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ABSTRACT

The eigenfrequencies of freely propagating divergent barotropic planetary and gravity waves in a spherical
polar cap are discussed. The key amplitude equation is derived with the full spherical geometry maintained
and leads to a second-order differential equation with coefficients functions of the co-latitude. Previous study
of this problem has derived approximations to the requisite frequencies by evaluating these coefficients at
some chosen fixed value of the co-latitude thereby reducing the problem to that of a constant coefficient
differential equation solved easily using routine methods. Here, we demonstrate that such a simplification can
be avoided since the full equation can be solved by standard asymptotic methods based on the latitudinal
limit of the polar basin as the natural small parameter. Three-term asymptotic series are developed which are
in remarkably good accord with numerical solutions of the full equation.
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1. Introduction

An accurate approximation for the eigenfrequencies of
freely propagating barotropic divergent planetary and
gravity waves in a circular polar cap - an archetype repre-
sentation of the Arctic Ocean basin - is the subject of this
paper. The analytical treatment of atmospheric or ocean
dynamics near the pole is frustrated by the variation in
the meridional gradient of the Coriolis parameter f. At
mid-latitudes, this quantity is often approximated by the
p-plane in which f'is modelled by a linear function of lati-
tude but this approach fails near the pole because there f
is locally quadratic.

LeBlond (1964) calculated approximate eigenfrequen-
cies for planetary waves in a polar cap by introducing the
polar plane, the natural analogue of the f-plane. The
polar plane is tangent to the spherical earth at the pole
and, in terms of polar coordinates (r,¢) with origin at
the pole, the derivative of the Coriolis parameter with
respect to r is a linear function of this co-ordinate in this
plane. One might expect the eigenfrequencies of divergent
long wavelength planetary waves calculated on the polar
plane to be less accurate because they are intimately
coupled to the Earth’s curvature which is not fully
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captured in this approach, as noted by LeBlond (1964).
In much more recent work, Willmott and Pascual-Ahuir
(2017) (hereafter referred to as WPA17) examined a novel
way of analysing the dispersion relation for freely propa-
gating barotropic gravity and planetary waves in a polar
basin derived using the full spherical geometry. As our
work here is based on that described by WPA17, it is
worthwhile noting the main steps in their analysis.

Consider an ocean of uniform depth centred at the
pole; in terms of a spherical co-ordinate system in which
0 and ¢ denote the co-latitude and longitude respectively
the circular basin is defined by 0 <0 < 05,0 < ¢ <27
The orientation of the unit vectors (k,0, ¢) are such that
k points in the outward radial direction and these vectors
are sketched in Figure 1. Relative to this co-ordinate
frame the linearized shallow-water equations for inviscid
homogeneous dynamics within a polar cap of depth H
take the form

g g
U +fV:*m’7w Vt*f”:*E’?(h
n + Ren0 [(Hu)(p + (Hvsin 0)y| = 0; (la,b,c)

here the velocity u = u(fﬁ + v and n is the free-surface ele-
vation. Within system (1) the depth dependency metric
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Fig. 1. Schematic of the spherical polar co-ordinate system
showing the unit vectors k, 0 and (i) that form a right-
handed triad.

coefficients 1/r have been replaced by the constants 1/R
where R is the radius of the Earth consistent with the
shallow-water approximation. Furthermore, g denotes the
gravitational acceleration and the Coriolis parameter f =
2Qcos 0 where Q is the angular velocity of the Earth.

We point out that by taking the fluid to be of uniform
density we have focused attention on gravity and Rossby
free waves. However, the adoption of the thin-shell
approximation eliminates a class of sub-inertial waves
that exist even if the surface is rigid, see Stewartson and
Rickard (1969). These waves are restored by the Coriolis
force and span a continuous range of frequencies up to
2Q. Owing to the presence of metric terms, these waves
must lead to wave attractors even in a constant depth cir-
cular polar basin. These attractors display an amplified
response at predictable locations as discussed by Maas
(2001) and Gerkema et al. (2008) but are eliminated in
the shallow water equations (1).

