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Introduction
Direct estimation of risk and relative risk for prospective 

studies requires the fitting of a generalized linear model (GLM) 
with a binomial error distribution and logarithmic link function. 
This is the log binomial model (LBM). It provides estimates of 
probabilities and conditional probabilities that are directly 
interpretable and are preferred as measures of occurrence and 
association [1]. An added benefit is that the model provides 
interpretable estimates of prevalence and prevalence ratios for 
cross-sectional studies.

The drawback of the LBM is that the logarithmic link function 
maps the probability of the event onto the negative real line. This 
imposes bounds on the allowable parameter space for the model 
coefficients. Estimation subject to boundedness is problematic, 
but standard methods for fitting GLMs may fail to converge to 
the maximum likelihood (ML) estimates for a LBM if the fitted 
probabilities are allowed to equal or exceed unity. Even if the 
iterations converge and the approximate solution is reasonably 
accurate, there will be difficulties interpreting and applying the 
fitted values if one or more of them exceeds unity.

There are several work-around methods to approximate the 
solution of a LBM and circumvent the problems inherent in its 
estimation. Other than substituting estimates from a logistic  

 
regression model, the modified Poisson regression method has 
gained the most traction [2]. This method involves fitting a GLM 
with a Poisson error distribution and logarithmic link [3], and 
using the sandwich estimator to obtain variance estimates that 
are robust to the error misspecification [4]. Carter et al. [5] 
showed that the coefficient estimates from a Poisson regression 
model consistently estimate the coefficients from the LBM, 
and that the information sandwich estimator of the covariance 
matrix of the Poisson regression fit is a consistent estimator 
of the covariance matrix of estimated coefficients from a log 
binomial fit. 

This approach requires no data modification and can be 
easily performed using widely available software. It seemingly 
resolves the convergence issues because Poisson regression 
maps the logarithm of the count of events to the entire real line. 
Thus, estimation can proceed even if the linear predictor is non-
negative. This means that the resulting coefficient estimates 
may yield fitted values for the LBM that are inadmissible as 
probabilities because they exceed unity. Some authors have 
suggested that these can safely be ignored [6]. However, the 
approximate solution may be subject to considerable error. Our 
eyes to this were opened by example data in a recent paper by 
Williamson et al. [2] exploring sources of failed convergence of 
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Abstract

Fitting a log binomial model to binary outcome data makes it possible to estimate risk and relative risk for follow-up data, and prevalence 
and prevalence ratios for cross-sectional data. However, the fitting algorithm may fail to converge when the maximum likelihood solution is on 
the boundary of the allowable parameter space. Some authorities recommend switching to Poisson regression with robust standard errors to 
approximate the coefficients of the log binomial model in those circumstances. This solves the problem of non-convergence, but results in errors 
in the coefficient estimates that may be substantial particularly when the maximum fitted value is large. The paradox is that the circumstances 
in which the modified Poisson approach is needed to overcome estimation problems are the same circumstances when the error in using it is 
greatest. We recommend that practitioners should be wary of using modified Poisson regression to approximate risk and relative risk.
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the LBM (Table 1). The authors attempt to fit the single covariate 
LBM 

( ) β β= = +0 1Pr 1|Y X X
Table 1: Example data from Williamson et al. [5].

Exposure Event No event Total

x = –1 10 8 18

x = 0 18 9 27

x = 1 5 0 5

Where, Y  is a binary (0/1) outcome indicator with   

=1Y  denoting an event, and X  is a covariate taking values 

{ }= −1,0,1 .x  The maximum likelihood (ML) solution for a LBM 

model of these data is β = −0
ˆ 0.344616  and β =1

ˆ 0.344616.  
This solution is on a boundary β β+ =0 1 1  of the allowable 
parameter space. The authors estimate the LBM with SAS 
(version 9.2), R (version 2.12.1), Stata (version 11.1) and SPSS 
(version 19) and report that only SAS is successful in finding the 
ML solution, though a warning is given in the SAS output that the 
convergence is questionable because the solution appears to be 
on the boundary. 

In these circumstances, the analyst might follow well-
intentioned advice to fit a modified Poisson model [5,7]. 

If so, the coefficient estimates β = −0
ˆ 0 359. 6015poi

 and 

β =1
ˆ 0.2713417poi

 would be obtained. The percent error 

in the slope estimate β1
ˆ poi

 is a staggering 21.3%. In fitting 
a modified Poisson model with four categorical covariates, 
Marschner & Gillett [8] also found errors greater than 20% for 
some categories of the risk factors. To investigate, we simulated 
data from a LBM with a single continuous covariate and for a 

range of values of the parameters β0  and β1.  Values of the 
continuous covariate were drawn at random from a distribution 
uniform on the range 

( ) ( )β β
β β
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0 0

1 1

ln 0.01 ln 1
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A value at the top end of that range would lie on the boundary 

of the parameter space. For each observation =1,2,... ,i n  values 

of =1iY were assigned to the outcome indicator if a random 
drawing from a distribution uniform on was less than the 

design value ( ) ( )π β β= +0 1expi ix x  of the LBM probability. 

Datasets of size =500n  were chosen as representative of many 
encountered in practice, and 10,000 replications were drawn 
for each setting. Table 2 shows percentiles of absolute percent 

error in the Poisson estimate β1
ˆ poi

 of the LBM slope parameter 

β1   relative to the ML estimate β1
ˆ . The results were similar 

irrespective of the design values β0  and β1 . For brevity, they 

are given for the setting ( )β =0 ln 0.3  and ( )β =1 ln 1.5  only. 

There was a moderate correlation =( 0.48)r  between absolute 
percent error and the maximum fitted value from the modified 
Poisson model. This deterioration in the performance of the 
modified Poisson model with the size of the fitted value has been 
identified previously [8]. Relative error was at least 10% on 7.6 
percent of simulations overall, on 11.3 percent of simulations 
when the ML solution was on the boundary, on 14.3 percent of 
simulations when a Poisson fitted value exceeded unity, and on 
15.6 percent of simulations when the ML solution was on the 
boundary and additionally the Poisson fitted value exceeded 
unity.

Conclusion
We recommend that practitioners be wary of using the 

modified Poisson approach to estimate a LBM. Whilst errors 
greater than 20% may be a rarity, the estimates are subject to 
substantial bias. In the context of confounding, one authority 
has nominated 10% as the threshold for bias than cannot be 
ignored [9]. Based on that standard, the modified Poisson 
method failed on one-in-nine occasions when the ML solution 
was on the boundary, and on almost one-in-six occasions 
when additionally the Poisson fitted value exceeded unity. The 
relevance of a boundary solution is that it brings about the 
failure of standard fitting algorithms. The paradox is that this 
is the circumstance that prompts practitioners to switch to the 
modified Poisson approach. There are substantial error rates 
even when the solution is not on the boundary, but the modified 
Poisson approach is not required in those circumstances because 
standard software for fitting the LBM should be successful in 
iterating to the ML solution.

Table 2: Percentiles of absolute percent error in β1
ˆ poi   as an estimate of ML β1

ˆ .

Maximum 
Poisson fitted 

value*

Number of 
boundary points

Number of 
replicates

Percentile

50th 90th 95th 100th

<1 0,1 5145 2.5 6.4 7.6 15

≥1 0 1052 5.1 9.3 10.7 19.3

≥1 1 3803 4.7 10.9 12.8 23.9
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