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Redefining the ancestral origins of the interleukin-1
superfamily

Jack Rivers-Auty!, Michael J.D. Daniels® ', Isaac Colliver!, David L. Robertson® 23 & David Brough® '

The interleukin-1 (IL-1) receptor and ligand families are components of the immune system.
Knowledge of their evolutionary history is essential to understand their function. Using
chromosomal anatomy and sequence similarity, we show that IL-1 receptor family members
are related and nine members are likely formed from duplication and modification of a proto-
IL-1R1 receptor. The IL-1 ligands have a different evolutionary history. The first proto-IL-1p
gene coincided with proto-IL-1R1 and duplication events resulted in the majority of IL-1 ligand
family members. However, large evolutionary distances are observed for IL-1a, IL-18 and 1L-33
proteins. Further analysis show that IL-33 and IL-18 have poor sequence similarity and no
chromosomal evidence of common ancestry with the IL-1B cluster and therefore should not
be included in the IL-1 ligand ancestral family. IL-1a formed from the duplication of IL-1p, and
moonlighting functions of pro-IL-1a acted as divergent selection pressures for the observed
sequence dissimilarity.
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nflammation is an important host-response of the innate
immune system to infection and injury. It is coordinated by
soluble signalling and adhesion molecules that regulate cellular
processes via cell surface and cytosolic receptors to neutralise
infection or repair tissue injury"2. The interleukin-1 (IL-1) family
of cytokines and corresponding receptors constitute one of the

main signalling components of inflammation!2. It is commonlg
reported that there are 11 members of the IL-1 ligand family!

and 10 members of the IL-1 receptor family*°. The concepts of
protein and gene families originally arose from evolutionary
analysis where 1nd1v1duals are grouped into families based on
shared common ancestry®®. This definition has extended to
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Fig. 1 Evolutionary history of the IL-1 receptor family. a Chromosomal gene location as evidence of ancestral relationship of IL-1 family members. The highly
conserved nature of surrounding genes and sequence homology suggests two or one separate evolutionary families: IL-1R1, IL-1R2, IL-18R1, IL-TRL2, IL-TRL2
and IL-18RAP all form a cluster on the same chromosome, indicating gene duplication events. IL-TRAPL2 also has the MAP4K4 gene nearby indicating a
duplication and translocation of that part of the chromosome. The ARX gene indicates that IL-TRAPLT likely formed from a duplication of IL-TRAPL2. IL-IRAP
shares no nearby genes but demonstrates high sequence identity with the IL-18RAP gene inferring homology. This suggests there is clear evidence that all
the IL-1R superfamily genes have a common ancestor except for the SIGIRR gene, which has relatively low sequence identity and no chromosomal anatomy
evidence to support shared ancestry. b Composite evolutionary history of the IL-1 family of cytokines constructed by overlaying the evidence from
chromosomal location and clade IL-1 family gene profile on to the maximum likelihood tree from Supplementary Data 1. Dotted lines represent less
established evidence of shared ancestry. The percentage of trees in which the associated group clustered together is shown next to the branches from
1000 bootstrap replications. Branches, which occur in <50% of trees were collapsed. The tree is drawn to scale, with branch lengths measured in the
number of amino acid replacements per site. The analysis involved 231 amino acid sequences with an alignment length of 64 positions in the final data set.
All positions containing gaps and missing data were eliminated. Scale bar is 0.5 replacements per site

allow families to include functionally similar proteins that do not
share common ancestry>>%8, The distinction between the
ancestral and functional definition is often delineated by the
following terms: family and superfamily, respectively, which we
use here’. The ambiguity of the term family has resulted in an
unclear picture of IL-1 evolution with many inferring common
ancestry without substantial evidence!. Indeed, when the “IL-1F”
nomenclature of the IL-1 ligand family was defined, it was stated
that “The IL-1 portion of the name is maintained to indicate the
evolutionary relationship to the traditional types of IL-1"10,
Understanding the evolutionary history of ligands and their
receptors can provide critical insights in terms of biological
relevance and is a requisite for effective research frameworks.
Structural interactions between IL-18 and IL-18Ra, and IL-33 and
IL-1RL1, were modelled using the established structural rela-
tionship of IL-1p and IL-1R1 as a search model!""12, an approach
that assumes commonality in structural relationships due to
shared common ancestry of the ligands and receptors. Therefore,
an in-depth investigation into these evolutionary relationships is
needed.

Six members of the IL-1 receptor family are present in a cluster
on the same chromosome in most clades providing strong evi-
dence that these members formed through a series of tandem
gene duplications of a E)roto—IL—lRl gene prior to the divergence
of the vertebrate clade!>. On separate chromosomes, the evolu-
tionary ancestry of IL-1 receptor accessory protein-like 2 (IL-
1RAPL2), IL-1RAPL1, IL-1IRAP and single Ig IL-1-related
receptor (SIGIRR), is less clear and therefore, a critical investi-
gation of the ancestral origin of these proteins is required!*.
Similarly, nine IL-1 ligand family members occur in a single
cluster on human chromosome two and likely formed through a
series of gene duplications of the prototypical IL-1 family cyto-
kine IL-18%!°"17, In this way, IL-1B, IL-1a, IL-36a, IL-36p, IL-
36y, IL-36RA, IL-37, IL-38, and IL-1RA are accurately described
as family members with shared common ancestry!”~2%, IL-18 and
IL-33, however, are present on different chromosomes and have
low sequence identity, indicating weak evidence for evolutionary
relatedness, i.e., homology to IL-1p. Yet they have been included
into the IL-1 family based largely on structural similarities, spe-
cifically, the presence of a 12 beta- sheet trefoil fold, as well as
overlap in function and the receptors involved®?4-28, However, a
thorough investigation into whether IL-18 or IL-33 likely share a
common ancestor with the members of the IL-1f cluster has not
been performed?’.