Azimuthally propagating wave solutions of (1) are
sought in the form

(u,v,n) = (U(0), V(0), F(0)) expi(mep—wt)] ?2)

in which the wavenumber m is an integer, the angular fre-
quency w>0 and U, V and F are amplitude functions. If
the expressions (2) are substituted in system (1) it is
found that

U Y
—ioU+fV = RsinOF’ ioV—fU = R0 (3a,b)
and

. . ) d .

—iwRsin OF + imHU + H%(Vsm 0) =0. (3c)

If we eliminate U and V from system (3) in favour of F
we are led to

dz_F+ < sin 260
d6? cos 20 — g2

m ( cos?0 + o2 ) R\ i 2
_|:U<c0520_o_2 +sin26+(fg) (cos20 — ¢?)
4

here ¢ = 0/2Q is the dimensionless frequency while r, =
(2Q)~'\/gH is the external Rossby radius of deformation.
The associated boundary conditions arise from the
demand that there be no normal velocity V=0 at the
basin edge 0 = 0 and that solutions are not singular at
the pole #=0; written in terms of F these requirements
become

dFF m
%—;cotH F=0 at

dF

+ cot@) 20

F=0;

F(0) = 0.
(5a,b)

=03 and

It is Equation (4) subject to boundary conditions (5)
that was the focus of attention of WPAI17. That work
was concerned with the derivation of the dispersion rela-
tion for freely propagating barotropic gravity and planet-
ary waves in a polar Gravity waves are
characterised by a dimensionless frequency o>1 while
planetary modes are associated with very small values
of .

Rather than solving Equation (4) numerically, WPA17
obtained approximate eigenfrequencies based on a simple
concept that seems to have first been used in a geophys-
ical context by Imawaki and Takano (1974) who investi-
gated source-sink driven planetary geostrophic dynamics
in a polar basin. The nature of the polar basin 0 < 0 <
0p means that Op is relatively small so that although the
coefficients in Equation (4) are clearly functions of 0, it
may be hoped that they do not vary significantly across
the domain. The argument then is that there is likely be
little error introduced by evaluating all the coefficients in
Equation (4) by their values at some representative loca-
tion 6o; typically WPA17 chose 0y = %63. This device of
course reduces the full amplitude equation to a constant
coefficient form that can be solved simply subject to the
appropriate boundary conditions. While this technique
has the attraction that it can generate approximate fre-
quencies very swiftly and with minimal effort, it has the
drawback that it is unclear how accurate the prediction
might be. Moreover, in WPA17 it was shown that the fre-
quencies can be quite sensitive to the assumed value of 0,
and it is not apparent how to optimise its value a priori.

The purpose of our work here is to show how the con-
clusions of WPA17 can be improved markedly by con-
structing formal asymptotic solutions of Equation (4)

basin.
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Table 1. Parameter values used by LeBlond (1964) and WPA17.

Symbol Variable (unit) Value

Q Angular velocity of Earth (s7!) 7292 x 107°
R Radius of Earth (m) 6.370 x 10°
g Gravitational acceleration (ms~2) 9.8

H Depth of the basin (m) 5753

0p Colatitude of the boundary (°) 12.92

subject to boundary conditions (5). While the analysis is
a little more complicated, we show how we can derive
expressions for the eigenfrequencies based on the assump-
tion that the edge of the basin is at 6 = 0p is small. This
removes the uncertainty in choosing 6, and we demon-
strate the accuracy of our findings by comparison with
numerical simulations which show that our results are
likely to be useful over a wide range of parameters. To
this end we arrange the remainder of the work as follows.
Presently, in § 2 we develop the form of the low-fre-
quency planetary modes while the analogous workings
for the higher-frequency gravity modes is deferred to § 3.
The paper closes with a few final remarks in § 4.

