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Abstract

The automated design of meander line RFID antennas is a discrete self-avoiding walk

(SAW) problem for which efficiency is to be maximized while resonant frequency is to be

minimized. This work presents a novel exploration of how discrete local search may be

incorporated into a continuous solver such as differential evolution (DE). A prior DE algo-

rithm for this problem that incorporates an adaptive solution encoding and a bias favoring

antennas with low resonant frequency is extended by the addition of the backbite local

search operator and a variety of schemes for reintroducing modified designs into the DE

population. The algorithm is extremely competitive with an existing ACO approach and the

technique is transferable to other SAW problems and other continuous solvers. The findings

indicate that careful reintegration of discrete local search results into the continuous popula-

tion is necessary for effective performance.

Introduction

Introduced in the middle of the last century [1], radio frequency identification (RFID) has

become a near-ubiquitous way of tracking and identifying items in a variety of settings such as

logistics and supply chains [2, 3]. An RFID system comprises two main components: a reader

and a tag (that contains an antenna). The reader sends an RF signal that can power the receiver

(the tag), which in turn radiates back a signal containing its ID to the reader [4]. This backscat-

tered signal usually contains a number that uniquely identifies the tag, and hence item. A key

design objective for the antenna is improving the read range (the distance the signal can be

sent and received), which is generally inversely proportional to an antenna’s resonant fre-
quency, f0, and proportional to its gain (related to its efficiency, η). Both these factors are

determined by the design of the antenna, which consequently becomes a multiobjective opti-

mization (MOO) problem with the objectives of minimizing f0 while maximizing η. Shorter

antennas tend to be highly efficient, but resonate with frequencies far higher than those used

in RFID systems. In contrast, longer antennas tend to have lower resonant frequencies, but

are less efficient. The goal of this multiobjective problem is thus to produce an antenna with
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relatively low resonant frequency without sacrificing its efficiency. This is commonly achieved

by producing antennas that (ideally) maximize the length of the antenna in a convoluted

space-filling manner. While theoretical limits on antenna performance have been established

[5] they are known to not be achievable in practice. Consequently, recent work by a number of

authors [6–13] has used a variety of heuristic search techniques to explore the space of antenna

designs and their associated performance, which is determined through simulation using a

modern implementation of the NEC evaluation package [14].

Meander line RFID antennas are dipole antennas laid out on a Cartesian grid. Each side is

the mirror image of the other, so only one half needs to be specified; the antenna is center-fed

between these two halves (see Fig 1). The design of one half may start from any node along the

edge facing the center. For a fixed physical design area the size of the grid can be varied to pro-

vide greater flexibility in possible designs and access to longer antenna designs. Each grid size

is essentially a different, but related problem, with grids of 5×5 through 10×10 commonly

used. The problem is closely related to that of designing self-avoiding walks (SAWs; see, e.g.,

Oberdorf et al. [15] or Sokal [16]). In the past, alternative designs have been manually pro-

duced by engineers such that the antenna’s path visits every node and hence is the maximum

possible length. Recent work using heuristics for this problem has relaxed this constraint,

Fig 1. Antenna design space with example antenna. (a) A 5 × 5 antenna grid, with alternative start nodes labeled. (b)

A meander line RFID antenna defined on that grid. (c) The complete dipole antenna produced by mirroring the

solution in (b); excitation of the two halves occurs across the 6 mm gap.

https://doi.org/10.1371/journal.pone.0223194.g001
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ensuring that every solution is considered feasible while still allowing the solvers to produce

high quality antennas [7–10, 13].

The first evolutionary algorithm (EA) applied to this problem was ant colony optimization

(ACO; see, e.g., Dorigo and Stützle [17]), due to the natural alignment between ACO’s solution

construction process and the process of constructing a SAW one segment at a time [11, 12].

While the the earliest applications solved the single objective of maximizing efficiency, later

ACO approaches [10] treated the problem as multiobjective, introducing the commensurate

goal of minimizing resonant frequency (the combination of low resonant frequency yet high

efficiency is critical to maximizing the read range of the antenna). Using standard Pareto dom-

inance based techniques [18] and a problem-specific local search operator known as backbite,
Lewis et al. [10] found that low resonant frequency antennas could be produced while main-

taining good efficiencies.

While ACO-based techniques display a natural suitability for the constructive design meth-

ods of meander line antennas, they are unlikely to be the only effective approaches to this

problem. This is particularly true when the “problem” is to explore the performance envelope

in the wider design space, not just optimise a specific antenna for a specific purpose. For these

studies, using a diverse range of construction methods and optimisation algorithms is neces-

sary to ensure a diversity of trial solutions and adequate coverage of the design space. To this

end, later work investigated the efficacy of other, algorithmically-diverse techniques. Gomez-

Meneses, Randall and Lewis [7] used another nature inspired technique referred to as extremal

optimization (EO). As EO is an iterative, rather than constructive, heuristic, and handles per-

mutations poorly, the antenna construction process was adapted to a knapsack problem in

which antenna segments are selected for inclusion. This creates an extremely rich space of

solutions compared to that explored by the ACO implementation, including antennas with

“parasitic” elements that are not connected to the main antenna path. The results revealed

that the EO algorithm had similar performance to ACO on the smaller grids (up to size 7),

but dropped off, particularly in terms of resonant frequency, on larger grid sizes. Representing

the problem as a binary selection problem is an ongoing area of research, with Hettenhausen,

Lewis, Thiel and Shahpari [19] investigating the use of a binary Multi-Objective Particle

Swarm Optimization algorithm (MOPSO) to explore the general design space of electrically-

small, planar antennas using a representation of them as made up of a number of square

patches. Preliminary experiments have shown some promising results in terms of the diversity

of the design space explored but have, to date, not exceeded the performance envelope estab-

lished by the original ACO studies.

To provide an additional contrasting approach to the ACO, the authors adapted the popular

and widely-effective continuous solver differential evolution (DE; see, e.g., [20]) to this problem,

with encouraging results [8], which were subsequently improved by biasing the algorithm’s

exploration of the multiobjective search space towards regions of lower resonant frequency [9].