An additional quandary of IL-1 ligand family evolution is the
retention of the IL-1p paralogue IL-la. IL-13 and IL-la both
signal through the type 1 IL-1 receptor (IL-1R1)*?°, and are both
produced as precursors (pro-forms) in cells of the innate immune
system in response to an inflammatory stimulus such as a
pathogen-associated molecular pattern (PAMP, e.g., LPS), or a
damage-associated molecular pattern (DAMP, e.g, HMGB1)2,
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Both IL-1B and IL-l1a emplog unconventional secretory routes,
which involve a cleavage step®”3!. Pro-IL-1f is cleaved directly by
the protease caspase-1 in the cytosol following activation by
multi-molecular inflammasome complexes®2. The processing of
pro-IL-1a is thought to be regulated by calpains and is indirectly
regulated by inflammasome/caspase-1 complexes®>. While these
mechanisms of activation may appear substantially different, they
share the common feature of the loss of membrane homeostasis,
which results in both potassium efflux essential for inflamma-
some formation, and calcium influx, leading to calpain activa-
tion>*~%7. Because of this, IL-1p and IL-la have largely been
considered as similar inflammatory cytokines released following
membrane permeabilisation and cell death3®3°,

While IL-1B is known to have a specialised role as an
inflammatory cytokine, it has been suggested that IL-la is a
moonlighting protein, which may function as an extracellular
cytokine, and within the cell**=*?. Interestingly, these functions
have been proposed to involve the uncleaved pro-form of IL-1a.
Several suggested functions occur in the nucleus as it is known
that the pro-domain of IL-la contains a nuclear localisation
sequence (NLS), whereas pro-IL-1f does not**. This results in
markedly different subcellular distributions of pro-IL-1a and pro-
IL-1B, with pro-IL-1a localising strongly to the nucleus***>. The
moonlighting functions of nuclear pro-IL-1a have been suggested
to bind to histone acetyltransferase (HAT), regulate gene tran-
scription®?, regulate mRNA splicing*!, and nuclear sequestration
as a mechanism to regulate secretion*>®, Unique features of pro-
IL-1a have also been proposed outside the nucleus, including
HCLS1 (hematopoietic cell-specific Lyn substrate 1)-associated
protein X-1 (HAX-1) binding, function at the IL-1R1 receptor
and cytosolic IL-1R2 binding™ 3.

Phylogenetic analysis allows us to infer evolutionary relation-
ships between proteins and, based on evolutionary under-
standing, to develop new hypotheses. Here we used a
phylogenetic analysis to examine the IL-1 ligand and receptor
families with a particular focus on evolutionary evidence for the
inclusion or exclusion of SIGIRR, IL-33 and IL-18 from their
respective ancestral families. We also investigate IL-1a, a gene
duplicate of IL-1B with overlapping functions despite having
relatively dissimilar sequences.

Results

Evolution of the IL-1 receptor family. There is strong sequence
and chromosomal anatomy evidence that IL-1R1, IL-1R2, IL-
1RAP, IL-1RL1 (ST2), IL-18R1, IL-1RL2 and IL-18RAP are
members of the same family formed from ancestral gene dupli-
cations of a common proto-IL-IR (Supplementary Data 1,
Fig. 1b). The close proximity to the MAP4K4 gene of this IL-1R1
sub-family and the presence of a duplicate MAP4K4 gene beside
the IL-IRAPL2 gene in the reptile and cartilaginous fish clades
suggest that IL-1RAPL2 formed from a duplication and
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translocation of a member of the IL-1R1 sub-cluster (Fig. 1a). The
proximity of the ARX gene to the IL-IRAPL2 gene in the carti-
laginous fish and the IL-IRAPLI gene in the bird and mammal
clades suggests that ILRAPL1 formed from a duplication and
translocation of the IL-IRAPL2 gene (Fig. la). There is no
chromosomal anatomy evidence to support the inclusion of
IL-IRAP gene as an IL-1 receptor ancestral family member
(Fig. 1a). However, the sequence conservation strongly indicates
that IL-1RAP likely formed from a duplication event of IL-18RAP
(Supplementary Data 1, Fig. 1b). The SIGIRR gene has relatively
low sequence identity to the IL-1R family members as seen by the
large branch distance (Supplementary Data 1, Fig. 1b), and there
is no chromosomal evidence for common ancestry (Fig. 1a). Its
function as a negative regulator of the IL-1R1 and TLR4 would
place it as part of the IL-1R/TLR superfamily. As all members of
the IL-1R superfamily except IL-IRAPLI are present in all ver-
tebrates it is likely that that these genes diverged prior to
separation of bony and cartilaginous fish ~420 million years ago
(Supplementary Data 1, Fig. la, b)>*>°, while IL-1RAPL1 likely
formed from a gene duplication of IL-1RAPL2’s ancestor prior to
the separation of bony fish and the Tetrapoda clade 365 million
years ago>+™°.