2. Planetary waves

WPAI17 noted that low-frequency planctary waves are
only possible when m <0 which corresponds to a west-
ward phase velocity. For convenience we write m = —M
with M >0 and it is also helpful to define 6 = 05X with
X €10, 1]. Then solutions of (4, 5) are sought so that

F=Fy(X) + 03F(X) + 05 F(X) + ...
with frequency
o= 0360 + 0501 + 0507 + ...
(6a,b)

We remark that these forms follow from a simple bal-
ance of terms within Equation (4). At small values of 03
the first two terms in the coefficient of F(0) are compar-
able when ¢ = O(0%) and the forms of both of the equa-
tion and boundary conditions means that we can be
confident that expansions proceed in even powers of 0Op.
This taken, at leading order we find that

M
X’F) + XF) + (—X2 - M2>Fo =0,
0 (7

Fo(0) =0, Fp(1)=0,

where a dash denotes differentiation with respect to X.
This equation is nothing more than a scaled version of
Bessel’s equation of order M; this standard equation
admits independent solutions denoted J,, and Y, and
the latter is unbounded as X — 0, see Abramowitz and
Stegun (1965). Hence the solution of interest is simply

F00<JM<X M/(To) (®)

and the requirement at X=1 forces /M /oy = jy, Where
Jun denotes the n™ zero of the Bessel function of order
M. Thus, we have the result that

G = 5 ©)
]M,n

Moving to next order shows that

M
X°F! + XF| + (G— X? - M2>F1
0

10
B TE VSRS ) PRV PO "

“ |\ 73 2 0737 o

which can be solved analytically to yield
5 oo |May 5+ M> (R\’

Fi(X) = - ZX*F— 5 | — =\ | XE.
1 =-3 2M[ao+ 3 +(> 0
(1)

This solution automatically satisfies the requirement at
X=0; at X=1 we need Fi(1) = —(09/M)F)(1) which
holds only if

o1 :# [1(1—M2)— (§>2 12)

]M,n 3 Te

which enables us to simplify the form of F;(X) so that

5 o
Fi(X) = _EXzFO_MO

We proceed one stage further. The boundary condition
at X'=1 may be cast as

R =2 (- 2R, (149

XF). (13)

while F>(X) satisfies

M
X*F) + XF) + (— X? - Mz) F
4]

5 1 R\* 1
:_§X3F;+§X2F1+ (Z) —I—S}MZ)HFO (15)
29 M (o2

The right-hand side of this equation can be written as
a linear combination of X°F), X°F),X*F, and X*F,
meaning that the solution can be expressed as

F(X) = (X + X)) R+ (X + C4X)F67

for suitable constants ¢;—c4. The satisfaction of boundary
condition (14) leads to
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Table 2. Summary of calculated results for the frequencies of the planetary waves corresponding to azimuthal wavenumbers
m = —1,-2 and -3. In the second and third columns are listed the frequencies given by numerical solutions of the full problem (4)—(5)
and by the IT solution derived by evaluating all coefficients in (4) with 6 = %95. In the remaining columns are listed the percentage

errors in the IT solution (E;7) and the asymptotic result (6 b) taken to one, two and three terms (E,—E3).

(m, n) Numerical sol. of eq. (4) WPA17 IT solution E;r (%) E; (%) E> (%) Es (%)
-1, 1) 3.291 x 107 3.253 x 107 1.153 5.242 0.332 1.87 x 107
-1, 2) 1.017 x 1073 1.125x 107 10.55 1.557 0.048 1.27 x 107
(-1, 3) 488 %107 538x107* 10.27 0.739 0.017 326 x 107
-1, 4 2.85x 107 3.11x 107 8.95 0.431 0.009 1.39%x 1074
2, 1) 3.740 x 1073 3.670 x 1073 1.879 3.092 0.146 6.02 x 1073
(-2,2) 1.419 x 107 1.775 x 107 25.10 1.151 0.032 7.22%x 107
(2, 3) 7.49 x 107 9.54 x 107 27.40 0.604 0.013 2.28 x 107
-2, 4) 463x10* 579 x 104 25.06 0.373 0.007 1.08 x 10°*
(

-3, 1) 3.667 x 107 3.191 x 1073 12.98 2.204 0.088 3.00 x 1072
(-3, 2) 1.586 x 1073 1.971 x 1073 24.28 0.944 0.024 492%x107*
(-3, 3) 8.96 x 107* 1.204 x 1073 34.39 0.531 0.011 1.77x 1074
(-3, 4) 578 x 107 7.79 x 107 34.89 0.342 0.006 8.9x% 107

3 4 2
__% R 2R 2 2_
2 =3007 {30(}}) +20(2M 5)( > +Q@um?=3) (M -1)

Lo (L (R M
3IM\60  \r, 15 )"

We now have the first three terms in the asymptotic
expression for the planetary wave frequency o defined by
(6 b) with the coefficients go—0, given by (9), (12) and (16)
respectively.