The DE employed a novel solution representation that encodes constructive decisions as real-

valued numbers, and so operates in the space of meander line antennas rather than the larger

solution space used by the EO. This early work demonstrated that the unusual choice of a con-

tinuous solution representation affords something that the intuitively well-matched ACO does

not: the ability to recover from sequences of poor design decisions [21, 22]. However, the most

common local search operator for SAWs, backbite, works directly on antenna designs and can-

not be immediately applied to the real-valued vector solutions of DE. The present work investi-

gates how best to integrate this discrete local search into the algorithm’s operation. The findings

may support the application of other continuous algorithms to discrete problems.

The next section introduces the backbite operator [16] as a local search mechanism for

meander line antenna design. This is followed by a description of the key algorithmic changes
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required to apply a continuous solver like DE to the discrete problem of RFID antenna design,

and the particular design choices in the multiobjective DE algorithm used here. This includes

the algorithm’s mechanism to bias its search towards antennas with lower resonant frequen-

cies. The subsequent section describes how backbite local search is integrated into the DE-

based solver, which is non-trivial as it works in the discrete space of antennas, so modified

designs must then be mapped back into the continuous search space of DE. An empirical eval-

uation of combinations of the algorithm’s components—bias and local search—is then pre-

sented, followed by a summary of the implications of these findings for related problems and

other continuous, population-based heuristics such as particle swarm optimization.

Backbite local search for RFID antennas

EAs are coarse grain optimizers, so require a local search mechanism in order to find locally

optimal solutions. For the RFID problem, it is a non-trivial task to devise an effective local

search scheme due to the black box that evaluates the characteristics of each design. Weis

et al. [12] investigated a novel way of perturbing the ends of meander line antenna structures

known as backbite, based on approaches for modifying SAWs [16]. The technique works by

extending the end of the meander line to one of the (up to) three adjacent nodes, then deter-

ministically removing an existing link so that no circuit is introduced. Fig 2 illustrates the

process.

Each antenna design typically has three backbite-generated alternatives, as meander line

endpoints are surrounded by up to three unoccupied segments. The process can be applied

recursively to each alternative, and the depth of the recursion determines the total number of

alternatives generated, which grows according to O(3d) where d is the depth. Weis et al. [12]

considered depths between 5 and 25, as they were particularly interested in the impact of

bends in antenna designs on quality (because their ACO algorithm incorporated a bias

towards straight lengths). Lewis et al. [10] then incorporated the backbite operator as part of

their multiobjective ACO algorithm, applying backbite with a fixed depth 3 to each of the 10

ACO-generated solutions at each iteration. These additional designs were then combined with

the solutions produced by ACO before non-dominated sorting (see, e.g., Deb et al. [23]) was

applied to filter out poor designs. In that previous work, the evaluation of backbite solutions

did not count towards the 10,000 total allowed the ACO algorithm, since a comparison

between algorithms was not a consideration in that work. As it is more typical to count all

solution evaluations, that is the approach taken in the present work. Consequently, depths of

1 or 2 are considered, otherwise the number of solutions produced by the DE algorithm (and

hence the number of iterations it is allowed) becomes extremely small.

The next section presents the DE algorithm for RFID antenna design and modifications

introduced since its initial application to this problem, after which the modifications needed to

incorporate backbite-based local search are explored.

Differential evolution for RFID antenna design

Montgomery et al. [8] described the first application of DE to the multiobjective version of the

RFID design problem. DE is a population-based search heuristic that operates in continuous

domains and which has been applied successfully to many different problems [20]. Single-

objective DE algorithms operate a generational model where, at each iteration, each solution is

considered as a target for replacement by a newly generated solution. Adaptations of DE to

MOO vary in their similarity to DE for single-objective optimization [24]. The heuristic solver

used by Montgomery et al. [8] and subsequent work is a multiobjective DE/rand/1/exp algo-

rithm that uses Pareto ranking to select between archived and newly generated solutions. This
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means that it retains the solution mutation mechanism of DE but uses general-purpose MOO

mechanisms to manage the population and archive of known good solutions, in this case the

non-dominated sorting component of Deb et al.’s [23] NSGA-II. Similar approaches include

Madavan’s [25] Pareto-Based Differential Evolution (PBDE), which uses a DE/current-to-

rand/1/bin algorithm and the non-dominated sorting and ranking of NSGA-II, Xue et al.’s

[26] Multi-Objective Differential Algorithm (MODE), and Iorio and Li’s [27] Non-dominated

Sorting Differential Evolution (NSDE), which is essentially NSGA-II with the mutation opera-

tor replaced by a DE variant and thus is most similar to the algorithm considered here and pre-

viously for the RFID design problem.

DE was chosen as the second mainstream heuristic to apply to this problem because, being

designed for continuous domains, it represents a stark contrast to the previous ACO approach

[8]. As the goal of minimizing resonant frequency is strongly related to antenna length, it was

decided that solutions should represent circuit-free meander lines (as in the prior ACO),

which precludes the use of solvers such as Binary DE (BDE) [28] and Binary Particle Swarm

Optimization (BPSO) [29]. Related work using EO [7] confirmed this decision, since the

expanded search space of a segment-based representation comes at the cost of search effi-

ciency. Unless a binary solution representation is suitable, adapting continuous solvers to dis-

crete problem domains is generally a non-trivial task (see Onwubolu and Davendra [30] for

several examples). In a Cartesian grid of nodes there are two primary ways to describe a self-

avoiding walk (SAW) from a given starting point. The first is in terms of the absolute direction

of travel, often described using the cardinal directions (N)orth, (E)ast, (S)outh and (W)est.

The second is in terms of the relative change in direction of travel given a common initial

direction, which can be labeled (L)eft, (F)orward and (R)ight. A path of k steps with a fixed

starting node may then be described by k symbols from either the NESW or LFR alphabets.