The IL-1RL1 (ST2/IL-33 receptor) is found in birds, fish and
reptiles (Supplementary Data 1, Fig. 1a, b), while the ligand, IL-
33, is only found in mammals (Supplementary Data 2, Fig. 2a-d).
This suggests that perhaps there are alternative ligands in the
other clades, or that another member of the IL-1 super family acts
through IL-1RL1 receptor. The ligand-binding domain is not
conserved across clades, indicating that differences in ligand are
probable®®. Ligand-independent functions have been reported
with fish IL-1RL1 inhibiting TLR activity’®, suggesting an
interesting evolutionary history of IL-1RL1 and the IL-33 ligand
where the receptor had a function without a ligand, resulting in
an extracellular domain that was able to mutate without altering
the constitutive activity of the receptor. In the pre-mammalian
clade Synapsids, these mutations resulted in amino acid residue
changes, leading to the binding of the IL-33 ligand and a new
ligand receptor relationship was formed.

The large sequence divergence in IL-1R2 relative to the rest of
the IL-1R1 family is likely due to the lack of the Toll/interleukin-1
receptor homology domain (TIR, the intracellular proportion of
the receptors) (Supplementary Data 1, Fig. 1b). The strong
chromosomal anatomy evidence supports common ancestry,
indicating an ancestral duplication event of the IL-1R1, followed
by a truncation (Fig. 1a). Conservation of the gene was conferred
based on its function as a decoy receptor. We see no marked
evolutionary distance between mammalian and non-mammalian
IL-1R2, which might have been expected ggiven the proposed
interactions between IL-1R2 and pro-IL-1a°.

Evolution of the IL-1 ligand family. Inclusion into the IL-1
ligand family has previously largely been defined by similarities in
structural homology, receptor binding and immunomodulatory
function. An in-depth investigation into whether common evo-
lutionary ancestry is responsible for this homology of structure
and function has not been previously performed. Thus, it is
unknown whether our current understanding of the IL-1 family
accurately describes the relationship between IL-1 family mem-
bers. To address this, we constructed a comprehensive phyloge-
netic tree using 155 sequences from across the animal kingdom
and IL-1 superfamily ligand members. From this, we found IL-1§
present in all vertebrate species and gene loci evidence, particu-
larly the proximity to the CKAP2L, SLC20A1, PSD4, and OGDH
genes, suggested that these IL-1p genes are orthologues retaining
similar functions and diverging from a common proto-IL-1f3 gene
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present in a common ancestor (Fig. 2a)>’. This places the first
appearance of IL-1p ~420 million years ago around the emer-
gence of the vertebrate subphylum (Fig. 2b)>**°. We identified
four distinct clusters separated by large evolutionary distances,
including a primary group containing IL-1p, IL-1RA, the IL-36
subgroup, IL-38 and IL-37, as well as three distinctly separate
groups of IL-18, IL-33 and IL-1a. IL-1a and IL-33 subgroups are
exclusively mammalian placing their appearance after the diver-
gence of the Sauropsida (ancestral lineage of reptiles, turtles and
birds) and Synapsid (ancestral lineage of mammals) clades ~320
million years ago and prior to the divergence of mammalian
species ~160 million years ago (Fig. 2b)>*°%, while the IL-18
subgroup is similar to IL-1P in that it is expressed in all verte-
brates and likely appeared around 420 million years ago™*.

Evidence from chromosomal anatomy across clades and
sequence similarity was used to examine the relationship of the
four IL-1 family clusters to create a more realistic IL-1 ligand
superfamily tree that better reflects the uncertain evolutionary
history of protein/gene families, despite the inherently weak
phylogenetic signal (Fig. 2d). From this, we concluded that while
IL-1a very likely evolved from a common ancestor to IL-1B, and
therefore, does belong in the IL-1 ancestral family, it appears that
IL-18 and IL-33 do not. These analyses suggest that the IL-1f
family cluster on human chromosome 2, IL-18 and IL-33 evolved
in unrelated distinct evolutionary events. BLAST searches using
human IL-18 and IL-33 gene sequences (NCBI Reference
Sequence: NC_000009.12) against non-mammalian sequences
reveal no sequences with even remote evidence of homology
leaving the origins IL-18 and IL-33 unknown. Previously, the
similarity in protein structure was considered sufficient evidence
for common ancestry/homology to be inferred, yet, the defining
feature of the IL-1 ligand superfamily, the beta trefoil fold, has
occurred in a number of seemingly unrelated proteins across
kingdoms. Indeed, previous analyses by Murzin et al. revealed
that a wide range of sequences are capable of forming these
structures, sus};porting the occurrence of independent evolution-
ary events”»>”, Furthermore, the likelihood of such convergent
evolution is inversely proportional to the complexity and
specificity of the protein structure; as the trefoil fold is relatively
simple and flexible the probability of independent evolution is
reasonable®®. The Separate evolution of IL-18 and IL-33 was
further supported by additional sequence analyses of the
functionally unrelated, but structurally related, proteins of the
fibroblast growth factor (FGF) family, which contain a beta trefoil
fold (Supplementary Data 3). From this it was found that IL-18
and IL-33 are equally unrelated to both the IL-1 ancestral family
and the FGF family. The constructed tree of 344 sequences
indicated equal sequence dissimilarity between IL-18 and IL-33 to
the FGF and IL-1 ancestral families and shows great instability as
expected from a constructed tree of unrelated proteins (Supple-
mentary Data 3). Furthermore, the stability and confidence of the
maximum likelihood trees was greatly increased when reanalysed
as three separate trees of the IL-1f family cluster on human
chromosome 2, IL-18 and IL-33 (Supplementary Data 6-8). Thus,
we argue that the use of the term “IL-1 family” is misleading in
the case of IL-18 and IL-33 and that the term superfamily better
describes our current understanding of the evolutionary history of
the IL-1 superfamily members (Fig. 2¢, d).

