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Abstract: Landslides represent a severe hazard in many areas of the world. Accurate landslide maps
are needed to document the occurrence and extent of landslides and to investigate their distribution,
types, and the pattern of slope failures. Landslide maps are also crucial for determining landslide
susceptibility and risk. Satellite data have been widely used for such investigations—next to data from
airborne or unmanned aerial vehicle (UAV)-borne campaigns and Digital Elevation Models (DEMs).
We have developed a methodology that incorporates object-based image analysis (OBIA) with three
machine learning (ML) methods, namely, the multilayer perceptron neural network (MLP-NN) and
random forest (RF), for landslide detection. We identified the optimal scale parameters (SP) and
used them for multi-scale segmentation and further analysis. We evaluated the resulting objects
using the object pureness index (OPI), object matching index (OMI), and object fitness index (OFI)
measures. We then applied two different methods to optimize the landslide detection task: (a) an
ensemble method of stacking that combines the different ML methods for improving the performance,
and (b) Dempster–Shafer theory (DST), to combine the multi-scale segmentation and classification
results. Through the combination of three ML methods and the multi-scale approach, the framework
enhanced landslide detection when it was tested for detecting earthquake-triggered landslides in
Rasuwa district, Nepal. PlanetScope optical satellite images and a DEM were used, along with the
derived landslide conditioning factors. Different accuracy assessment measures were used to compare
the results against a field-based landslide inventory. All ML methods yielded the highest overall
accuracies ranging from 83.3% to 87.2% when using objects with the optimal SP compared to other
SPs. However, applying DST to combine the multi-scale results of each ML method significantly
increased the overall accuracies to almost 90%. Overall, the integration of OBIA with ML methods
resulted in appropriate landslide detections, but using the optimal SP and ML method is crucial
for success.
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1. Introduction

Landslides represent a significant threat to human life, natural resources, infrastructure, and
properties in mountainous areas [1]. A landslide is defined as the movement of a mass of debris, rocks,
or slope failures, which occurs during rainfall, runoff, rapid snowmelt, earthquakes, and volcanic
eruptions [2,3]. As well as the physical impacts on the environment, landslides also have adverse
consequences for the economy of local communities [4,5]. Landslides can occur for a range of reasons;
for instance, they can be triggered by earthquake shocks, heavy rainfall, or road construction in hilly
areas [6,7]. Despite some progress being obtained through scientific studies, landslide susceptibility
modeling and mapping pose significant challenges for land-use planners and policymakers [8,9].
Regardless of the type of methodology applied for landslide susceptibility mapping, reliable inventory
data sets play an essential role in this process. A landslide inventory data set, including precise
boundaries, spatial locations, and distributions, can be produced by conducting field surveys using
the global positioning system (GPS), which is an expensive and, in some cases, dangerous approach
due to the rough topography and instability [10,11]. Therefore, Earth observation (EO) products
are considered a low cost and useful data source for landslide inventory data set production [12].
The two main approaches of object-based and pixel-based classification methods have been used for the
classification of satellite imagery and information extraction from EO data. Based on improvements in
the fields of computer vision and image processing of the last two decades, object-based image analysis
(OBIA) has become more widespread [13]. OBIA is a relatively new sub-discipline of geographic
information science (GIScience) and makes it possible to produce useful geographic information based
on the partitioning of EO data into meaningful image objects applicable for the class or feature of
interest [14]. OBIA is a knowledge-driven approach, which—by mimicking human perception—tries to
group a set of contiguous pixels into meaningful objects through a segmentation process that represents
corresponding features in an image [15,16]. Compared to pixel-based approaches, which depend on
the digital number (DN) of pixels, OBIA integrates and employs spectral information (e.g., color) and
spatial properties (e.g., size and shape), along with textural data and contextual information (e.g.,
association with neighboring objects) [17], to classify objects into desired classes.

In OBIA, image segmentation is an essential pre-requisite for classification/feature extraction
and further analysis with geographic information systems (GIS) [17,18]. The segmentation process
controls the accuracy of further image analysis steps, such as classification and object detection [19].
In other words, the segmentation procedure has a considerable influence on further processes [20,21],
and incorrect segmentation usually results in over-segmentation and under segmentation errors [22].
Therefore, defining the optimal parameters for object definition plays an essential role in detecting
landslides through the image segmentation process. The optimal scale parameter (SP) should
be considered in defining and generating meaningful segments/objects for segmentation [23].
Although segmentation and primary object definition are never considered perfect, it is possible
to use spectral and spatial indexes to obtain the optimal scale parameter (SP) for segmentation. Besides,
many landslides that we can detect with EO data have a multi-scale character: along with their various
sizes, they are composites of different entities, such as landslide bodies and affected areas, which are
usually defined as the landslide area [1]. An optimal scale out of multiple scales results in less internal
heterogeneity concerning particular parameters compared to the adjacent areas [15].

Since landslides in the real world come in a wide range of shapes and sizes and are embedded
within different land cover types, expert knowledge plays a vital role in the accuracy of landslide
detection with conventional rule-based approaches in OBIA. However, determining the appropriate
thresholds to group segments into landslide classes based on each landslide diagnostic parameter is
a difficult task. Another challenge is that the conventional approaches are mostly time-consuming
and labor-intensive, and are often criticized because of their weakness regarding transferability [24].
Currently, OBIA has been integrated with different machine learning (ML) methods and used in
various applications [25]. Generally, ML methods are considered valid methods for remote sensing
(RS) applications with an emphasis on image classification and object recognition [26]. Different ML
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methods and classifiers have already been integrated with OBIA and used for extracting landslides in
different studies. For example, the ML method of support vector machines (SVMs) was used by [24] to
classify the segments employed to extract forested landslides. The authors trained their semi-automatic
method using old and densely vegetated landslides and derived their extent using LiDAR products.
Their method was then tested in the Flemish Ardennes (Belgium) and resulted in landslide extraction
accuracies of almost 70%. In another study, [27] used the same ML method, but applied the RBF kernel
along with OBIA to propose an automatic landslide extraction approach for rainfall-induced landslides
on Madeira Island. Furthermore, [28] integrated the K-means clustering method with both pixel-based
and OBIA approaches to compare their performance in landslide detection. The integrated approaches
were implemented using very high-resolution (VHR) remotely sensed images for their case study
area of the San Juan La Laguna, Guatemala. The comparative study revealed that the integration of
the K-means clustering method with OBIA was able to identify most of the landslides with less false
positives compared to the pixel-based approach.

