Baranov et al., 2017; Pappa
et al., 2019). Our contribution complements these studies by providing a method for mapping the bound-
aries of such domains. The Australian example suggests these hidden domains will be varied, for example,
both cratonic and orogenic. Large-scale models of the Antarctic lithosphere (e.g., Haeger et al., 2019) can
potentially be further developed from our mapped interior boundaries. Magnetic surveys and Curie depth
variations are widely used to investigate the Antarctic crust (e.g., Ferraccioli et al., 2001, 2011; Goodge &
Finn, 2010; Martos et al., 2017; Ruppel et al., 2018). While our contribution draws on constraints from the
deeper lithosphere, or the asthenosphere where the lithosphere is thin, we plan to incorporate magnetic
data in future, regional-scale, multivariate studies with a crustal and upper lithosphere focus.

‘We hope that our likelihood maps will find wide use in the Antarctic interdisciplinary research community.
Three-dimensional glacial isostatic models of the viscosity variations in the lithosphere could incorporate
segmentation. Improved knowledge of East Antarctic lithospheric boundaries thus supports future develop-
ments in this area. Understanding of the tectonic evolution and crustal segmentation is needed for mapping
crustal heat production, as highlighted in a recent study from West Antarctica (Burton-Johnson et al.,
2017). With our presented maps, geothermal heat properties from known geology or observations from
neighboring Gondwanan continents can be extrapolated into the hidden interior with better confidence for
East Antarctica.

Our approach does not limit the number of data sets used, and with additional data sets, the likelihood
maps will be further improved as additional data become available. The method can also be applicable on
a regional scale, and regional data sets can also be incorporated in continental scale models. Multivari-
ate mapping provides a quantitative, probabilistic, and therefore robust approach for the identification of
lithospheric domain boundaries within the East Antarctic interior.

6. Conclusions

We introduce a novel method to combine likelihood maps from independent data sets to estimated locations
of lithospheric boundaries in East Antarctica. We find good correlation between our findings and postulated
crustal boundaries along the perimeter. The ice-covered interior is heterogeneous and is shown to likely
comprise a larger number of distinct domains than suggested by previous work based on extrapolation of
observations along the coast. The largest lithospheric domains are likely located in Wilkes Land, Princess
Elizabeth Land, and around the South Pole. Coats Land and Dronning Maud Land likely consist of smaller
lithospheric domains.
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