The potential usefulness of these results is best assessed
by comparison with a few numerical simulations of the
full Equation (4). For these purposes we adopted the val-
ues used both in LeBlond (1964) and WPA17; these are
as listed in Table 1.

Some sample results are given in Table 2 which sum-
marizes the results relate to the first three azimuthal
wavenumbers m = —1,—2 and -3. Within Table 1 are
listed the results of a numerical solution of (4) and the
approximate values derived using the IT approximation.
The errors in these latter calculations are recorded

(16)

together with the errors associated with using one, two
and three terms in the asymptotic prediction (6b). It is
noted that in many cases the estimated planetary frequen-
cies are not well approximated under the IT simplifica-
tion. This is perhaps not particularly surprising as there is
no clear reason why approximating the coefficients at the
colatitude midway between the pole and the basin edge
should be an ideal choice. Indeed, WPA17 explored the
sensitivity of the predicted frequencies should the chosen
value %03 be varied and found that the results can change
quite substantially. By contrast, it appears that the result
(6b) is remarkably accurate with only a few terms.
Indeed, the simple leading order result with gy given by

(9) is often markedly superior to the IT result; inclusion
of the values of (12) and (16) gives predictions that are
very impressive indeed. For a given azimuthal wavenum-
ber the accuracy of our prediction seems to improve with
increasing n and the accuracy of just the two-term asymp-
totic prediction is so good that perhaps the need for the
third term is arguable. Further calculations with other
values of the physical parameters H and 0 exhibit simi-
lar trends so are not reported in detail for the sake
of brevity.

In Figure 2 we show some sample eigenfunctions corre-
sponding to various values of m (= —M) and n. In view
of the result (8) these functions are proportional to the
standard Bessel functions and in plotting have been nor-
malised so to have maximum value across 0 < X <1
equal to unity. In the left panel is shown the effect of
varying M for a fixed n; it may be shown that Fy oc XM
as X — 0 so modes with higher values of M are conse-
quently very flat near the origin. The Bessel function
structure for the mode with n=1 and M =1 appears to
be very similar to a sine function, and as M grows so the
mode is progressively concentrated towards the basin
edge at X=1. In the right figure we illustrate the effect
of increasing the mode number n for a fixed M. The
form of Fy(X) has n — 1 zeros in the interior of the basin
but we also note that the magnitude of the eigenfunction
tends to diminish with X.

3. Gravity waves

Gravity wave solutions are characterised by ¢>1 which
again can be ascertained using elementary analysis of the
governing Equation (4). While the appropriate form of
the low-frequency planetary modes could be deduced by
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The form of the leading order eigenfunction Fi(X) given by solution (8) and normalised so as to have maximum value unity.

The left panel shows the form of Fy(X) for n=1 and M =1 (leftmost curve), 2, 3 and 4 (rightmost curve). In the right panel is shown
Fy(X) with M=1and n = 1,...,4 with the n” mode having n — 1 interior zeros.

comparing the first two terms in the coefficient of F(6) in
(4), as o grows the size of the first term diminishes and
the key balance comes into play once o~0~'. In contrast
to the planetary case, there is no reason to suppose that
solutions will proceed in powers of 0% meaning that the
appropriate expansions for the solutions become

F(X) :Fo(X) + 0p ﬁ](X) +0é ﬁz(X)
with
o= 01;] 50-}—&1 -0-03 32+....
(17a,b)