Inserting an additional solution component to select the start node 1–n on one edge of the

grid, a solution for a bounded grid of n × n nodes consists of n2 components: n2 − 1 directional

instructions plus the starting node. Mapping these solution encodings to a continuous space

can be done by dividing each dimension (of arbitrary size) by the number of alternative direc-

tions in the encoding. The DE algorithm presented here defines each dimension to be in the

range [0, 3].

Like their discrete counterparts, such encodings still permit sequences of instructions that

produce short paths that cannot be extended without crossing themselves or leaving the design

space. As longer paths are preferred, Montgomery et al. [8] adaptively decode each dimension

such that the regions within that dimension are allocated only to the available directions of

travel: options are assigned to regions in the same order as before, but allocated additional

space. Fig 3 enumerates the regions within each dimension that may correspond to the instruc-

tions from both encodings, depending on the available options at a given time. This adaptive

real-valued representation has since been expanded into a family of adaptive generative

Fig 2. The backbite operator applied to an antenna starting at node 2 (black). Dashed lines in the leftmost design

indicate the three links that may be added. The three diagrams to the right depict the different designs that result from

each of these changes.

https://doi.org/10.1371/journal.pone.0223194.g002
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representations, suitable for other discrete problems that can be modeled as a series of con-

structive steps [22, 31].

Montgomery [21] evaluated the relative effectiveness of the four alternative representations

that result from encoding either the absolute or relative direction of travel and whether or not

solutions are decoded adaptively, finding that:

• adaptively interpreting solutions is necessary for both evolving and maintaining longer

antenna designs; and

• the relative encoding, used in the first application of DE to this problem, produces superior

performance to the absolute representation, both when evolving for antenna length alone

and when solving the bi-objective antenna problem.

These results strongly suggest that the features of the representation (adaptively interpreting

the relative direction of travel) have a stronger influence on search performance than the par-

ticular continuous solver used. Consequently, DE is used as a well-performing exemplar con-

tinuous solver.

Hence, the remainder of this paper uses the adaptive, relative encoding as the solution

representation. The DE algorithmic variant used is DE/rand/1/exp algorithm, which was

selected because the DE/rand/1/� family of algorithms is both widely-used and effective [32],

while the exp crossover takes contiguous components from an intermediate candidate solution

during crossover and is thus more likely to preserve antenna structure. Montgomery et al.’s [8]

initial testing confirmed that it was more effective than DE/rand/1/bin. The algorithm uses

crossover Cr = 0.99 and difference vector scale factor F = 0.8. While the initial work used a

population size of 100, a later refinement introduced an external solution archive (described in

the next section) which allows a smaller working population of 50 to be used [9].

Extending the front using biased population selection

Although RFID antenna design is posed as a MOO problem, not all regions of the Pareto front

are of equivalent interest, with solutions of lower resonant frequency (yet the highest efficiency

possible) preferred. Most previous applications of heuristic solvers to this problem aimed to

achieve good approximations of the (unknown but theoretically predicted) Pareto front with-

out incorporating this preference. In order to encourage exploration of (near-)Pareto optimal

Fig 3. Enumeration of possible assignments of regions within a dimension to direction encoded given available

directions of travel with the (a) relative and (b) absolute schemes, with construction scenarios illustrated in (c).

The sets of directions {L, F, R} and {N, E, S, W} in (a) and (b) correspond to those cases when there is only one

available direction in which to extend a path and hence that direction will be chosen regardless of the solution

component’s current value.

https://doi.org/10.1371/journal.pone.0223194.g003
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solutions with lower resonant frequency, the earliest DE work [8] tested a minimum length

constraint, which declared any antenna less than half the maximum length to be infeasible,

and hence dominated by any longer solution. The constraint was placed on antenna length

rather than on objective value because very short antennas have a tendency to be highly effi-

cient. As that version of the algorithm used a single population of 100 individuals to both gen-

erate new solutions and represent the archive of best solutions, these short antennas, once

generated, might never be replaced as they were non-dominated in the efficiency objective.

The use of the minimum length constraint was successful in increasing the proportion of solu-

tions with low resonant frequency for grid sizes up to 8 × 8, but retarded the search in larger

grid sizes.

By modifying the algorithm to maintain a separate solution archive, able to grow beyond

the size of the working population, other methods of directing the search become possible.

Recently, the authors [9] investigated the utility of biasing selection of individuals in the work-

ing population from the archive such that low resonant frequency antennas were preferred.

The specific approach, an extension of objective weighting functions proposed by Zitzler et al.

[33] and Friedrich et al. [34], allows the search to be directed to different regions of the objec-

tive space. The bias is incorporated into the crowding distance calculation of the non-domi-

nated sorting procedure and increases the apparent crowding distance (hence, making

solutions more attractive).

In the present DE algorithm, when the archive is larger than the working population and

no bias is being used, solutions are drawn from it with uniform probability. However, when

the bias is in effect, solutions are drawn in non-increasing order of their crowding distance,

which incorporates the bias weighting and thus biases the population used to produce the

next generation of candidate solutions. The algorithm variant with a bias is denoted by DEbias

hereafter.

Although the bias function introduced by Montgomery et al. [9] can be varied to

favour regions of the objective space between the two extremes, they found that a bias

completely towards f0 is most effective. Overall, they found that the use of biased archive

selection produces the best results in terms of number of solutions, quality of the front (and

its likely proximity to the true Pareto front), and ability to focus on antenna designs with

low resonant frequency. The impact of this algorithm component on solution quality on its

own and in combination with local search is investigated in the penultimate section of this

paper.

