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are needed to be designed specifically. In this paper,
we study and review 12 states of the art techniques:
SMOTE, AdaBoost, RUSBoost, EUSBoost, SMOTEBoost,
MSMOTEBoost, DataBoost, Easy Ensemble, BalanceCas-
cade, OverBagging, UnderBagging, SMOTEBagging for
mining imbalanced data and compare their performance on
27 imbalanced datasets. In the rest of the paper has been
arranged as follows. In section II we have discussed the
different performance evaluator and their function. Section
III presents different types of data balancing methods. Sec-
tion IV presents the discussion on 12 imbalanced class
classification algorithms. In section V we illustrate the char-
acteristics of the used real-world datasets that have been
collected from KEEL [9] data set repository. Section VI
represents most significant outcome of our research. We
have introduced some tables and figures to provide better
insight of our experiments. The input parameters that has
been used in our experiments is given in table III. In table
VI, we have shown AUROC comparison. In figure 2 we have
represented graphical view of table VI. Apart from that, we
have introduced another useful process that is G-mean in
table VII to compare algorithms. In figure 3 represents the
line charts of table VII. To prove the significance of the
research, we have included some other important methods
such as F-measure and the resulting value is mentioned in
table VIII with graphical representation in figure 4. Different
execution or processing time that is mentioned in table IX
with line charts in figure 5. Last but not least, the most crucial
part of this section is the independent AUCROC line charts
of algorithms and datasets (Randomly chosen 4 out of 27
used dataset: PIMA, ecoli2, ecoli3, glass01) shows in figure
6. Finally, we conclude this analysis in Section VIII.

II. THE CLASSIFIER PERFORMANCE EVALUATORS

The performance of machine learning algorithms is eval-
uated by a standard evaluation matrix which is called confu-
sion matrix, as illustrated in Figure 1 (for a 2 class problem).
Here the columns are the predicted class and the rows are
the actual class. In the confusion matrix, TN is the number
of negative examples correctly classified (True Negatives),
FP is the number of negative examples incorrectly classified
as positive (False Positives), FN is the number of positive
examples incorrectly classified as negative (False Negatives
)and TP is the number of positive examples correctly classi-
fied.

TABLE I: 2x2 Confusion Matrix

Confusion matrix
Positive Prediction Negative Prediction

Positive class True Positive(TP) False Negative(FN)
Negative class False Positive(FP) True Negative(TN)

The most common performance evaluation metrics related
to imbalanced classes are: 1) Accuracy 2)Recall (sensitivity)
3) Specificity 4) Precision 5) F-measure and 6) Geometric
mean (g-mean)[4]. Accuracy is the ratio between true
decisions predict by a classifier. Sensitivity (also called True
Positive Rate) and specificity (also called True Negative
Rate) are used to monitor the classification performance of
each individual classifier and recognise positive and negative
examples respectively. [10]. Precision is used in problems

interested in high performance in only one class and it is
the ratio between true positive examples. F- measure and
G-mean are harmonic averages and geometric averages of
sensitivity and precision respectively. The geometric average
of sensitivity and specificity is known as G-mean 2 [11].

ROC curve introduces the true positive rate (TPR) along
the y-axis and false positive rate (FPR) along the x-axis. The
classifier which produces accurate result would have an area
under the curve (AUROC) of 1, where TPR = 1 and FPR
= 0. At various cut - off points, the curve displays the TPR
and FPR of the classifier at a different range.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

TPRate(Sensitivity) =
TP

TP + FN
(2)

FPRate(specificity) =
FP

FP + TN
(3)

precision =
TP

TP + FP
(4)

G−mean =
√
TPrate× TNrate (5)

G−mean =
√
sensitivity × precision (6)

G−mean2 =
√
TPrate× TNrate (7)

G−mean2 =
√
sensitivity × specificity (8)

F −measure =
2(precision.Sensitivity)

precision+ Sensitivity
(9)

AUROC =
TPrate+ TNrate

2
(10)