The equation for Fo is very similar to that we had for
planetary waves and

X2Fy + XFy+ (A2X2 —nP)Fy =0, A=5(R/r.).
(18)

Again, this is a scaled Bessel equation with solution
Fo(X) o J (AX), (19)

that fulfills the condition at X=0. The difference arises
in the boundary condition at X=1; previously we
required Fy(1) =0 but for t1~1(/ase relatively high-frequency
gravity waves this becomes F (1) = 0 instead. The conse-
quence is that the solution is consistent with the bound-
ary condition if A = j|/m\,n defined to be the n” zero of the
derivatives of the Bessel function. Apart from that, the
overall structure is not at all dissimilar. With A now fixed
we deduce the leading order frequency

~ e\ .
gy = (E)]‘/’"‘n (20)

At next order it follows that
X2F\ 1+ XF) + (A2X2 — nF, = 72%/\2)(2?0,
which admits the solution
Fi == XFy; @21)

this automatically satisfies the regularity condition at

~
X=0 and the requisite edge condition F(1)=
(m/ao)Fo(1) is met if

TP L — (22)

) 2
= (i)

Routine, though lengthy, manipulation shows that
XF, + XFy + (N°X* — m?)F»

1 2~2 - 2
- (‘“A2>X3Fg+

L +% (1-2505, - )

Xzﬁo;
3 0

~2
3 gy

an equation which admits a solution partly proportional

~/ . = . o
to XF, and part proportional to X 2F,. The imposition
of the edge boundary condition leads to

Gom? (m2—A2-1)

6A2(m2 — A?)

_ aGA ) 1
0) = ——F———=+ ~
? 25'()(1’}12 — Az) 209

(23)

Some sample numerical simulations were conducted
for the gravity wave modes. Full solutions of Equation
(4) subject to boundary conditions (5) were obtained
using the parameter combinations listed in Table 1 and
compared with the approximate solutions obtained in
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Table 3. Summary of calculated results for gravity wave frequencies for azimuthal wavenumbers m = =1, +2 and £3. The second and
third columns give the numerically determined values using the full equation and the IT approximation. Remaining columns list the
predicted frequencies using the two and three term series taken from (24) and their respective associated errors.

(m, n)  Numerical sol. of equation (4) WPAI17 IT solution Two-term asymptote Error (%) Three-term asymptote Error (%)
-1, 1) 2.5873 2.9459 2.5064 3.128 2.5924 0.197
(-1, 2) 6.1640 5.8186 6.0825 1.323 6.1667 0.044
(-1, 3) 9.7461 9.1912 9.6944 0.531 9.7471 0.011
(1, 1) 1.7556 2.3860 1.6695 4.900 1.7556 0.001
(1, 2) 6.0925 5.7408 6.0096 1.361 6.0938 0.022
(1, 3) 9.7183 9.1609 9.6666 0.533 9.7193 0.011
-2, 1) 3.9014 4.9385 3.8390 1.600 3.9067 0.137
(-2,2) 7.7228 7.0460 7.6538 0.893 7.7249 0.028
(-2, 3) 11.3784 10.011 11.3267 0.415 11.3747 0.008
2, 1) 3.1585 4.5955 3.0883 2.223 3.1560 0.078
2,2 7.6263 6.9400 7.5562 0.920 7.6273 0.013
2,3) 11.3319 9.9586 11.2847 0.416 11.3328 0.008
(-3, 1) 5.1691 7.0906 5.1111 1.123 5.1749 0.111
(-3,2) 9.2075 8.6969 9.1438 0.691 9.2093 0.020
(-3, 3) 12.9374 11.235 12.8917 0.353 12.9382 0.006
3, 1) 4.4848 6.8510 4.4175 1.501 4.4812 0.079
3,2 9.0999 8.5929 9.0352 0.710 9.1007 0.009
3,3 12.8873 11.173 12.8416 0.355 12.8881 0.006
1 : : : :
09 ]
08 1
0.7 1
06 1
i 057 T i
I< =
04 1
03r 1
0.2 1
01 F -
0 | | | 06 | | ) |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Fig. 3. The form of the leading order eigenfunction ﬁg(X ) given by solution (19) and normalised so as to have maximum value unity.