Although using single ML methods provides acceptable accuracies in landslide extraction
and modeling, the combination of two or more ML methods has achieved higher accuracies [29].
Chen et al. [30] applied an ensemble method to stack the weights of evidence (WoE) and evidential
belief function (EBF) methods with a logistic model tree (LMT) ML classifier for landslide susceptibility
mapping. Their results proved that the prediction capability of the ensemble methods was better than
that of single methods.

Moreover, to improve image classification and feature extraction, there are relevant probability
concepts such as Dempster–Shafer theory (DST). The DST has been applied to classifier models to find
the best match between the inventory data set and the resulting classification [31]. This probability
concept has been used in RS data fusion [32] and landslide susceptibility mapping [33] to deal with
uncertainty associated with the results. The DST has been successfully used for combining classifiers
in a wide range of applications, such as target identification and object tracking [34,35]. In the field
of landslide detection, Mezaal et al. [12] used the DST to enhance the results of the integration of
OBIA with various ML methods, including SVM, random forest (RF), and K-nearest neighbor (KNN).
The DST method performed well in landslide detection in their tropical study area. These pieces of
evidence from previously published papers motivated us to apply the DST probability concept to
improve the ML classification accuracy through integration with different classifiers. Therefore, in the
present study, we integrate the widely used ML methods of logistic regression (LR), the multilayer
perceptron neural network (MLP-NN), and RF with OBIA for landslide detection, based on optical
data and topographic factors resulting from PlanetScope satellite images and Digital Elevation Model
(DEM) data, respectively. To improve the performance of the applied ML methods, the ensemble
method of stacking is used to combine them and produce a new result. The optimal scale for image
segmentation is derived using the estimation of scale parameters (ESP2) tool [23]. Multiple scales are
selected using interval values based on the optimal scale. The maps resulting from the multi-scale
segmentation by each ML method are then fused using DST to demonstrate the advantages of working
in a multi-scale environment. All resulting landslide detection maps are then validated using standard
RS accuracy metrics and the validation method of receiver operating characteristics (ROC).

2. Study Area

In April 2015, an earthquake with a magnitude of 7.8 M struck Nepal, killing almost 9000 people
and injuring nearly 22,000 [36]. The epicenter of the earthquake was located in the east of Gorkha
district, and its hypocenter was at a depth of nearly 8.2 km [37]. Due to the magnitude of the earthquake,
several landslides occurred across Nepal, especially in the east of the Gorkha district.

The study area of this research is located in the southern part of Rasuwa district (see Figure 1),
along the Trishuli river. The study area covers around 17,100 ha, and the elevation ranges between 700
and 2038 m above the mean sea level (MSL). The land use largely consists of forested areas, grassland,
agricultural land, and rural areas. The study area is located in the higher Himalayas and, due to its
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rough terrain, is very susceptible to landslide occurrence. According to the Köppen climate classification
scheme, the study area falls under a sub-tropical and humid climate with cooler temperatures, and
its annual average precipitation is nearly 691 mm. Before this study, some investigations by [38–40]
and [1] were carried out to extract landslide locations in Rasuwa district. However, the main focus of
the present study is evaluating the accuracy and performance of the proposed method of landslide
detection compared to the conventional ML methods.
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3. Methodology and Data

3.1. Overall Workflow

In this study, we used PlanetScope multispectral images [41] in four bands (Blue, Green, Red, and
NIR), along with topographic factors, for landslide detection. The overall workflow (see Figure 2) of
this study is as follows:

I. Preparing multispectral images, the spectral index, and topographic derivatives for modeling;
II. Generating multi-scale segments using the ESP2 tool and scale value intervals;
III. Segmentation analysis and evaluation;
IV. Training ML and stacking methods on multi-scale datasets at the object level;
V. Fusing multi-scale ML results using DST;
VI. Applying different accuracy assessment metrics.
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3.2. Datasets

One of the most critical datasets for landslide detection and prediction is an appropriate landslide
inventory, which influences further analyses [42,43]. In this case study, a landslide inventory map for
the Rasuwa district was obtained from multiple sources, including GPS data from an extensive field
survey and manually extracted data from satellite imagery. The satellite images used in this study
were taken from the PlanetScope constellation of Planet Labs Company. PlanetScope includes more
than 120 satellites that have been operating since 2014 and provide multispectral images with a 3 m
spatial resolution and daily revisit time in four bands (Table 1). Due to the rugged topography of the
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study area, some landslide events could not be registered by the field survey, so satellite images were
used to identify and digitize them. Subsequently, all types of data were converted to the polygon
format in QGIS 3.8. The total number and area of landslide events that were mapped were 194 and
64120 ha, respectively. Moreover, the minimum, maximum, and standard deviation of the area of the
landslide polygons were 0.07, 16, and 2.17 ha, respectively. Along with PlanetScope images (Table 1),
the normalized difference vegetation index (NDVI) index—which is widely applied in landslide
modeling [1,7,44]—was calculated from the NIR and Red bands to be used in landslide detection.
Th probability of landslide occurrence is highly dependent on the surface topography; in other words,
hilly and mountainous areas have the highest probability of landslide occurrence [1]. Our study area
is located within the Himalayan fold and thrust zone of central Nepal. This zone resulted from a
collision of the Indian Plate with the Eurasian plate. The precipitation amount of this area varies based
on the tropical climatic conditions in the monsoon season, which has more rainfall compared to the
summer season [45]. Although geological formations and precipitation are also important for landslide
modeling, these factors do not change significantly in this study area due to its small size, which is why
they were not considered in this study. Therefore, only satellite images and topographic factors were
used, and all topographic derivatives, such as elevation, slope, aspect, curvature, and the topographic
wetness index (TWI), were calculated based on a 5 m resolution DEM. The selection of topographical
factors related to landslide occurrences depends on the landslide type, characteristics of the study
area, and scale of the analysis. However, there is no standard approach for the selection of landslide
conditioning factors. In the present study, six topographical landslide conditioning factors, namely,
slope, slope aspect, curvature, plan and profile curvature, and altitude, were generated from a 5 m
resolution DEM acquired from the Japanese aerospace exploration agency JAXA ALOS sensor.

Table 1. PlanetScope satellite sensor specifications.