Integrating discrete local search with a continuous solver

Incorporating the backbite local search operator into the DE-based search presents a number

of challenges. Chiefly, the local search is conducted in the discrete space of antennas, but if

improved solutions are to re-enter the DE population then they must be converted back into

real-valued vectors. While in the algorithm presented thus far there exists a unique and deter-

ministic mapping from real-valued vectors to antenna designs (see Fig 3), for each antenna

design there exists an extremely large number of alternative vectors (finite in number due to

limitations in the resolution of floating-point numbers). While this problem could be obviated

by allowing backbite-generated solutions into the solution archive, but excluding them from

further evolution by DE, this would prevent the DE search from being able to further refine

them. If backbite-generated solutions are to be incorporated into the archive and working pop-

ulation then two key questions must be addressed:

1. Given that each backbite-generated solution has an ultimate parent that was defined by a

DE solution vector, should the new solution vector be produced by adapting the values of
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that parent (such that they encode for the modified design) or by regenerating a solution

vector from scratch? (Note that in both cases the parent solution is not modified.)

2. For each dimension that is modified (adjusted or regenerated), should this be done deter-
ministically or randomly?

Underlying both questions is the issue of population diversity, since solutions produced by

backbite may not replace the solutions they are based on. As a normal local search modifies

some original solution, the adaptive approach seems plausible, but is guaranteed to leave

many vector components unchanged, only modifying those needed to represent the modified

antenna. Conversely, a completely new vector may represent a very similar antenna very dif-

ferently from the original solution; diversity is maintained but the vector’s evolutionary history

is lost. Modifying or generating vector components deterministically has the benefit that

changes are predictable, but will also lead to a reduction in diversity as more vector compo-

nents in the population take on one of a limited set of alternative values.

Given the choices in points 1 and 2 above, the four alternative schemes have been realized

as follows. For each vector component, the available directions of travel in the antenna it repre-

sents are enumerated and used to establish the bounds for the region corresponding to the

selected direction, denoted (ldir, udir). In the adaptive scheme, if the parent component encodes

for the new direction then it is copied unchanged (even if, due to epistatic effects, the direction

in the new solution happens to be different from the parent). In the regenerating scheme, a

new value is always generated. New values are determined in the following manner:

• When adapting the original solution vector deterministically the new value is placed 10% of

the way within the range (ldir, udir), nearest its original value, which represents a small change

that is also somewhat robust under future modification. Given the range [0, 3], possible com-

ponent values are consequently restricted to {0.9, 1.1, 1.9, 2.1} when there are three options

and {1.85, 2.15} when there are two (the value will never be changed when there is only one

available direction).

• When regenerating the solution vector deterministically the new value is placed at the mid-

point of the range, limiting values to {0.5, 1.5, 2.5} when there are three options and {0.75,

2.25} when there are two.

• When either adapting or regenerating the solution vector randomly, each new value is

selected with uniform probability to lie within the middle 99% of the valid range (to avoid

boundary conditions).

In all experiments reported in the remainder of this work each trial is allowed 10,000 solu-

tion evaluations (200 iterations). Experiments were conducted on a multi-core system allowing

eight solutions to be evaluated in parallel. This leads to runtimes of approximately 1 hour for

the 5 × 5 problem, increasing linearly to 12 hours for the 10 × 10 problem. Antenna evaluation

using NEC is the dominant operation, taking up to 90 seconds for a full-length antenna on the

10 × 10 grid due to the larger number of antenna segments. The total runtime of the DE is gen-

erally under three minutes, even for a 12-hour run. Maximum speedup could be achieved by

evaluating all child solutions in parallel, if the host hardware allows this. As in the prior ACO

algorithm, the backbite operator is applied to all 50 DE solutions produced at each iteration,

resulting in up to 200 designs with depth 1 or 650 designs with depth 2 (although in practice

neither search can generate the maximum number of alternative designs).

The complete algorithmic framework of the DE system for RFID antenna design is pre-

sented in Algorithm 1, and is supported by the NEC evaluation and non-dominated sorting

operations, presented in Algorithms 2 and 3. No algorithm is presented for backbite, whose
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behaviour is defined in the previous section. Note that pseudocode in these algorithms

describes the logical behaviour of the system, not the precise implementation in software.

Algorithm 1 Multi-objective Differential Evolution for RFID Antenna Design
procedure DEFORRFID(n, N, bias, ls, bbdepth) ▷ grid size n, population

size N
▷ objective bias, local search reintegration strategy ls, backbite

depth bbdepth
let archive  N uniformly randomly initialized vectors of length n
For each solution vector in archive call EVALUATEANTENNA(vector)
archive  NONDOMINATEDSORTING(archive, N, bias)
while function evaluations below limit do
if |archive| > N then ▷ Select working population for this

iteration
if using bias then
let pop  Select first N solutions from previously sorted archive

else
let pop  N distinct, randomly selected solutions from archive

end if
else
let pop  archive

end if
let children  Apply DE/rand/1/exp to pop
if applying local search then ▷ Generate additional children

using backbite
let bbnodepaths  BACKBITE(children, bbdepth)
let bbchildren  Convert bbnodepaths to vectors using ls strategy
children  children [ bbchildren

end if
For each solution vector in children call EVALUATEANTENNA(vector)
archive  archive [ children
archive  NONDOMINATEDSORTING(archive, N, bias)

end while
return archive

end procedure
Algorithm 2 NEC-based Antenna Evaluation Procedure

function EVALUATEANTENNA(vector)
let nodepath  Decode vector instructions
if nodepath in cache then
let f0, η  Retrieve values from cache

else
Construct NEC input file for nodepath
let f0, η  Execute external NEC simulator

end if
return f0, η

end function
Algorithm 3 Non-dominated sorting incorporating objective bias

function NONDOMINATEDSORTING(archive, N, bias)
let archive0  Select and remove all non-dominated solutions from

archive
if archive is empty then ▷ All solutions are front 1; allow size

to exceed N
Calculate crowding distances (including bias) for solutions in

archive0

Sort archive0 by non-increasing order of crowding distance
else
while |archive0| < N do
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let front  Select and remove all non-dominated solutions from
archive

if |archive0| + |front| > N then ▷ Select least crowded solutions
Calculate crowding distances (including bias) for solutions in

front
Sort front by non-increasing order of crowding distance
Truncate front to first N − |archive0| solutions

end if
archive0  archive0 [ front

end while
end if
return archive0

end function
The performance of the DE algorithm with the four local search variants was examined on

the comparatively small 7 × 7 problem (selected because it is large enough for differences to

be apparent, while each run, parallelized to evaluate eight solutions simultaneously, takes less

than four hours to complete using the NEC evaluation package [14]). Eight algorithm combi-

nations were considered: each of the four schemes for mapping antennas back to real-vectors

described above with a backbite depth of either 1 or 2. Twenty randomized trials were con-

ducted for each combination.