Chromosome gene anatomy evidence and intron/exon struc-
ture homology strongly suggests that IL-1a likely arose as a result
of an ancestral gene duplication of IL-1B between 320 and 160
million years ago (Supplementary Data 2, Fig. 2a-d)>*°7:60:61,
However, the sequence of IL-la appears as to be as almost as
unrelated to IL-1p as IL-18 and IL-33 (Supplementary Data 2,
Fig. 2d). We hypothesise this dissimilarity between the sequences
of IL-1a and IL-1f is due to sub-functionalization of IL-1q, i.e.,
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Fig. 2 Evolutionary history of the IL-1 ligand family. a Chromosomal gene location as evidence of ancestral relationship of IL-1 family members. The highly
conserved nature of surrounding genes suggests three separate evolutionary families, as follows: IL-1, IL-18, and IL-33. b A simplified evolutionary tree
with time scale of cartilaginous and bony fish, birds, reptiles, mammals and the approximate time line of the evolutionary occurrence of IL-1 family
members>4>>, IL-1p and IL-18 are expressed exclusively in all vertebrate species, including cartilaginous fish, suggesting that they evolved prior to the
divergence of bony and cartilaginous fish ~425 million years ago (ii); IL-Ta, IL-33 and IL-36 o, p & y are expressed exclusively in mammals therefore likely
formed in the common ancestor of all mammals (Synapsid lineage) (iv). This event must have occurred after divergence of the Synapsid lineage (iv) 320
million years ago but prior to the divergence of mammals 160 million years ago (v). € An ancestral and superfamily scheme of the IL-1 ligands. d Composite
evolutionary history of the IL-1 family of cytokines constructed by overlaying the evidence from chromosomal location and clade IL-1 family gene profile on
to the maximum likelihood tree from Supplementary Data 2. The percentage of trees in which the associated group clustered together is shown next to the
branches from 1000 bootstrap replications. Primary branches that occur in <50% of trees were collapsed. The tree is drawn to scale, with branch lengths
measured in the number of amino acid replacements per site. The analysis involved 155 amino acid sequences with a final alignment length of 64 positions.
All positions containing gaps and missing data were eliminated. Scale bar is 0.5 replacements per site
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Fig. 3 Conservation of IL-1a and IL-1p sequences in mammals. The percentage of conserved a.a. residues of the pro (grey) and mature (black) segments of
IL-1a (@) and IL-1B (b). € The average conservation from a, b showing that the amino acid sequence of the pro-domain of IL-Ta is highly conserved, more so
than the mature domain of either IL-Ta or IL-1B. d The ratio of synonymous (dS) to non-synonymous (dN) substitutions per potential substitution site
demonstrates strong positive selection for the conserved pro-domain of IL-1o.. Analyses were conducted using the Nei-Gojobori method®0. e A heat map of
the conservation of IL-1a sequence across mammalian species depicting the correlation with putative functions of the IL-1a protein (green 25% conserved
to red 100% conserved across mammalian species). The NLS sequence, histone acetyltransferase complex-binding region, HAX-1-binding region,
neutrophil elastase cleavage site (N) and NLS post-translation modification sites were very highly conserved (P, phosphorylation; A, acetylation; M,
myristoylation), while the glycosylation (gly) site, RNA splicing domain and cleavage sites for chymase (Ch), caspase-1 (C), and granzyme B (G) were
poorly conserved. ¢, d bars are means + SEM, *p < 0.05 and **p < 0.01 pro-domain vs mature domain within IL-1 member; #p < 0.05 and ##p < 0.01 IL-1p
vs. IL-Ta within domain, omnibus effects evaluated by linear modelling followed Sidak correct post-hoc tests