Satellite
(Sensor) Bands Wavelength (nm) Pixel

Size
Bit

Depth
Orbit

Altitude
Scene Size

(KM)

PlanetScope Blue Green Red NIR
3.125 m 16 475 km 24.6 × 16.4

455–515 500–590 590–670 780–860

One of the most critical factors controlling slope stability is the slope angle. The slope angle
is regularly used in landslide detection and susceptibility studies [46]. In the study area, the slope
map was prepared using a DEM, and the slope ranged from 0.05◦ to 75.26◦. The slope aspect was
considered a topographical conditioning factor representing the slope direction [47]. The slope aspect
factor mainly affects the hydrological system through evapotranspiration and, consequently, affects
vegetation. Our aspect layer was classified, as this layer comprised sharp differences and changes.
As such, the slope aspect of the area was divided into nine classes, namely, north, northwest, northeast,
east, south, southeast, southwest, west, and flat.

We extracted the plane curvature from the DEM. The plane curvature represents the curvature of
the contour line formed by the intersection of the surface with the horizontal plane [48]. The convergence
and divergence of water in downhill flow are influenced by plane curvature [49]. The plane curvature
represents the rate of change of aspect, in which positive values indicate convex curvature, zero denotes
low change, and negative values indicate concave curvature. The values range from −56 to 74.14.
The profile curvature is also crucial for the water flow speed variation from higher to lower areas [7].
The conditioning factor of altitude is another instability factor in our region, and landslide events at
higher altitudes are usually influenced by gravity. Altitude influences topographical attributes and
the Earth’s surface, which accounts for spatial variability in precipitation, soil thickness, erosion, and
vegetation types [50]. In this study area, the elevation ranges from 734 to 4050 m above the mean
sea level.

The landslide areas are usually not vegetated, especially due to recent landslide events [7].
Therefore, we used the normalized difference vegetation index (NDVI) to better distinguish between
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landslide and non-landslide areas. This index is useful for our study area, which is covered by forest.
In this study, the NDVI map was derived from PlanetScope imagery from 28 November 2015 (see
Equation (1)).

NDVI =
(NIR−Red)
(NIR + Red)

(1)

The NDVI was calculated from the near-infrared and the red spectral bands. The NDVI values
vary from −0.44 to 0.72 in the study area.

The TWI is another important topographical conditioning factor within the morphometric
conditions of the terrain, as it evaluates the cumulative flow rate upstream with the slope angle [51].
The TWI is calculated by Equation (2):

TWI = ln (α/tan β) (2)

where α is the specific catchment area (m) and β is the slope. All conditioning factors are represented
in Figure 3.

3.3. Object-Based Image Analysis (OBIA)

3.3.1. Multi-Scale Image Segmentation

The demand for high-resolution (HR) and VHR satellite imagery, together with the resulting
volume, variety, and velocity, as well as the rapid development and progress of EO technologies, provide
significant challenges for the RS community with respect to the complexity of image understanding
(IU) [52]. Therefore, OBIA, as an almost new paradigm in EO data analysis and image processing, has
attracted more and more attention in the RS community and has been applied in several applications,
such as image classification and object extraction [17]. OBIA is a knowledge-driven approach that
aims to produce meaningful objects by using geometric and spectral characteristics, such as size,
shape, texture, color, and contextual information, to present a better IU based on the real world [13].
In OBIA, segmentation is a crucial step [53], which considerably influences further analyses and results.
The way that segmentation parameters (e.g., scale, shape, and compactness) are selected impacts
the quality of the image objects [54]. In this study, multiresolution segmentation (MRS) was applied
for the segmentation of our PlanetScope image (see Figure 4). MRS is a bottom-up segmentation
technique, which is based on the pairwise region-merging approach [12]. In this case, smaller detected
objects were merged with larger ones, considering various parameters of scale, color, and shape (i.e.,
compactness and smoothness). These parameters are usually selected by trial-and-error, which requires
expert knowledge and is a time-consuming and uncertain task [12,55]. Although some automatic
techniques, like the Taguchi optimization method [55], have been introduced for defining the optimal
parameters for the segmentation process, the process of detecting optimal objects is still a challenging
task, mostly because of the diversity in the sizes and shapes of the target features [56].

The SP is considered the most crucial parameter in the MRS. In this study, the optimal SP was
derived using the ESP2 tool, developed by [23]. This automated tool is a technique for selecting
the SPs, which delivers three distinct scales using MRS, implemented in the eCognition Developer
software. The ESP2 tool resulted in SP values at three different scale levels which, for our case, were
112 for scale level 1, 242 for scale level 2, and 1142 for scale level 3. The optimal SP value of the
second level was selected along with two other scales based on an interval of 50 for further analysis
and landslide detection. In pixel-based image classification, thematic accuracy assessment is the
conventional method applied to evaluate the performance of an image classifier and the accuracy of
a produced map [57], based on the proportion of correctly and incorrectly classified pixels, which is
a count-based classification accuracy index [21]. In OBIA, on the other hand, processing units are
image objects, which are two-dimensional polygon features. Therefore, it is necessary to evaluate
these objects with reference objects to assess the performance of the applied segmentation method [22].



Remote Sens. 2019, 11, 2575 8 of 26

In this regard, a variety of indices and metrics have been proposed, which are either area-based or
location-based [22]. The accuracy of the segmentation using the selected scales was evaluated and
presented in Section 3.3.2.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 28 

 

 
Figure 3. Conditioning factors in landslide detection, including (a) aspect, (b) curvature, (c) elevation, 
(d) normalized difference vegetation index (NDVI), (e) plan curvature, (f) slope, (g) profile curvature, 
and topographic wetness index (TWI). 

3.3. Object-Based Image Analysis (OBIA) 

Figure 3. Conditioning factors in landslide detection, including (a) aspect, (b) curvature, (c) elevation,
(d) normalized difference vegetation index (NDVI), (e) plan curvature, (f) slope, (g) profile curvature,
and topographic wetness index (TWI).



Remote Sens. 2019, 11, 2575 9 of 26
Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 28 

 

 
Figure 4. Pseudo-color image of a landslide event (a) and segmented landslides (b). 