Performance was measured using the hypervolume (HV) metric [35], with objective values

(f0, η) normalized within the region specified by the (unachievable) utopia point (350, 100)

and nadir point (2250, 48). Although this region excludes up to 1% of discovered solutions

with extremely high resonant frequency it includes all others observed in this study. Reported

HV values have been multiplied by 100 for readability, so represent the percentage of the

bounded region covered by a solution set.

Fig 4 shows the distributions of hypervolume for each algorithm variant as well as the

unmodified DE algorithm (for which 10 randomized trials were performed). While there is an

apparent trend towards better performance in the adaptive approaches using a greater backbite

depth, Mann-Whitney tests show most of the observed differences are not statistically signifi-

cant. However, the poorer performance of randomly regenerating solutions is statistically sig-

nificant compared to deterministically regenerating them (at the 5% level for backbite depth 1

and the 10% level for depth 2), and approaching statistical significance for others except for

deterministically adapting solutions. None of the observed results is statistically significantly

different from DE on the same problem size.

The final solution sets of the local search variants were further compared using the C-metric

(see, e.g., Zitzler and Thiele [35]). Denoted C(A, B), the C-metric describes the proportion of

Fig 4. Distributions of HV for standard DE and DE with alternative local search approaches, on the 7 × 7

problem. Variants are labeled by whether they adapt the original solution vector or regenerate a new vector, randomly

or deterministically, and by the depth of the backbite search (1 or 2).

https://doi.org/10.1371/journal.pone.0223194.g004
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points in the surface produced by B that are dominated by at least one point produced by A.

Table 1 presents the average C-metric value produced by comparing each of the 20 trials with

one local search against each of the 20 trials from another (i.e., the average over 400 C-metric

measurements). This confirms the apparent differences in hypervolume shown in Fig 4 and

suggests that deterministically regenerating solutions produces better outcomes than the other

approaches. Conversely, randomly regenerating solutions appears to perform worst.

In terms of the relative number of solutions produced by backbite compared to the normal

DE mutation operator, the backbite search depth has the largest impact. When the depth is 1,

typically 69% of solutions come from backbite and 31% from DE (meaning the number of DE

generations is similarly truncated). When the depth is increased to 2, on average 80% of solu-

tions evaluated come from backbite. For a given backbite depth, differences between variants

in the number of solutions produced by backbite are mostly statistically significant (at the 1%

level), although as the effect size is very small no conclusion can be drawn about the cause.

Each variant’s impact on solution diversity, measured as the proportion of dissimilar values

within each solution dimension across the population, is as would be expected. Regenerating

solution vectors randomly leads to the greatest diversity, followed by adapting solutions ran-

domly and adapting solutions deterministically (where new vectors share some component

values with their parent and new values are selected from a small set of alternatives). Regener-

ating solution vectors deterministically produces the lowest amount of variation across the

population. The final solution sets produced when regenerating vectors deterministically are

also somewhat more crowded, with solutions less evenly spread across the front (this result is

statistically significant at the 1% level). Notably, however, algorithm performance appears to

be inversely related to population diversity.

Given that these results are suggestive rather than conclusive, experiments in the next sec-

tion combining biased archive selection and local search consider three local search variants

with a backbite depth of 1: regenerate-deterministically (the apparent “best”), regenerate-ran-

domly (the likely “worst”), and adapt-randomly (the “second best” in terms of C-metric per-

formance and good hypervolume performance). Although a greater backbite depth produced

better hypervolume performance in the adaptive variants, the average C-metric results for

these are poorer and using the same backbite depth eliminates a confounding variable.

Combining biased population selection with local search

On its own, the backbite operator can generate additional alternative designs similar to those

produced by the DE algorithm, but there is no particular direction to its search apart from the

Table 1. Average C(row, col) for local search variants on 7 × 7 problem. Cell (row, col) corresponds to the average of C(A, B), the proportion of solutions produced by B
that are dominated by solutions produced by A. Variants are labeled as in Fig 4. The last column is the row average.

adapt regen average
det/1 det/2 rand/1 rand/2 det/1 det/2 rand/1 rand/2

adapt/det/1 0.323 0.307 0.338 0.221 0.253 0.306 0.307 0.294

adapt/det/2 0.296 0.297 0.323 0.212 0.240 0.298 0.294 0.280

adapt/rand/1 0.312 0.328 0.339 0.230 0.257 0.307 0.309 0.297

adapt/rand/2 0.287 0.301 0.289 0.205 0.233 0.284 0.281 0.269

regen/det/1 0.367 0.382 0.360 0.395 0.306 0.358 0.361 0.362

regen/det/2 0.368 0.380 0.358 0.392 0.273 0.359 0.364 0.356

regen/rand/1 0.278 0.289 0.280 0.306 0.197 0.225 0.268 0.263

regen/rand/2 0.280 0.290 0.283 0.307 0.197 0.224 0.277 0.265

https://doi.org/10.1371/journal.pone.0223194.t001
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selection pressure imposed by non-dominated sorting of solutions. Indeed, results presented

in the previous section indicate that DE with the backbite operator performs similarly to stan-

dard DE, despite some variation between local search approaches. This section examines the

efficacy of combining DEbias with local search. The experimental setup is as follows: for each of

the grid sizes 5 × 5 through 10 × 10, 10 randomized trials were performed with DEbias incorpo-

rating one of the three selected local search variants, regenerate deterministically (denoted

DEr=d=1

bias ), adapt randomly (denoted DEa=r=1

bias ) and the anticipated poorest combination of regen-

erate randomly (denoted DEr=r=1

bias ).