divergent evolutionary pressure associated with the distinct Homology of the pro-domains of IL-1a and IL-1p. To investi-
functions. Therefore, we performed further conservation analysis  gate the divergence of IL-la from IL-1p, amino acid sequence
at the protein domain level and found that there are at least two  similarity was compared across the sequence of each protein in 11
potential selective forces driving the divergence of IL-1a, both ~mammalian species (Fig. 3). From this, we found that while the
involving neo-functionalization of the pro-domain (Fig. 3). mature domains of IL-1a and IL-1p are similarly conserved, we
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Fig. 4 The evolutionary importance of HAX-1to IL-1a. @ A model evolutionary tree with time scale of cartilaginous and body fish, birds, reptiles, mammals
and baleen and toothed whales®#>>. HAX-1is expressed in all vertebrate species as well as hemichordates, suggesting that it emerged during the Cambrian
explosion (i); IL-1p evolved approximately 425 million years ago (ii); IL-1a formed via a gene duplication event of IL-1p in the common ancestor of all
mammals (Synapsid lineage) (iv). The NLS of IL-1a is present in all land mammals and baleen whales, suggesting it was present in the common ancestor of
all mammals (v) and the common ancestor of all whales (vi); all toothed whales lack a functional NLS, suggesting that the common ancestor of the toothed
whale (vii) had a loss of function mutation in the NLS. b The amino acid sequences of the IL-1a NLS, including the percentage conservation and the
calculated predicted NLS activity (cNLS) scores®3; all found in the pro-region in amino acid positions around 70-85. Note the loss of a functional NLS in the
toothed whale species due in most part to the R to W replacement (highlighted). ¢ The percentage of conserved amino acid sequences of the pro (grey)
and mature (black) segments of IL-1a comparing 4 toothed whale species with the modal land mammal sequence. While the mature segment contains
substantial variation due to the build-up of neutral mutations over the 35 million years of evolutionary separation, the pro-IL-1a domain is highly conserved
despite the loss of NLS function. d Dot blot with bovine serum albumin (BSA) (1), pro-IL-1a (2), mature IL-1a (3), mature IL-1p (4) and HAX-1 (5) bound to
the membrane (0.02 pg), then incubated with HAX-1 (5 pg ml~") (HAX) or control buffer (Con) to investigate HAX-1 binding. HAX-1 was probed and
visualised, and found to exclusively bind to pro-IL-1a, confirming that this binding is specific and substantial to the pro-domain of pro-IL-Tx
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see completely different trends in the pro domains of each protein
(Fig. 3a, b). The conservation of the pro-domain of IL-1p is lower
than the mature domain as well as the ratio of synonymous to
non-synonymous nucleotide mutations, which is consistent with
a domain that is of lower functional importance and supporting
that the sole role of the pro-domain of IL-1f is to prevent binding
to IL-1R1 (Fig. 3b)%2. This is starkly contrasted by IL-la whose
pro-domain is more highly conserved and has a higher synon-
ymous/non-synonymous ratio than the mature domain (Fig. 3c,
d), suggesting that the pro domain has a specific function, and
this caused divergence from IL-1f and constrained the sequence
variability of IL-1a across species. In particular, within the pro
domain there are two subregions that are highly conserved: the
1-40 amino acids highly conserved pro-domain region (HCPR)
and the NLS (Fig. 3e).

The role of the NLS in neo-functionalisation of IL-la. Using
the nuclear localisation ten-point scoring system developed by
Korsugi et al.>> based on known amino acid sequences critical to
the classical importin af pathway to compute predicted NLS
activity (cNLS), we compared a diverse selection of mammalian
IL-1a pro-domain sequences. Surpringly, the toothed whale clade
(Odontoceti) lacked a functional NLS with ¢cNLS scores less than
two® (Fig. 4b). This is largely due to the replacement of the key
positively charged amino acid arginine to the uncharged hydro-
phobic amino acid tryptophan (KKRR to KKWR) (Fig. 4b). This
provided a unique opportunity to use conservation and evolu-
tionary evidence to test the hypothesis that the key moonlighting
function driving IL-1a divergence resides in the nucleus such as
HAT binding. This hypothesis would predict that a number of
amino acid residue replacements would increase in the pro-
domain in the toothed whale clade as without an NLS the nuclear
moonlighting function would now be redundant and so purifying
selection will be relaxed. To evaluate this, we compared the IL-1a
sequence of the four toothed whale species, which have published
genomes with the modal sequence of land mammals (Fig. 4c).
From this analysis, we find that the pro-domain remains highly
conserved despite the non-functional NLS (Fig. 4c). The func-
tional mature domain of IL-la has a substantial ‘build-up’ of
amino acid replacements, suggesting that the evolutionary time
since the toothed whale diverged was similarly sufficient for
changes to accumulate (Supplementary Data 5), yet this had not
occurred in the HCPR of IL-1a presumably due to the action of
purifying selection (Fig. 4a, c). This does not support the
hypothesis that there is a nuclear moonlighting function driving
IL-1a divergence from IL-1f, indicating that nuclear functions
such as HAT binding are not likely to be the major force driving
the divergence of IL-1a.

HCLSI (hematopoietic cell-specific Lyn substrate 1)-associated
protein X-1 (HAX-1) most likely appeared during the Cambrian
explosion ~540 million years ago (Supplementary Data 4) as it is
present in all vertebrate species and in distantly related animals
such as arthropods (Fig. 4a()))*L Itis a cytosolic protein that has
a number of structurally unrelated binding partners, including
HS1 (hematopoietic lineage cell-specific protein-1), cortactin,
PKD2 (polycystic kidney disease-2/polycystin-2), EBNA-LP
(Epstein-Barr nuclear antigen leader protein) and Bcl-2. The
exact function of HAX-1 binding is currently unknown. However,
it has been linked to the shuttling of proteins to the nucleus or
mitochondria, as well as masking active domains on the protein
(for review®l). After comparing the conservation of IL-la with
the putative moonlighting functions of pro-IL-1a, and taking into
consideration, the conservation of each subdomain across the
toothed whale clade which lack an NLS, our evolutionary
evidence suggests that HAX-1 binding is the major directional
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selective force pushing the divergence of IL-la from IL-1f
(Figs. 3e and 4c). Using dot blots a biologically specific interaction
between pro-IL-1a and HAX-1 was confirmed (Fig. 4d). HAX-1
interacted with pro-IL-la, and no interaction with mature
IL-1a0 or IL-1B was observed (Fig. 4d). This confirmed the
specificity of the interaction and supports the evolutionary
evidence, suggesting an interaction with HAX-1 drove divergence
of pro-IL-1a.