3.3.2. Segmentation Accuracy Evaluation  

Although we used the ESP2 tool to determine the optimal SP, there is no standard method to 
select segmentation parameters or assess the accuracy of the resulting objects [22]. The segmentation 
parameters are usually modified based on the desired target features, and they are challenging to 
implement and cannot appropriately address errors like under- and over-segmentation [22]. 
Therefore, we applied two indices that enabled us to evaluate the resulting objects using the 
multiresolution segmentation technique, along with the ESP2 tool and the corresponding interval 
values. These indices were the Object Pureness Index (OPI) on the one hand, and the Object Matching 
Index (OMI) on the other hand. OPI is a measure used to assess the integrity of the object in terms of 
spectral characteristics, and it is based on the standard deviation (SD) of multispectral bands because 
there is a robust positive correlation between the applied bands. The reason that SD is selected instead 
of each band’s mean value is that mean values vary among these bands, while SD values are very 
close to each other, especially for integrated objects like vegetated areas and water bodies. The other 
considered measure, OMI, evaluates the spatial match between the reference object and the image 
objects. The mathematical explanation of these measures is stated in Equation (3): 

B G R

B G R

(SD + SD + SD )
(SD + SD + SD )3OPI =  = 

Max SD 3 * Max SD
 (3) 

where SDB, SDG, and SDR stand for the SD of the Blue, Green, and Red bands, respectively, and Max 
SD stands for the maximum SD value among these three bands. The OPI values close to 1 indicate 
that spectral variance is very low and the object is pure. In comparison, OPI values close to zero 
indicate that there is significant variance among the resulting objects, which usually happens when 
large-scale values are applied in the segmentation process. OPI alone is not adequate for selecting 
segmentation parameters, because it only evaluates objects in terms of spectral features, and does not 
address the spatial matching of objects. Therefore, the OMI (see Equation (4)) was also applied to 
evaluate our segmentation:  

Area(R S) Area(S)OMI =   
Area(R) Area(R)

∩ ×
 

(4) 

where R is a reference object and S is a segmented object. An OMI value equal to 1 shows a perfect 
match between R and S, while values less than 1 indicate over-segmentation and values greater than 
1 indicate under-segmentation. The Object Fitness Index (OFI) is calculated (as per Equation (5)) to 

Figure 4. Pseudo-color image of a landslide event (a) and segmented landslides (b).

3.3.2. Segmentation Accuracy Evaluation

Although we used the ESP2 tool to determine the optimal SP, there is no standard method to
select segmentation parameters or assess the accuracy of the resulting objects [22]. The segmentation
parameters are usually modified based on the desired target features, and they are challenging to
implement and cannot appropriately address errors like under- and over-segmentation [22]. Therefore,
we applied two indices that enabled us to evaluate the resulting objects using the multiresolution
segmentation technique, along with the ESP2 tool and the corresponding interval values. These indices
were the Object Pureness Index (OPI) on the one hand, and the Object Matching Index (OMI) on the
other hand. OPI is a measure used to assess the integrity of the object in terms of spectral characteristics,
and it is based on the standard deviation (SD) of multispectral bands because there is a robust positive
correlation between the applied bands. The reason that SD is selected instead of each band’s mean
value is that mean values vary among these bands, while SD values are very close to each other,
especially for integrated objects like vegetated areas and water bodies. The other considered measure,
OMI, evaluates the spatial match between the reference object and the image objects. The mathematical
explanation of these measures is stated in Equation (3):

OPI =

(SD B+ SDG+ SDR)
3

Max SD
=

(SD B+ SDG+ SDR)

3 ∗ Max SD
(3)

where SDB, SDG, and SDR stand for the SD of the Blue, Green, and Red bands, respectively, and Max
SD stands for the maximum SD value among these three bands. The OPI values close to 1 indicate
that spectral variance is very low and the object is pure. In comparison, OPI values close to zero
indicate that there is significant variance among the resulting objects, which usually happens when
large-scale values are applied in the segmentation process. OPI alone is not adequate for selecting
segmentation parameters, because it only evaluates objects in terms of spectral features, and does not
address the spatial matching of objects. Therefore, the OMI (see Equation (4)) was also applied to
evaluate our segmentation:

OMI =
Area(R ∩ S)

Area(R)
×

Area(S)
Area(R)

(4)

where R is a reference object and S is a segmented object. An OMI value equal to 1 shows a perfect
match between R and S, while values less than 1 indicate over-segmentation and values greater than
1 indicate under-segmentation. The Object Fitness Index (OFI) is calculated (as per Equation (5)) to
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obtain a single index that can present the optimal object generation scale based on OPI and OMI,
among other scales:

OFI =

√
(

OPI 2+ OMI 2

2
) (5)

OFI values close to 1 point to the optimal segmentation scale. Resulting values less and greater
than 1 indicate over- and under-segmentation, respectively.

3.4. Machine Learning Methods

3.4.1. Multilayer Perceptron Neural Network (MLP-NN)

ML algorithms have been widely used in various scientific fields, especially in the earth sciences,
to overcome complex problems [58,59]. ML is considered a subdivision of artificial intelligence, which
imitates the human brain’s performance in problem-solving and decision making [60]. In doing
so, it uses a variety of algorithms, like artificial neural network (ANN), in the learning process [59].
MLP-NN is an ANN method that has been widely used in geohazard modeling [1]. The performance of
this method is affected by variables like the model’s structure, the type of applied activation functions,
and which weight updating method is used [61]. In general, MLP-NN consists of an input layer, one
or more hidden layers, and an output layer. In geohazard modeling, like landslide susceptibility
modeling, the input layer includes neurons that are the same as the landslide affecting factors, and
the number of hidden layers depends on the training data [62] and the complexity of the problem [1].
In this study, the backpropagation algorithm (BPA), which is the primary training method employed in
neural networks, was used for updating weights; for two hidden layers, 24 neurons for each layer were
allocated. To run the method, initial weights, which are randomly chosen by the BPA, are allocated to
each neuron, and the method is then continually optimized based on the error rate between the output
and expected values until the error rate is stabilized (see Equation (6)):

y = (
n∑

i=1

Wi ∗Xi + b) (6)

where W denotes the vector of weights, X is the input vector of features of objects, and b is the bias.
Additionally, the sigmoid activation function, which was used in the present study, can be explained
by Equation (7):

f (z) =
1

1− e−y , (7)

where f (z) is the output of the activation function, which ranges from 0 to 1.