Table 2 presents summary statistics for HV and the minimum f0 in the set of solutions pro-

duced, while Table 3 presents summary statistics for the total number of solutions in the final set

of non-dominated solutions and the number of those solutions that have a “low” value of f0�
600 MHz. The best observed value within each metric and statistic (best, median or worst) is

shown in bold. Also included in the table are results for the standard DE algorithm (control)

and DEbias without local search, which include data from five additional runs not included in the

Table 2. Best, median and worst results for hypervolume and minimum f0 for DEbias with different local search approaches, a standard DE control, and DEbias.

Hypervolume Minium f0
best median worst best median worst

5 × 5 r/d/1 86.7 86.7 86.7 574 574 574

a/r/1 86.7 86.7 86.7 574 574 574

r/r/1 86.7 86.7 86.7 574 574 574

control 86.7 86.7 86.7 574 574 574

biased 86.7 86.7 86.7 574 574 574

6 × 6 r/d/1 89.3 89.3 89.2 514 514 514

a/r/1 89.3 89.3 89.3 514 514 514

r/r/1 89.3 89.3 89.3 514 514 514

control 89.3 88.9 88.3 514 525 536

biased 89.3 89.3 89.1 514 514 520

7 × 7 r/d/1 91.3 91.3 90.4 464 464 486

a/r/1 91.3 91.0 89.3 464 469 510

r/r/1 91.3 91.3 90.4 464 464 486

control 91.0 90.1 89.0 471 493 518

biased 91.3 91.1 89.3 464 469 508

8 × 8 r/d/1 92.7 92.7 91.8 420 420 448

a/r/1 92.7 92.1 89.8 420 436 496

r/r/1 92.5 91.9 90.2 426 444 490

control 91.3 90.5 89.7 457 478 497

biased 92.5 91.8 90.0 427 443 492

9 × 9 r/d/1 93.8 93.1 92.1 383 402 423

a/r/1 93.5 92.3 90.1 392 424 470

r/r/1 93.3 92.5 89.7 395 419 490

control 91.6 90.4 88.9 449 476 512

biased 93.7 92.8 90.9 387 416 463

10 × 10 r/d/1 94.3 93.3 92.1 352 385 416

a/r/1 93.5 91.1 90.2 388 446 475

r/r/1 92.8 91.9 89.9 405 430 482

control 90.5 90.2 89.2 462 476 496

biased 93.6 93.1 91.9 390 404 431

https://doi.org/10.1371/journal.pone.0223194.t002
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prior work by Montgomery et al. [9]. Distributions over HV for all grid sizes are also presented

as box plots in Figs 5 and 6, which includes additional results for algorithms discussed below.

Across most metrics DEr=d=1

bias does indeed outperform the other DEbias with local search

variants and the control and DEbias algorithms, with differences becoming more apparent as

problem size grows. Due to the small amount of data (10 samples for each metric), two-tailed

Mann-Whitney tests were performed on all pairs of algorithm combinations, revealing many

of the differences to be statistically significant at the 1% or 5% levels. In particular:

• DEr=d=1

bias achieves a better HV than the other local search variants for problem sizes 9 × 9 and

10 × 10, and is better than DEr=r=1

bias on 8 × 8. It is also better than DE on all problem sizes and

better than DEbias on grids 8 × 8 and above.

• The minimum f0 achieved by DEr=d=1

bias is typically better than the other local search variants,

always better than DE, and better than DEbias on grids 7 × 7 and above, although for grids

9 × 9 and 10 × 10 this is only statistically significant at the 10% level.

Table 3. Best, median and worst total solution set size and number of low f0 solutions for DEbias with different local search approaches, a standard DE control, and

DEbias.

total solutions. . . . . .with f0� 600

best median worst best median worst

5 × 5 r/d/1 137 121 117 12 11 10

a/r/1 139 131 85 12 11 6

r/r/1 147 136.5 125 12 11.5 10

control 103 101 98 9 9 7

biased 99 96.5 93 9 9 8

6 × 6 r/d/1 210 180 133 81 73 42

a/r/1 211 178.5 137 75 61 39

r/r/1 203 182.5 158 63 57.5 33

control 153 140.5 115 42 22.5 12

biased 200 162.5 133 65 57.5 30

7 × 7 r/d/1 292 243.5 200 169 131 110

a/r/1 273 232.5 193 129 105 61

r/r/1 312 221 190 154 81 49

control 201 145 122 47 25.5 17

biased 245 197 141 146 85.5 37

8 × 8 r/d/1 349 312.5 291 214 186.5 156

a/r/1 297 274.5 224 158 138.5 59

r/r/1 335 221 186 149 70 40

control 217 176.5 136 42 26 16

biased 301 237.5 189 173 121.5 79

9 × 9 r/d/1 408 378.5 320 249 228 159

a/r/1 364 295.5 250 185 157 84

r/r/1 320 262.5 186 120 90.5 43

control 217 179.5 129 50 33 15

biased 291 269 192 176 131 61

10 × 10 r/d/1 455 390.5 349 294 225 145

a/r/1 379 310 259 201 138 89

r/r/1 308 264.5 211 106 87 52

control 221 188.5 170 27 24.5 17

biased 312 254.5 204 162 108 80

https://doi.org/10.1371/journal.pone.0223194.t003
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Fig 5. Distributions of HV across problem sizes 5 × 5 through 7 × 7 for DE, DE with the r/d/1 local search variant,

DEbias, DEr=d=1

bias and DEr=d=3�

bias . Also plotted are the HVs of the earlier ACO (using three different greediness settings)

with local search.

https://doi.org/10.1371/journal.pone.0223194.g005
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Fig 6. Distributions of HV across problem sizes 8 × 8 through 10 × 10.

https://doi.org/10.1371/journal.pone.0223194.g006
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• For grid sizes 7 × 7 and above, the observed differences in final solution set size are statisti-

cally significant at the 1% level in most cases (with some exceptions on the 7 × 7 problem).