The F1 score (also F-score or F-measure) is a weighted
average evaluator that measure accuracy of a classifiers. This
is a regular performance evaluation metrics interpreted as
a better choice that combines precision and recall into a
single value, by giving equal weight on both class [12].
The geometric average (G-mean) has been used by several
researchers for evaluating classifiers on imbalanced datasets
especially when performance of both classes is concerned
and expected to be high at the same time. These measures
point out the stability between classification performance on
the majority and minority class. Both G-mean and F1 score
reaches its best value at 1 (perfect precision and recall) and
worst at 0 [13]. In the case of imbalanced classification
issues, insistence is established notably on the predictive
accuracy of minority/positive class while having accuracy
for the majority/negative class. This would correlate to high
TPR and low FPR, and thus reflected by a high AUROC.

III. DATA BALANCING METHODS

A. Sampling Technique

The customary evaluation procedures were unable to
measure the exact model performance mostly when working
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with real-life imbalanced datasets. Sampling techniques
solve the class imbalanced classification problem with
the redistribution of the imbalanced datasets in order to
achieve an almost equal number of instances in two ways,
which are called undersampling and oversampling methods.
Sometimes a performance can be elevated by combining
both the under and oversampling method which can be
identified as hybrid approaches such as SMOTE with
TOMEK or ENN method [5].Various intellectual algorithms
have been proposed related to sampling technique [14],
like SMOTE, borderline SMOTE, and Wilson’s editing
[15]. Hulse [16] observes the performance of diverse data
sampling methods (around seven) using learning algorithms
including investigational data sets, by discovering that the
two most successful sampling algorithms are RUS and
SMOTE.

1) Over-Sampling: The over-sampling method works with
minority class instances by creating synthetic instances
which causes no lose of any potential information. It can
be done in two ways: (1) Random Over-sampling, and (2)
Informative Over-sampling. Random over-sampling methods
balance the datasets by randomly over-sampling the minority
class instances.Whereas, informative over-sampling synthet-
ically generates and adds the minority class instances into
the dataset. The disadvantage of this method is overfitting of
datasets as it adds replicated data from the original dataset.
Some well-known over-sampling Methods are:

SMOTE (Synthetic Minority Over-sampling Technique)
- this sampling method combines under-sampling of the
majority class instances with over-sampling of the minority
class instances [4]. Inspired by the favorable outcome of
some popular concepts of using artificial instances like
SMOTE [4], SMOTEBoost [4], and DataBoost [17], this
theory proposes an adaptive method called ADASYN
(Adaptive Synthetic Sampling Approach for Imbalanced
Learning) [18]. With Borderline-SMOTE-I, to attain
excellent prediction, the borderline instances of the minority
class are over-sampled only. This sampling concept is
different from the existing over-sampling ideas where the
negligible instances or the arbitrary subset of the minority
class are over-sampled [19] [20] [4]. Apart from that, We
will mention another significant method called borderline
Over-sampling in the Feature Space (BOSFS), that manage
over-sampling method by creating novel synthetic minority
instances with the existing borderline instances. The SVM
classifier achieves higher recognition performance with this
BOSFS method using the Euclidean distance, especially for
the minority class instances [21].

2) Under-Sampling: The under-sampling method works
with majority class instances, which removes instances ran-
domly from a majority class to make the dataset balanced.
It is best to use when the dataset is too big. Under-sampling
methods are of two types: (1) Random under-sampling,
and (2) Informative under-sampling. Random under-sampling
method randomly chooses instances from the majority class,
which later eliminates when the dataset gets balanced.
Removing instances randomly may causes loss important
information. On the other hand, informative under-sampling
uses a pre-specified selection criterion to remove the majority

class instances to balance the dataset [22].

Fig. 1: Sampling Techniques.

B. Cost-sensitive Learning Method

The cost-sensitive learning (CSL) takes the misclassifica-
tion costs into account in the learning process to minimize
total cost. It is also a common approach to solve the class
imbalanced problem [23]. The objective of the cost-sensitive
learning is to achieve high accuracy to classify minority class
instances. However, it is difficult to find the misclassification
cost in different iterations as it depends on different types of
errors.