Discussion

The IL-1 ligand and receptor superfamilies are involved in a
number of functions, primarily immune modulation?. Evolu-
tionary analysis was carried out to investigate the origins and key
functions of these cytokines and their receptors. From this, we
found that the IL-1R family is a conserved group of receptors that
have existed for at least 420 million years®*. Except for the
SIGIRR receptor, all receptors exhibit strong evidence to have
formed through ancestral gene duplication events. The SIGIRR
receptor is the only described family member that does not have
evidence of IL-1R ancestral lineage, suggesting that SIGIRR
should be considered a superfamily IL-1R member and not an
ancestral family member. The IL-33 receptor (IL-1RL1) is present
in the bony fish, reptilian and avian clades as well as mammals,
despite non-mammalian clades lacking the IL-33 ligand. This
suggests the presence of other ligands for IL-1RL1, or function-
ality as an orphan receptor. Work by Reble et al.>® supports the
latter hypothesis finding that rainbow trout IL-1RL1 acts con-
stitutively as a IL-1RL1 and TLR4 pathway inhibitor by seques-
tering the secondary signalling molecule MYD88°. We
hypothesise that, without a ligand, the extracellular portion of IL-
1RL1 lacked stabilisation selection pressure and this caused
accelerated mutagenesis of this region allowing binding of a novel
signalling molecule. This process where the receptor “found” the
ligand, as opposed to the common ligand and receptor co-
evolution from their respective family members®®, may explain
the lack of shared common ancestry of the IL-33 and IL-1P
ligands.

The IL-1 ligand superfamily has four distinct subgroups,
including the primary cluster whose central member is IL-1f as
well as the IL-33, IL-18, and IL-1a subgroups. Using chromosome
anatomy and sequence analyses, we conclude that IL-33 and IL-
18 do not share a common ancestor to the other IL-1 family
members and therefore should not be included in the IL-1
ancestral family, but based on structural fold and receptor
homology should be considered members of the IL-1 superfamily.
The IL-1a cluster appears to have emerged as a consequence of a
duplication event around the emergence of the Synapsid proto-
mammalian clade. Although IL-18, IL-33, and IL-la appeared
approximately equally unrelated to IL-1f at the sequence level
(Supplementary Data 2), chromosome gene anatomy evidence
and intron/exon structure homology strongly suggested that IL-
la likely occurred as a gene duplication of IL-1p between 320 and
160 million years ago, while IL-18 and IL-33 occurred in separate
evolutionary events (Fig. 2b)*”°*6!, This raised the question, why
do such functionally and structurally similar proteins arising from
gene duplication have such dissimilar sequences? This dissim-
ilarity is particularly apparent when we compare the close evo-
lutionary distance and sequence similarity of bird, turtle, and
mammalian IL-1RA and IL-36RA, which are evolutionary more
ancient (Supplementary Data 2). Our conclusion was that IL-1RA
and IL-36RA evolved under strong purifying selection forces due
to specificity of function, while IL-1a was “pulled” by diversifying
selection to be very different from IL-1p at the sequence level
despite the apparent similarity in function and recent shared
ancestral origins. This presence of a diversifying/disruptive

| DOI: 10.1038/541467-018-03362-1 |www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

selective force is supported by evolutionary evidence, which
demonstrates that duplicate gene divergence is typically very slow,
especially if the genes remain in close proximity on the chro-
mosome, particularly if sub-functionalization is evident; illus-
trating that the dissimilarity of IL-1p and IL-1a is shaged by a
selection pressure associated with functional divergence®*.

By analysing the homology of IL-1p and IL-la sequences
across the domains of each molecule, we discovered that the pro-
domain of IL-1a was highly conserved, more so than the mature
domain of either molecule, while the pro-domain of IL-1p was
least conserved. This suggested that the pro-domain of IL-1a has
important moonlighting functions, which drove divergence and
extended the evolutionary distance from IL-1p. We define a
particularly conserved region of the N-terminal domain of IL-1a
as the HCPR, and used sequence conservation evidence to
investigate its putative roles.

There are several putative hypotheses of pro-IL-la function
and activity that may explain the HCPR and the active divergence
from IL-1P. Early work has suggested that pro-IL-la may be
presented on membranes via glycosylation dependent mechan-
isms, 5potentially including lectin or heparin sulfate interac-
tions®>%, However, lectin associations normally —require
glycosylation and neither pro-IL-1a nor pro-IL-1f contain signal
peptides and are therefore unlikely to be exposed to the relevant
glycosylation machinery. Furthermore, proteomic analysis only
identifies two likely points of glycosylation in pro-IL-la in the
human sequence, and these are outside the HCPR at the amino
acid loci of 102 and 141 in the human protein, and the amino acid
composition of these sites are not highly conserved across
mammals (Fig. 3e)%7. Heparin sulfate is a non-conventional
mechanism of lectin-like membrane association. However,
heparin sulfate association requires basic amino acid clusters, and
proteomic analysis shows that the HCPR is the most acidic region
of the pro-IL-la protein with a pI of 4.49, compared to the
mature IL-1a domain which has a pI of 5.57°%%°, Therefore, while
lectin-like extracellular membrane binding may have niche
function in some mammalian species, it seems unlikely that this
binding function is responsible for driving the divergence of IL-
la from IL-1P, and IL-1a retention.