This trend is more pronounced when considering the number of solutions with “low” f0.

• Differences between the selected “second best” local search variant DEa=r=1

bias and the likely

poorest variant DEr=r=1

bias were only statistically significant when considering the size of the

final solution set and number of solutions with “low” f0 (for grid 8 × 8 and above).

Unlike in the initial comparison of local search variants on the 7 × 7 problem, when com-

bined with DEbias the differences in the number of solutions produced by backbite versus

DE are both moderate in size and statistically significant across problem sizes at the 1% level

(except in two cases which were significant at the 5% level). On the 10 × 10 problem, the

median number of DE-produced solutions for DEr=d=1

bias , DEa=r=1

bias and DEr=r=1

bias represented 27%,

28% and 31% of the total, respectively. Although the magnitude of difference is small, this

effect is noteworthy because the ratio is determined solely by the number of alternative solu-

tions that backbite can produce, which is influenced by the position of each antenna’s end on

the grid. This suggests there is some effect of the interaction between the local search—really,

solution reintegration—approach and DE search that leads to quite distinct antenna designs.

Comparing major variants and ACO

Figs 5 and 6 present the distributions of HV values across problem sizes as boxplots, for most

of the DE variations described previously [8, 9] and in this work: DE, DE with the determinis-

tically regenerated solutions and backbite depth of 1 (labeled r/d/1), DEbias, and DEr=d=1

bias . Two

other HV result sets are plotted for comparison: those of Lewis et al.’s [10] ACO with local

search, which applied an Ant Colony System algorithm (see Dorigo and Stützle [17] for details)

using three different greediness settings (q0 2 {0.1, 0.5, 0.9}), and from re-running DEbias with

r/d/1 local search under more similar experimental conditions to the ACO. The ACO algo-

rithm used a population of 10 ants and was run for 1,000 iterations (hence, 10,000 function

evaluations total for the ACO). In addition to these 10,000 solutions, the ACO algorithm

applied the backbite operator with depth 3 to each solution produced at each iteration, leading

to up to 27 additional solutions per ACO solution that were evaluated but not counted in the

10,000 limit. In contrast, the standard DE algorithm presented here counts backbite solutions

within its budgeted function evaluations, which is thus an order of magnitude less than that

allowed the ACO algorithm. While the observed runtimes for the ACO are not known (and

would not be comparable given differences in hardware used), the two algorithms have equiva-

lent algorithmic complexity given how new solutions are constructed, backbite is used to gen-

erate additional solutions, and non-dominated sorting is used for filtering at each iteration.

Biased archive selection, employed by DEbias and its derivatives, but not by the ACO, is incor-

porated into the crowding distance calculation of non-dominated sorting. For both algorithms

runtime is dominated by evaluating solutions with NEC. To provide a suitable comparison,

DEbias with local search and regenerate/deterministic solution reintegration was re-run under

the same conditions as the ACO with backbite depth 3 and backbite-generated solutions

excluded from the 10,000 solution evaluation limit. This variant, denoted DEr=d=3�

bias , was applied

to problem sizes 7 × 7 and up.

Results for the knapsack-based EO approach of Gomez-Meneses et al. [7] are not included

because, exploring the much larger space of segment-based antennas, they are significantly

poorer than all DE variants and the ACO. For instance, on the 7 × 7 problem, that algorithm

produced only six antennas with f0 below 1000 MHz, with the lower extreme of its attainment

surface an attenna with f0 = 662 MHz, η = 93%.
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The solution sets for the prior ACO approach were re-evaluated using the same imple-

mentation of the NEC simulation software used by the DE algorithm. This evaluates f0 at the

finer resolution of 1 MHz instead of 10 MHz and also treats the side lobes of an antenna’s

radiation pattern somewhat differently. This resulted in some solutions becoming dominated

and hence excluded from the HV calculations and the attainment surfaces presented later.

The implementation of NEC used in this work was, however, obtained from one of the

authors of Lewis et al.’s [10] work, and the source code is available with the accompanying

result dataset.

To visualize the relative performance of these approaches, Fig 7 shows the best, fifth-best

(i.e., near median) and worst attainment surfaces, ranked by hypervolume, for the DE control,

DEbias, DE
r=d=1

bias and DEr=d=3�

bias on the 10 × 10 problem. As only three result sets are available for

the prior ACO approach, these fronts are plotted across the three charts, in decreasing order of

hypervolume. In the case of the 10 × 10 problem, the least greedy approach was best, followed

very closely by the greediest approach, while the intermediate greediness setting was poorest.

Considering the DE variants, merely adding backbite local search is insufficient to obtain

consistently improved results. Montgomery et al. [9] demonstrated previously that adding a

selection bias towards f0 strongly improves the algorithm’s performance, while the present

results indicate that combining the bias with a suitable mechanism for reintegrating backbite-

generated solutions into the population can improve it further.

Compared with the prior ACO results, DEr=d=1

bias demonstrates superior performance for grid

sizes up to 8 × 8. On the 9 × 9 problem, two data points for ACO sits within the third quartile

of observed DE results, while the other is in the bottom quartile, which suggests that the DE is

at least as good. Similarly on the most challenging 10 × 10 problem, where the hypervolume

measures of two of the ACO result sets are towards the upper end of the third quartile of DE

results, with its third result set lying towards the bottom of the second quartile. Although there

is insufficient data to perform tests for statistical significance, these comparative results are

suggestive of equivalent performance by the DE algorithm, given considerably fewer function

evaluations.