3.4.2. Logistic Regression (LR)

Logistic regression is one of the multivariate analysis methods that allow us to create a multivariate
regression connection among a set of independent variables and one dependent variable [63]. LR is
a powerful method for predicting the presence of an event by fitting the best linear model based
on independent variable values, and it is a commonly used statistical method applied in landslide
susceptibly analysis [64]. One of the significant advantages of LR is that, in this method, the independent
variables can be both discrete and continuous, or a mix of these variable types can be used [65]. In this
case, the dependent variable was introduced as a binary value of 0 and 1, whereby 0 showed the
absence of a landslide event and 1 indicated the presence of a landslide. The mathematical definition
of LR is defined by Equation (8) [63]:

p =
1

(1 + e −z)
(8)
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where p, in this case, is the probability of a landslide occurring, which varies between 0 and 1.
Furthermore, z is the linear combination, which fits a linear equation to independent variables
(landside conditioning factors), as shown by Equation (9) [63]:

z = b0+ b1x1+ b2x2+ b3x3 + . . .+ bnxn (9)

where b0, bi, and xi are intercepts of the method, coefficient, and independent variables, respectively.

3.4.3. Random Forest (RF)

RF is a powerful supervised ML method, which was proposed by [66] and has been widely used
in RS and GIS applications, such as image classification [67] and landslide susceptibility mapping [1].
This method is based on decision trees and operates by constructing a multitude of decision trees
during the training process, which makes it less sensitive to over-fitting issues [1]. In the RF method,
each decision tree generates outputs, and then outputs weights, which are derived from the votes, are
dedicated. The advantages of RF are that it is easy to apply because it requires fewer parameters and it
yields a higher accuracy compared to other ML methods due to the bagging process [68]. Additionally,
it can deal with high-dimensional and complex data structures [69]. Due to its simplicity and better
performance, we selected this method as another algorithm for landslide detection in this study.

3.4.4. Stacking Machine Learning (ML) Methods

The main idea behind ensemble methods in ML is to improve the performance of a final method,
by combining various methods to build a powerful learner to predict or classify a set of data [70].
The strength of using ensemble methods is that we can decrease the variance by combining several
single methods, which, individually, do not yield an excellent performance [70]. There are three main
ensemble machine learning methods: bagging, boosting, and stacking. In this case, the stacking
method was used. In stacking, there are two levels, namely, level 0 and level 1. In level 0, single
methods make a set of predictions based on training data, and these outputs (predictions) are then
used as inputs for a meta-learner, which is a single method, to make a new set of predictions [71].
Therefore, in this case, ML methods such as LR, MLP-NN, and RF were trained as single methods in
level 0, and LR was then used as our meta-learner in level 1 to make the final predictions.

3.5. Integration of MLP-NN and OBIA for Landslide Detection

In conventional landslide detection and susceptibility mapping using machine learning algorithms,
analyses are usually performed on an n-dimensional raster dataset or, to be specific, calculations are at
the pixel level, and the pixel values in each layer are processed. Applying ML algorithms to large or
very high-resolution datasets at a pixel level requires robust computing systems and is time-consuming,
in particular, when the spatial extent of the study area is significant. Meanwhile, in OBIA, analyses
are carried out at an object level [53], and processes like classification are relatively fast compared to
pixel-based methods because, instead of processing each pixel in a set that shares the same values,
the mean value of the object that entails a set of similar pixels will be analysed. In addition to the mean
values of objects in each layer (e.g., image bands, DEM, NDVI, etc...), other statistical and geometrical
characteristics, such as the SD, mode, shape index, position, and texture, can be calculated and used in
classification and feature extraction [53]. Therefore, in this integrated approach, we first produced
image objects through a multiresolution segmentation process by using different scale factors and
then calculated the statistical and geometrical properties for each object. To train ML methods, objects
that had more than a 75% overlapping area with training inventory polygons were selected as the
training dataset. Finally, the methods were trained and applied on test data, which were converted to
a comma-separated values (CSV) format in Python using sklearn’s ML package.
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3.6. Dempster–Shafer Theory (DST)

The concept of DST is made based on a frame of discernment and known as a belief function (Bel)
that is derived from Bayesian probability theory (BPT). It obtained its name from the extensions and
clarifications presented by Shafer and is considered a great approach to integrating spatial data [72].
The DST is an effective method for modeling imprecision and uncertainty assessment. The DST is
transformed from events to proposition and an event set to proposition set, which defines the concept of
the basic probability assignments (bpa) function, Bel, and the plausibility function (Pl), and determines
the one-to-one relationship of proposition and set. Therefore, the DST can translate the proposition
uncertainty into a set uncertainty [73]. In this theory, displaying information requires two essential
functions, namely, Bel and the Pl, which derive the lower bound value for a known probability function
and the upper bound value for an unknown probability function. The differentiation between Bel and
Pl illustrates the uncertainty of the knowledge about the objective proposition.

The DST provides an extension of the probability framework for assessing the uncertainty of
any imprecision event of the probability P(Ml) that the alternative method Ml, l = 1, ..., n is correct.
The lower bound indicates the degree of knowledge or belief that supports Ml and represents Bel (Ml).
In comparison, the upper bound indicates the probability of Ml, and is called plausibility Pl (Ml) [74]
(see the Equations (10) and (11)):

Bel (A) =
∑
B⊆A

m(B) (10)

Pl (A) =
∑

B∩A,0

m(B) (11)

where the summation is obtained over all sets B∈ 28 with B ⊆ A in the definition of Bel and the
summation in that of Pl is taken over all B∈ 28 with B ∩A , 0 in which the set of 8 is mutually
exclusive and collectively exhaustive hypotheses, and the power set of 8 is denoted by 28. The Bel is
the summation of all masses directly assigned by a set of hypothesis A, while the plausibility sums all
masses not assigned to the complement of the hypothesis A. An uncertainty interval of

⌊
Bel(A), Pl(A)

⌋
that Bel (A) ≤ Pl(A) can be defined; its length is a measure of the imprecision of knowledge about the
uncertainty of set A [75].

From a general point of view, unlike a probabilistic theory that allocates a mass to the individual
elementary events, the theory of evidence, or the bpa, makes m(A) on the set A of the P(z), power sets
of the space Z event, i.e., on a set of results rather than a single elementary event.