Pro-IL-1a has been shown to be cleaved by a number of
enzymes to generate products that are more active at IL-1R1
including calpains, gramzyme B, chymase and neutrophil elas-
tase’?. Comparing conservation of these cleavage sites, we see
relatively low conservation of the calpain cleavage site, however,
this is largely due to replacement of similar amino acids such as
the amino acids serine and phenylalanine are replaced by the
similar asparagine and tyrosine in some species, respectively
(Fig. 3e)’!. These changes do not affect calpain activity as the
murine pro-IL-la sequence contains these replacements and is
cleaved by calpain into the mature form”2. Similarly, granzyme B,
neutrophil elastase and chymase cleavage sites are highly con-
served and any variation in amino acid sequence is largely
between functionally similar amino acids (Fig. 3e)’!. Cleavage by
these enzymes has been shown to produce an IL-1a product that
is highly active at IL-1R17°, This suggests that pro-IL-1a could be
released during tissue damage where it acts weakly as a DAMP,
however, if there is sufficient damage or infection for recruitment
of immune cells, which produce granzyme B (cytotoxic B-cells
and T-cells), neutrophil elastase (neutrophils) and chymase
(basophils and mast cells), the proinflammatory IL-1a signal will
be amplified through pro-IL-la cleavage into more active
forms’%’!, However, these cleavage sites represent a small
number of amino acids that are variably conserved and are not
present in the HCPR of IL-1a (Fig. 3e). Therefore, while these
cleavage sites illustrate functional differences between IL-1a and
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IL-1B, it is not likely that they are sufficient for the sequence
divergence of IL-1a from IL-1P and IL-1a retention.

A further defining feature of IL-1a and IL-1p is their affinity
for IL-1R2. While mature IL-1p has an affinity for IL-1R2 orders
of magnitude greater than IL-1a, one study reports the pro-IL-1a
has biologically relevant affinity for IL-1R2°°. This binding can
occur in the cytosol of a cell and prevent cleavage into the more
active mature form. However, our receptor analyses (Fig. 1)
suggests that this binding is not driving the divergence of IL-1a as
this would involve a co-evolution of both the IL-1R2 and IL-1a.
This should cause a greater drift in the IL-1IR2 sequence in
mammals from the non-mammalian clades®. However, there is
no evidence of the drift, suggesting this binding, while probably
biologically relevant in a subset of mammalian species, has not
been a major driving force in IL-1a divergence from IL-1p. This
conclusion is further supported by Kawaguchi et al. 2006 who
demonstrated that the binding of pro-IL-1a to IL-1R2 is depen-
dent on the mature domain of IL-1a, suggesting that the selective
pressure constrainin% the sequence of the pro domain of IL-1a is
not IL-1R2 binding®.

There is accumulatin§ evidence implicating specific functions
of IL-1a in the nucleus*#>-47°073 " A study by Pollock et al.*!
reported that pro-IL-la can induce apoptosis via a Bcl2 (B-cell
lymphoma/leukemia-2)-dependent mechanism by modulating
RNA processing apparatus. However, this region is not highly
conserved (Fig. 3e), making it unlikely that this function was a
major contributor to IL-1a divergence. However, the existence of
one or more moonlighting functions in the nucleus is to some
extent supported by our conservation analyses. First, we see that
the NLS is highly conserved across distantly related mammalian
species along with the post-translational modification sites in and
around the NLS, which may have important roles in modulating
its function (Fig. 3e)’. Second, there is high conservation of the
regions that bind the histone acetyltransferase (HAT) complexes
and these domains overlap with the HCPR (Fig. 3e)%7. Research
by Cohen et al.*® reported pro-IL-la induces expression of a
number of inflammatory cytokines, including IL-6 and IL-la
itself, through a mechanism that is NLS and HAT complex-
binding dependent*®. The role of HAT complex binding in the
divergence of IL-la from IL-1P is also supported bsy modes of
evolution observed in other moonlighting proteins’>. This pos-
tulates that the ultimate fate of duplicate genes where one gains a
moonlighting function is complete specialisation of each gene,
hence, the moonlighting function becomes the primary function
of the duplicated gene unless the moonlighting function of the
gene duplicate is synergistic with the ancestral function®467>,
The latter does appear to be true for IL-1a with both its IL-1R1
activity and HAT complex binding both inducing a proin-
flammatory response?®#®7>, Furthermore, an evolutionary driver
of moonlighting function is exposure to a new cellular environ-
ment*®7>, For IL-1a, this may have been the emergence of the
NLS in the proto-mammal, exposing IL-la to a new cellular
environment at considerablg higher levels than prior to the
development of the NLS*®7> This led IL-1a to develop novel
moonlighting functions in a different cell compartment*®’>.
Therefore, the sequence analyses presented here, as well as pre-
viously published experimental evidence and evolution theory
support the hypothesis that IL-1a diverged from IL-1p and was
retained as a moonlighting protein, which directly modulates
gene function as well as maintaining its ancestral function of IL-
1R1 activity. However, the absence of a NLS in IL-1a from the
toothed whale argues against a nuclear function driving the
divergence of IL-1a. For this reason, we favour HAX-1 binding as
the divergent pressure on IL-la function and sub-
functionalization. Yin et al.>> demonstrated that pro-IL-la and
the pro fragment alone bind to HAX-1 and Kawaguchi et al.
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expanded on this work establishing that HAX-1 binding to pro-
IL-1a is important for intracellular proinflammatory effects of
pro-IL-1a in fibroblast cells, demonstrating siRNA knock down
of HAX-1 resulted in blunted IL-6 release*”>2. We confirmed the
physical and selective interaction between pro-IL-1a and HAX-1
here (Fig. 4d). Beyond these studies, the function of HAX-1
binding of pro-IL-1a, particularly in innate immune cells, has not
been studied. The evolutionary evidence presented here suggests
that our efforts to understand IL-1a biology should be refocused
to this research area, as a substantial and important function of
HAX-1 binding is likely. If HAX-1 binding is the key moon-
lighting neofunction of IL-la, we can hypothesise that IL-la
appeared via a gene duplication event of IL-1P after Synsapsid
divergence 320 million years ago (Fig. 4a). Then, prior to mam-
malian divergence, pro-IL-1a accumulated mutations that inclu-
ded greater binding affinity to HAX-1, providing a neofunction of
IL-1a and a selective advantage. This HAX-1 relationship drove
the functional divergence of IL-1a from IL-1p, while the action of
purifying selection prevented the accumulation of amino acid
changes in the HAX-1 binding regions during the 160 million
years of mammalian speciation (Fig. 4a). Evolutionary theory on
moonlighting functions, suggests that it is likely that the function
of the HAX-1/IL-1a binding is synergistic with inflammatory
ancestral IL-1R1 function of IL-1a. However, the exact function
of this important relationship has not been fully elucidated and
therefore warrants future research.