The left panel shows the form of F(X) for n=1 and |m| = 1 (leftmost curve), 2, 3 and 4 (rightmost curve). In the right panel is shown
Fo(X) with |m| =1 and n = 1,...,4 with the n” mode having n — 1 interior zeros.

WPAI17 and the two- and three-term predictions
c=0, Go+71+0p G2+ ... (24)

with Go—0, given by (20), (22) and (23). The results are
summarised in Table 3. Again, it is seen that the asymp-
totic results are surprisingly accurate; the three-term

prediction agrees to within a fraction of one-percent in
all cases. This agreement is not quite as good as was the
case for the planetary waves but that is expected given
the structure of the asymptotic expansions. The size of
the errors also decreases with n as previously. It was
noted by WPAI17 that the frequencies of modes with
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wavenumbers *m are similar but slightly different; our
asymptotic expressions confirm this behaviour since while
the value of &y (and of &;) is a function of m?, the sign
of & depends on that of m.

For completeness some representative leading order
eigenfunctions Fo(X) as given by (19) are plotted in
Figure 3. These are not very different from their planet-
ary counterparts except, of course, they have zero deriva-
tive at X=1. With increasing |m| the eigenfunctions
flatten near the centre of the basin while increasing » cor-
responds to a growing number of interior zeros of the
eigenfunction.

4. Final remarks

The purpose of this article has been to develop simple
asymptotic expressions for the frequencies of both planet-
ary and gravity waves that may be present in a polar
basin. While previous estimates have relied on various
largely ad-hoc simplifications in order to generate
approximate results, we have demonstrated that formal
asymptotic techniques yield useful and very accurate pre-
dictions. These forms depend only on the knowledge of
the zeros of the standard Bessel functions and its deriva-
tive and are easy to use in practice. The rapid conver-
gence of the expressions at moderate values of the co-
latitude 05 suggests that the results continue to have rele-
vance to quite large basins and that the asymptotic find-
ings are not unduly restricted to very small regions close
to the pole.

It is worth pointing out that the structure the govern-
ing Equation (4) suggests that a singularity may arise
should 6% = cos 20 anywhere within the domain; however,
the fact that the domain is concentrated around the pole
0=0 means that this eventuality could only arise if ¢ is
close to *1. The expressions (6b) and (24) show that the
planetary and gravity waves have frequencies that are
much smaller and larger than 1; a fact reinforced by the
data in Tables 2 and 3 respectively. Hence there is no cir-
cumstance in which singularities can occur in the solution
of the Equation (4).

Mention should be made of the work by Harlander
(2005) who examined high-latitude effects on Rossby
wave propagation. He derived a quasi-geostrophic model
based upon the so-called delta plane which is an exten-
sion of the standard f plane used at mid-latitudes. He
showed how the delta plane describes well low-frequency
basin modes of a polar plane shallow-water system and
concluded that delta plane model is well suited for studies
of Rossby wave dynamics at high latitudes.

The motivation for this study is to advance our under-
standing of the free wave dynamics in the Arctic Ocean

basin. Of course, we recognise that this basin has com-
plex topography characterised by wide continental shelves
and a trans-polar ridge separating two deep interior
basins. The results we have presented here form the basis
of extension to more realistic representations of the
Arctic Ocean basin. Indeed, LeBlond (1964) calculates
approximate planetary wave frequencies in a basin with
axi-symmetric bottom topography that has the same
functional radial dependence as that of the Coriolis par-
ameter. It would be worthwhile investigating whether the
asymptotic methods used in this study can be extended to
the axi-symmetric topography of LeBlond (1964). We
conclude this discussion by observing the fact that both
planetary and gravity waves on a basin of uniform depth
can be obtained in terms of elementary Bessel functions,
means that extensions to problems with a bottom topog-
raphy modelled by a piecewise-constant depth profile
reduces simply to the patching together of appropriate
Bessel functions of various arguments.

The referees are thanked for their encouraging com-
ments that led to improvements in the presentation of
this work.
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