In more detail, m(A) expresses the degree of belief that a specific element x belongs to the set A
only, and not to any subset of A. The bpa that assigns a mass in the range of [0, 1] to each subset A
satisfies the following requirement, specified by Equation (12):

m : P(z) → [0, 1], m(φ) = 0;
∑
A∈Z

m(A) = 1 (12)

If n data sources are available, probability masses mi (Bj) must be defined for each data source i
with 1 ≤ i ≤ n and for all sets, Bj ∈ 28. The DST allows the combination of these probability masses
from resulting landslide detection maps and the training inventory data set to compute a combined
probability mass for each set. The composition rule in the proposed DST is based on mathematical
theory, which is the basis of the combination of mass functions mi obtained from n sources of information
given in Equations (13) and (14):

m(A) = m1(B1) ⊕m2 (B2) ⊕M3(B3). . . . ⊕ mn (Bn) (13)

m(A) =

∑
B1∩B2....Bn=A

∏n
i=1 mi

(
B j

)
(1−K)

(14)
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where K denotes the degree of conflict given in Equation (15):

K =
∑

B1∩B2....Bn=ϕ

n∏
i=1

mi
(
B j

)
(15)

Fusion of Multi-Scale Results via DST

Multi-scale segmentation resulted in different object sizes, which were used for training the ML
methods. Therefore, based on multi-scale segmentation, different landslide detection maps were
produced from each ML method. The areas that were classified as landslides using different scales and
one ML method were grouped by the fusion level analysis (FLA) technique [12] and fused into a class
of landslide area based on the DST. Several Bels were combined in the DST within the same frame,
which made it possible to harmonize the landslide detected areas from different scales. The probability
of uncertainty in the detected landslide areas can be derived from Bel and Pl. Therefore, the resulting
areas detected as landslides in three scales (i.e., 198, 248, and 298) were combined by fusing the
DST with the training inventory dataset. The accuracy of the landslide detected areas based on each
scale was assessed using a confusion matrix and, accordingly, the Bels were estimated by a precision
function [12]. The DST combined the majority of landslide detected areas, which were closer to the
inventory dataset, and then assigned them to the class of landslide area based on the DST.

4. Accuracy Assessment and Comparison

In this section, we outline the most common accuracy assessment methods, which were used
to validate the performance of the applied ML methods and the improvements made by using the
stacking and DST methods. The accuracy assessment was made by comparing the resulting landslide
detection maps with the landslide inventory dataset. The accuracy assessment was conducted using
a confusion matrix, precision, recall F1 measure, and the receiver operating characteristics (ROC),
to determine the accuracy of the landslides detected by each method. The user accuracy was calculated
based on dividing correctly mapped objects by the total number of classified objects. In this regard,
the study area was divided into two classes called landslide areas and non-landside areas, and for
each class, this measure was calculated. We used the confusion matrix based on a comparison of the
inventory dataset and the resulting maps based on a pixel-based environment. The Kappa coefficient
was derived from the confusion matrix [76], and the coefficient was calculated using Equation (16):

Kappa Coefficient = (θ1 − θ2) /(1− θ2) (16)

where θ1 denotes the ratio of correctly detected areas, whereas θ2 denotes the proportion of agreement
by randomness [12].

The ROC is a graphical plot used to evaluate the validity of a method that predicts the location of
the occurrence of events by comparing the probabilistic map of the event with a reference map [77].
This assessment method has been applied in many fields, in particular, in the Geosciences [78]. The ROC
measure is based on three metrics: true positive (TP), false positive (FP), and false-negative (FN) (see
Figure 5 and Equations (17)–(19)). In this case, the landslide events that were correctly detected were
TPs, areas that were incorrectly classified as landslides were FPs, and FNs represented landslide areas
that were not detected. Using these metrics, the three parameters of Precision, Recall, and F1 measure
could be calculated to assess the results. Precision shows the proportion of landslide events that were
detected, Recall indicates how many of the inventory landslide events were detected, and the F1
measure was used to balance the Precision and Recall.

Precision =
TPs

TPs+ FPs
(17)
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Recall =
TPs

TPs+ FNs
(18)

F1 meausre = 2 ×
Precision × Recall
Precision + Recall

(19)
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5. Results and Discussion

5.1. Image Segmentation

The MRS parameters and results of ten applied scales were chosen by interval values based on
the ESP2 tool scale value of 248. The NDVI and topographic derivatives, along with PlanetScope
images, were used as the conditioning factors in our image segmentation procedure, to improve
the segmentation results. Next, to evaluate the accuracy of our segmentation results, 30% of the
inventory dataset of landslide events were randomly selected for use in the OPI, OFI, and OMI indices.
The applied parameters and layer weights, and the segmentation evaluation results are presented in
Table 2.

Table 2. Parameters used for the multiresolution segmentation (MRS) and segmentation
evaluation results.

Scale Shape Compactness
Layer Weights OPI OMI OFI

RGB
NIR TWI aspect Profile

Curvature Elevation NDVI Slope Curvature Plan
Curvature

48 0.7 0.3 0.88 0.40 0.68
98 0.7 0.3 0.93 0.51 0.75
148 0.7 0.3 0.95 0.71 0.84
198 0.7 0.3 0.95 0.87 0.91
248 0.7 0.3 2 1 2 1 1 4 2 1 1 0.97 0.95 0.96
298 0.7 0.3 0.94 1.19 1.07
348 0.7 0.3 0.92 1.25 1.10
398 0.7 0.3 0.90 1.29 1.11
448 0.7 0.3 0.87 1.35 1.14
498 0.7 0.3 0.81 1.41 1.15

For the accuracy assessment of our segmentation results, we selected image objects whose
centroids were within the reference objects. According to Table 2, based on the OFI index results of
30% of the applied samples, the segmentation with a scale of 248 provides the best convergence, while
scales lower and higher than scale 248 are associated with over-segmentation and under-segmentation
errors, respectively. The variation of the resulting values from OPI, OMI, and OFI are shown in Figure 6.
The segmentation results in Figure 7 show the over- and under-segmentation errors. In Figure 7a,
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due to a small SP, the landslide event is over-segmented, while in Figure 7c, the scale is relatively
large, resulting in under-segmentation, which merged a non-landslide area with a landslide area.
Figure 7b shows the best segmentation result compared to other scales. The main reason that three
scale results are used for landslide detection is to evaluate the impact of different scales on the landslide
detection accuracy. Since, in OBIA, processing units are image objects, other features (e.g., geometric,
textural, and spectral) of objects can be calculated and used in the classification or object extraction.
Therefore, in this case, we calculated characteristics such as the shape index, mean brightness, SD of
NDVI, length, compactness, density, and contrast grey level of the co-occurrence matrix (GLCM), to be
used in MLP-NN algorithms. In order to train MLP-NN for each segmentation result, the objects that
overlapped with training data (polygons) were chosen as training objects. Subsequently, the trained
algorithm was applied to test objects.