In conclusion, our in-depth analyses into the evolution of the
IL-1 ligand and receptor superfamily members has both
improved our understanding of the ancestry of these genes and in
this way redefined IL-1 ligand and receptor families to more
accurately describe their evolutionary history, as well as providing
key evidence into IL-1a neofunctionalization and therefore guide
future research efforts.

Methods

Tree analysis. Sequences were retrieved using BLASTN and BLASTP searches
(http://www.ncbi.nlm.nih.gov/) with default parameters using established IL-1
family sequences. Supplementary Data 9 contains all gene names, clades and ids.
Evolutionary history was inferred by using the maximum likelihood method based
on the JTT matrix-based model”®. The tree with the highest log likelihood is
shown. Initial tree(s) for the heuristic search were obtained by applying the
neighbor-joining method to a matrix of pairwise distances estimated using a JTT
model. The coding data were translated assuming a standard genetic code table. All
positions containing gaps and missing data were eliminated from alignments. For
Supplementary Datas 1 and 2, a total of 66 and 64 positions were used, respectively,
with a total of 231 and 155 amino acid sequences, respectively. Trees were
reconstructed using the Whelan and Goldman, and Dayhoff matrix-based models
and only subtle changes in the log likelihood values were observed and no inference
altering differences were observed in the tree structures’”’%, Evolutionary analyses
were conducted in MEGA77°. The phylogenetic inference of these trees was
intrinsically unreliable due to the short length of the alignments. This was caused
by the inclusion of non-family members in the alignment supporting the conclu-
sions of this study. Chromosomal anatomy was then used to improve the con-
fidence in evolutionary history inference and trees containing only family members
were constructed and presented in the supplement. These had longer sequence
alignment and greater stability.

NLS and conservation analysis. Monopartite and bipartite NLS were identified

and scored using NLS mapper®. Homology inferred from comparison of amino

acid sequences of the pro, mature and NLS domains were calculated as percentage
of species with the modal amino acids at each aligned site. All positions where the
mode was a gap in the alignment were eliminated from the analysis.

Synonymous/non-synonymous statistics. The ratio of synonymous (dS) sub-
stitution per site to non-synonymous substitutions (dN) were conducted using the
Nei-Gojobori method®®. This method computes the numbers of synonymous and
nonsynonymous substitutions and the numbers of potentially synonymous and
potentially nonsynonymous sites. The count of the number of synonymous dif-
ferences is normalised using the possible number of synonymous sites. A similar
computation can be made for nonsynonymous differences. The Jukes-Cantor
correction (dS or dN) computed were corrected to account for multiple substitu-
tions at the same site. These analyses were conducted in MEGA77°.
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Physical pro-IL-1a and HAX-1 interaction analyses. HAX-1-binding was eval-
uated using the dot blot method. Strips of PVDF membrane were activated with
methanol. Recombinant proteins (0.02 ug) were dotted onto the membrane in
water and allowed to dry (HAX-1, Proteintech Ag27244; pro-IL-1a, Proteintech
Ag10467; mature IL-1a, Abcam 200-LA; mature IL-1f, abcam 201-LA). The
membranes were then washed three times with blocking buffer (5% BSA in PBS)
and then left at room temperature (RT) for 2 h in blocking buffer. The membranes
were exposed to 5 pg ml~! HAX-1 in PBS with 0.5% Triton x-100 or PBST alone
for 3 h at RT, washed in blocking buffer, and then incubated in HAX-1 polyclonal
antiserum (Abcam ab78939; 1:1000, 2 h at RT in 1% BSA PBST). The blots were
washed, followed by goat anti-rabbit IgG conjugated to horseradish peroxidase
(Dako P0448; 1:1000, 2 h in 5% milk PBST). Extensive washing was performed and
bound antibody was then visualised by chemiluminescence.

Statistical analyses. Linear mixed modelling was used to evaluate the effect of
independent factors on the dependent variable (nlme v1.19%1). All factors and
interactions were modelled as fixed effects. A within-subject design with random
intercepts were used for all models and by-subject random slopes were applied
where appropriate. The significance of inclusion of a dependent variable or
interaction terms were evaluated using log-likelihood ratio. Holm-Sidak post-hocs
were then performed for pair-wise comparisons using the least square means
(LSmeans®?). Homoskedasticity and normality were evaluated graphically using
predicted vs residual and Q-Q plots, respectively. All analyses were performed
using R (version 3.3.3).

Data availability. All data generated or analysed during this study are included in
this published article and its supplementary information files.
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