The expanded DE with local search runs of DEr=d=3�

bias on problem sizes 7 × 7 and up are sug-

gestive of a positive impact on hypervolume, minimum f0 achieved and on number of solu-

tions produced. Median outcomes for these measures are presented in Table 4 for both

DEr=d=3�

bias and ACO. The comparatively low solution count for ACO is a product of both small

original result set sizes (medians 86, 87, 190, 130 for grid sizes 7–10, respectively) and of the

re-evaluation of solutions causing some solutions to become dominated. Applying Mann-

Whitney tests and comparing DEr=d=1

bias and DEr=d=3�

bias , the differences between hypervolume are

not statistically significant, although approaching significance on the 9 × 9 and 10 × 10 prob-

lems. Differences in minimum f0 achieved are only statistically significant on the 9 × 9 problem

(p = .02). The additional depth (and amount) of backbite search does lead to a larger number

of solutions, a result that is statistically significant at the 1% level (p< .001). Comparing

DEr=d=3�

bias against the middle-performing ACO, the results are suggestive of better performance

on all three measures. However, the extended runs are not always effective, with at least two

trials on 8 × 8 and 10 × 10 performing quite poorly, with the additional exploration afforded

by the deeper backbite search unable to allow the algorithm to make better progress toward to

the true Pareto front.

Fig 8 depicts illustrative antenna designs generated by ACO, DEr=d=1

bias and DEr=d=3�

bias . The

antennas were selected from the run of each algorithm with the best hypervolume and repre-

sent the antennas with the minimum f0 achieved or with f0 closest to one of two standard

RFID frequencies 433 MHz and 915 MHz [36, 37]. While some antenna designs end at points
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that could be extended further, this is the result of applying the backbite operator to designs

that had reached dead ends. Backbite was not intended to allow the algorithm to “recover”

from such designs, but to explore additional designs that are similar to those produced by

the DE (or ACO). A common feature of the designs is a spiral pattern, a perfect example of

which was generated by the DE with expanded application of backbite. A tendency to produce

spirals (as opposed to other, human-engineered designs such as the “plough”), appears to have

Fig 7. First (best), fifth (near median) and last summary attainment surfaces for the 10 × 10 problem using

normal DE, DEbias, DEr=d=1

bias and DEr=d=3�

bias . Best, second best and worst of the three ACO result sets are plotted

independently, in that order.

https://doi.org/10.1371/journal.pone.0223194.g007
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Table 4. Median result for hypervolume (HV), minimum f0, total solution set size and number of low f0 solutions for DEr=d=3�

bias and the prior ACO.

Size Algorithm HV min f0 Solution count

total with f0� 600

7 × 7 DEr=d=3�

bias
91.3 464 262 141.5

ACO 90.9 469 70 18

8 × 8 DEr=d=3�

bias
92.7 420 382 260.5

ACO 92.3 428 69 21

9 × 9 DEr=d=3�

bias
93.6 383 551 396

ACO 93.4 397 110 28

10 × 10 DEr=d=3�

bias
94.2 359 706.5 529.5

ACO 93.7 378 87 28

https://doi.org/10.1371/journal.pone.0223194.t004

Fig 8. Illustrative antenna designs produced by the best run (based on HV) of ACO, DEr=d=1

bias and DEr=d=3�

bias . The

bottom row comprises antennas with lowest f0, the middle row those with f0 nearest 433 MHz and the top row those

with f0 nearest 915 MHz. The location of each antenna is circled on the attainment surfaces (reproduced from Fig 7).

https://doi.org/10.1371/journal.pone.0223194.g008
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become canalised (effectively fixed) within the population. It also fits with prior work by

Montgomery and Ashlock [31], which examined the shape of evolved SAW designs, finding

that constructing a spiral is correlated with longer paths as it leaves a greater amount of the

design space accessible during antenna construction.

Overall, the present findings demonstrate clearly that, by combining a bias towards lower

resonant frequency and a moderate level of backbite search (conducted within the function

evaluation limit), DE can be seen as the preferred approach. Further, under the more relaxed

conditions of deeper backbite search, conducted outside the function evaluation limit, the

approach can outperform a prior ACO algorithm for this problem. Broader implications are

discussed in the next section.

Conclusions and recommendations

The present work is part of a broad effort to apply heuristic search techniques to discover the

realistic limitations on the performance of planar RFID antennas. While theoretical limits are

known [5], it is only by simulating (or constructing) alternative designs that the actual bound-

aries will be found. Efforts in this area span a variety of heuristic approaches, including discrete

techniques such as ACO through to continuous solvers like differential evolution and particle

swarm optimisation (PSO).

Solvers that work canonically in continuous search spaces, such as DE and PSO, are rarely

adapted to suit combinatorial problems. For the RFID design scenario presented here, in

which meander lines need to be constructed, a novel DE method has been developed (and

refined). Indeed, the move to a continuous solution space enables the adaptive interpretation

of solutions and promotes longer antenna designs [22]. By using a continuous to discrete map-

ping scheme based on encoding the relative direction of travel, an objective biasing mecha-

nism, and a local search mechanism that regenerates real-valued solution vectors from

modified antenna designs, the approach can produce antennas of the calibre of those from a

well-established suite of ACO solvers while using fewer function evaluations. This success

demonstrates that there are further applications that can reasonably start to be explored by

continuous solvers (see also Hettenhausen, Lewis, Thiel and Shahpari [19]), and that the algo-

rithmic improvements presented here may be useful additions, either singly or in combina-

tion. For example, future work can replace the multiobjective DE used here with other

continuous solvers, such as multiobjective particle swarm optimization (MOPSO, see, e.g.,

[38]) to test the robustness of each of the proposed components. Another potentially rich

area for future study is the use of a bias on the solution encoding to favour particular kinds

of move, which recent work [31] has demonstrated can lead to the evolution of paths with

“plough-like” shapes that the present algorithm appears less likely to produce (see Fig 8).

Given that different search spaces for the same problem produce different search space

topologies, the ability for an algorithm to work in more than one will likely be a key to success

on difficult problems into the future. The present findings demonstrate that the method of

reintegrating discrete solutions produced by local search into a population of real-valued vec-

tors should be considered carefully. Further investigation is warranted into the interaction

between the mechanism used and the evolution of the population of real-valued solutions

given the particular continuous evolutionary algorithm employed.
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