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 28 

 

scales lower and higher than scale 248 are associated with over-segmentation and under-
segmentation errors, respectively. The variation of the resulting values from OPI, OMI, and OFI are 
shown in Figure 6. The segmentation results in Figure 7 show the over- and under-segmentation 
errors. In Figure 7a, due to a small SP, the landslide event is over-segmented, while in Figure 7c, the 
scale is relatively large, resulting in under-segmentation, which merged a non-landslide area with a 
landslide area. Figure 7b shows the best segmentation result compared to other scales. The main 
reason that three scale results are used for landslide detection is to evaluate the impact of different 
scales on the landslide detection accuracy. Since, in OBIA, processing units are image objects, other 
features (e.g., geometric, textural, and spectral) of objects can be calculated and used in the 
classification or object extraction. Therefore, in this case, we calculated characteristics such as the 
shape index, mean brightness, SD of NDVI, length, compactness, density, and contrast grey level of 
the co-occurrence matrix (GLCM), to be used in MLP-NN algorithms. In order to train MLP-NN for 
each segmentation result, the objects that overlapped with training data (polygons) were chosen as 
training objects. Subsequently, the trained algorithm was applied to test objects.  

 
Figure 6. Changes of the object pureness index (OPI), object matching index (OMI), and object fitness 
index (OFI) at different scales. Scale 248, where all lines cross, turned out to be the best segmentation 
scale. 

 
Figure 7. Image segmentation with different results; the black colored area represents a landslide 
event, and blue polygons are image objects. Images (a–c) are segmentation results with scales of 198, 
248, and 298, respectively. 

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 9 8 1 4 8 1 9 8 2 4 8 2 9 8 3 4 8 3 9 8 4 4 8 4 9 8

Re
su

lts
 o

f i
nd

ice
s

Multi-scale 

OPI OMI OFI

Figure 6. Changes of the object pureness index (OPI), object matching index (OMI), and object
fitness index (OFI) at different scales. Scale 248, where all lines cross, turned out to be the best
segmentation scale.
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Figure 7. Image segmentation with different results; the black colored area represents a landslide event,
and blue polygons are image objects. Images (a–c) are segmentation results with scales of 198, 248, and
298, respectively.



Remote Sens. 2019, 11, 2575 16 of 26

5.2. Landslide Detection using ML and Stacking Methods

The training image objects of each segmentation scale, along with their characteristics, were stored
in a CSV file to train ML methods in the Python environment. Results for all scales vary between 0 and
1, and objects that had values greater than 0.5 were selected as landslide events for all ML methods.
The results in Figure 8 show that the size of objects has a significant impact on the outputs. For example,
the results of ML and stacking methods of image objects with a scale of 298 indicate larger areas as
landslides than the other scales’ results. However, based on the OPI and OMI indices, differences in
the results were expected, because the OPI and OMI values of scales 198 and 248 are close to each
other and are associated with an over-segmentation error. Meanwhile, for the scale 298, the values of
those indices—OMI, in particular—show an under-segmentation error, which resulted in larger image
objects. Additionally, the methods’ parameters were the same for each segmentation scale.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28 
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5.3. Results of Fusion and Optimization using DST

To optimize the landslide detection using the ML method and obtain the best result, we used DST
to combine the results of each method’s landslide detection output at different scales. Therefore, the
predicted landslides acquired from each method were calculated using a confusion matrix, and a CSV
file was employed to fuse the most probable landslide events in QGIS 3.8, which resulted in a single
and accurate landslide inventory map for each method (Figure 8).

According to the results, which are represented in Table 3, the RF method achieved the highest
user accuracy of all ML methods, with an accuracy of up to 90.07% when detecting non-landslides
using the optimal SP. This resulting accuracy was followed by the MLP-NN and LR methods, with
almost an 89% and 88.2% accuracy, respectively, again using the optimal SP. For this SP, the stacking
method slightly improved the user accuracy to 90.44%. However, combining multi-scale results using
the DST increased the user accuracy for all applied methods by up to 9%.

Table 3. Confusion matrices based on different methods and the landslide inventory data set.

Method Class Name

Pixels from Landslide
Inventory Data Set Total

Samples
User

Accuracy
Overall

Accuracy
Kappa
Index

Non-Landslides Landslides

LR 198
Non-landslides 1755 370 2125 82,588

0.761 0.541Landslides 400 700 1100 63,636

MLP 198
Non-landslides 1774 351 2125 83,482

0.769 0.555Landslides 395 705 1100 64,091

RF 198
Non-landslides 1786 339 2125 84,047

0.774 0.566Landslides 389 711 1100 64,636

Stacking 198 Non-landslides 1779 346 2125 83,718
0.778 0.576Landslides 371 729 1100 66,273

LR 248
Non-landslides 1874 251 2125 88,188

0.833 0.685Landslides 289 811 1100 73,727

MLP 248
Non-landslides 1890 235 2125 88,941

0.841 0.700Landslides 279 821 1100 74,636

RF 248
Non-landslides 1914 211 2125 90,071

0.864 0.749Landslides 227 873 1100 79,364

Stacking 248 Non-landslides 1922 203 2125 90,447
0.872 0.765Landslides 209 891 1100 81,000

LR 298
Non-landslides 1744 381 2125 82,071

0.755 0.528Landslides 410 690 1100 62,727

MLP 298
Non-landslides 1769 356 2125 83,247

0.764 0.545Landslides 405 695 1100 63,182

RF 298
Non-landslides 1778 347 2125 83,671

0.769 0.554Landslides 399 701 1100 63,727

Stacking 298 Non-landslides 1779 346 2125 83,718
0.774 0.567Landslides 382 718 1100 65,273

LR DST
Non-landslides 1894 231 2125 89,129

0.861 0.745Landslides 217 883 1100 80,273

MLP DST
Non-landslides 1910 215 2125 89,882

0.870 0.762Landslides 206 904 1110 81,441

RF DST
Non-landslides 1970 155 2125 92,706

0.892 0.801Landslides 192 908 1100 82,545

Stacking DST Non-landslides 1976 149 2125 92,988
0.898 0.814Landslides 180 930 1110 83,784

In the ROC analysis, the area under the curve (AUC) is a metric that evaluates each method’s
performance in distinguishing between classes. In our case, these classes are landslide areas and
non-landslide areas [79]. AUC values close to 1 indicate the reliability of a method’s results; however,
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values close to 0.5 show a method’s poor performance. Table 4 presents the quantitative assessment
accuracy of each method based on the testing inventory dataset. The ROC validation results showed
that the DST-stacking results achieved the highest AUC value of 0.965, whereas the LR method, based
on the scale of 180 with an AUC value of 0.88, presented the lowest accuracy in landslide detection
(see Figure 9 and Table 5). Furthermore, for each result, the precision, recall, and F1 measures were
also calculated.

Table 4. Quantitative accuracy assessment for ML and Stacking methods, as well as DST results.

Method Scale TP (ha) FP (ha) FN (ha) Precision Recall F1 Measure

LR
198 572.89 344.72 68.24 0.62 0.89 0.74
248 553.39 272.62 87.74 0.67 0.86 0.75
298 570.65 532.20 70.48 0.52 0.89 0.65

MLP
198 598.96 310.09 42.17 0.66 0.93 0.77
248 580.04 220.00 61.09 0.73 0.90 0.80
298 580.47 479.65 60.66 0.55 0.91 0.68

RF
198 579.54 265.76 61.59 0.69 0.90 0.78
248 588.54 140.23 52.59 0.81 0.92 0.86
298 608.44 419.65 32.69 0.59 0.95 0.73

Stacking
198 580.30 131.23 60.83 0.82 0.91 0.86
248 594.25 109.23 46.88 0.84 0.93 0.88
298 591.52 289.60 49.61 0.67 0.92 0.78

DST

LR 589.74 84.25 51.39 0.87 0.92 0.90
MLP 594.36 74.44 46.77 0.89 0.93 0.91
RF 604.15 55.85 36.98 0.92 0.94 0.93
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Table 5. The accuracy assessment results based on the area under the curve (AUC).

Scale LR MLP RF Stack

198 0.88 0.92 0.93 0.94
248 0.91 0.92 0.94 0.95
298 0.89 0.9 0.91 0.92
DST 0.93 0.93 0.94 0.96

To visually present the improvement of the results using the optimal scale, stacking, and DST, we
enlarged a specific area of a landslide event (see Figure 10). This figure illustrates that the ML and
stacking results based on objects at a scale of 298 are much more prone to FPs. Although the multi-scale
approach resulted in different TP, FP, and FN areas, the DST was helpful for merging the TP areas of
different scales and considerably improved the landslide detection accuracy. For instance, the result of
stacking at a scale of 298 resulted in considerably more FPs, but this was not the case for the other scale
levels, namely 248 and 198. However, as the DST combined the majority of TP areas, the FPs of the
scale 298 were removed from the DST results.

The present study aimed to evaluate the performance of commonly used ML methods in landslide
detection in an object-based environment. As shown in Figure 11, our validation results proved that all
methods obtained the highest accuracy when using objects with a scale of 248, compared to lower
and higher scales. However, applying the DST to combine the results of multiple scales for each
method improved the overall accuracy of each method. Regarding the applied ML methods in this
study, the stacking method yielded the highest accuracy at any scale compared to using single ML
methods. The RF method performed best among the single ML methods, whereas the LR method
achieved the lowest accuracies. Therefore, using the optimal SP and ML method is crucial for landslide
detection in an object-based environment. We used the seismic-induced landslides as a case instant to
evaluate the proposed methodology. However, this method can be applied for other types of landslides,
and the outcome may depend on the resolution of the applied satellite imagery and the optimal scale
parameter of segmentation. The limitation of this work is that the methodology is outperformed for
a high-vegetated area, which was helpful to differentiate landslide areas from non-landslide ones.
Therefore, it cannot reach the same accuracies for areas with less vegetation cover.
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6. Conclusions

We have developed a methodology that incorporates OBIA with three machine learning methods,
namely, logistic regression (LR), the multilayer perceptron neural network (MLP-NN), and random
forest (RF), for landslide detection. Our multi-scale methodology identifies the optimal scale parameters
(SP) and uses them for multi-scale segmentation and further analysis. The presented landslide mapping
study showed that the integrated method improves the performance and accuracy. Most notably,
the stacking method for landslide detection outperformed every single ML method. Furthermore,
the validation results show that using DST could optimize and improve the outcomes of all applied
methods. However, it should be noted that the results of an object-based ML method strongly
depend on the segmentation quality. Therefore, optimal segmentation parameters result in a higher
segmentation accuracy and, consequently, better results. Although there are no standard methods for
selecting segmentation parameters and for accuracy assessment, we used the two measures of OPI
and OMI to identify ideal segmentation parameters in terms of spectral and spatial quality. Therefore,
as a result, both measures were combined to create the OFI, which allowed us to identify the best
segmentation parameters, as well as to identify over-segmentation and under-segmentation errors.
Therefore, we believe that a challenge for object-based ML methods is improving the segmentation
accuracy, which requires new reliable automatic methods dealing with intra-class heterogeneity and
inter-class homogeneity. This study shows that using high-resolution satellite imagery data does
not guarantee a good accuracy. Several measures and parameters should be identified based on the
target object detection or classification. In this regard, we used an ensemble method of stacking and
DST to enhance the landslide detection results based on multi-scale segmentation. Different accuracy
assessment results proved that the performance of landslide detection can be increased using these two
methods. Moreover, all resulting maps yielded the highest accuracies using the optimal SP. Therefore,
finding the optimal SP for the applied satellite image and ML method for the classification is crucial
for accurate landslide detection. Based on the results of the present study, our future work will focus
more on improving both segmentation and classification using relative mathematical and probability
concepts, such as the central limit theorem (CLT) and fuzzy set theory (FST).
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Abbreviations

AUC area under the curve
BPA backpropagation algorithm
BPT Bayesian probability theory
bpa basic probability assignments
Bel belief function
CSV comma separate values
CLT central limit theorem
DST Dempster–Shafer theory
DEM digital elevation model
DN digital number
EO Earth observation
ESP2 estimation of scale parameters
EBF evidential belief function
FP false positive
FN false negative
FST fuzzy set theory
FLA fusion level analysis
GPS global positioning system
GIS geographic information system
GIScience geographic information science
GLCM grey level co-occurrence matrix
HR high-resolution
IU image understanding
LR logistic regression
KNN K-nearest neighbour
LMT logistic model tree
MSL mean sea level
MLP-NN multilayer perceptron neural network
ML machine learning
MRS multiresolution segmentation
NDVI normalized differential vegetation index
OFI object fitness index
OBIA object-based image analysis
OMI object matching index
OPI object pureness index
Pl plausibility function
RF random forest
ROC receiver operating characteristic
RS remote sensing
SP scale parameter
SD standard deviation
SVM support vector machines
TWI topographic wetness index
TP true positive
VHR very high-resolution
WoE weights of evidence
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