C. Ensemble Method

Ensemble learning is the process of combining multiple
classifiers to form a strong classifier to classify new instances
with high prediction accuracy. Examples are RandomForest,
Bagging, and Boosting. While constructing ensemble meth-
ods the most challenging task to be faced by the classifiers
are: (1) the coalescence of the classifiers to be used, (2)
the base classifiers used for ensemble must be naive to
overcome overfitting, and (3) the base learners used should
be as accurate as possible, and as distinct as possible.

IV. IMBALANCED CLASS CLASSIFICATION METHODS

In this section, we discuss the following machine
learning algorithms: SMOTE, AdaBoost, RUSBoost,
EUSBoost, SMOTEBoost, MSMOTEBoost, DataBoost, Easy
Ensemble, BalanceCascade, OverBagging, UnderBagging,
SmoteBagging that are widely used in many real-world
imbalanced data classification applications [24].
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1) SMOTE: This sampling method combines under-
sampling of the majority class with a notable form of
over-sampling of the minority class [4]. The concept of the
method is developed with various investigational datasets,
C4.5 as the base classifier, and Naive Bayes classifier
including the AUROC curve [25]. This is an over-sampling
approach where not only the instances are over-sampled but
also the minority class builds some synthetic samples. One
of the well-established examples of this approach is the
identification of the optical character [26], where the authors
produced additional training data by performing particular
operations on real data. To perturb the training data the
authors used operations like rotation and skew. Assume that,
the total adjacent instances of minority class is K. According
to the quantities of total instances needed, adjacent instances
among the K (where k=5) instances are selected at random.
For example, if the required over-sampling amount is 400%,
then only 4 are selected from the 5 adjacent instances
and 1 instance is produced in each direction. Synthetic
instances are created by taking the difference between the
adjacent instances and featured instances. Now assume 2
random numbers between 0 and 1 and we multiply this
difference by the random number. Then add the resulting
value to the feature vector. The minority class become more
general when this method successfully forces the decision
region. SMOTE algorithm which is the latest approach to
over-sampling technique enhance the appropriateness of a
classifier for a minority class. The combination of SMOTE
and under-sampling method performs better than ordinary
under-sampling technique. The novel approaches with
SMOTE are examined using different datasets, with varying
levels of imbalance. Merging SMOTE and under-sampling
technique also functions better, based on possession in the
ROC space. As SMOTE makes the setting territory larger
and unspecified, it makes the classifier very much unique
than that of other classifiers.

2) AdaBoost: AdaBoost is the most popular and effective
ensemble classifier, with key functions to improve the
performance of weak learners [27], [7]. During each of
its iteration, instance weights are changed to see how the
classification rate changes with focuses on misclassified
instances in the next iteration. AdaBoost uses the weighted
vote strategy to classify the unlabeled instances. In the class
imbalanced situation, the AdaBoost algorithm performs
efficiently as each of its iterations. Minority class instances
are misclassified and given higher weights to consider
in subsequent iterations. AdaBoost is a most desired and
used boosting algorithm, which assumes a sequence of
classifiers and incorporates the vote of each isolate classifier
for classifying an unknown or known instances [28]. The
algorithm performs efficiently with each of its iterations,
the misclassified minority class instances are given higher
weights. During every iteration of this algorithm, an infirm
presumption is made by the foundation learner of the
classifier. If the instance accurately classified its weight will
be reduced and if failed to classify then the opposite will
be done which means the weight will be increased. The
significant characteristic of AdaBoost is that the approach
mainly focuses on troublesome data points which have been
misclassified by the weak classifier. The weak learner need

no advanced knowledge and an optimally weighted majority
vote uses by the classifier.

3) RUSBoost: RUSBoost is an under-sampling approach,
which randomly removes the majority class instances to
make the dataset balanced [29], [19]. It is an ensemble
classifier as it combines the random under-sampling
technique with a boosting approach (AdaBoost.M2
algorithm). It creates a balanced dataset using a random
under-sampling technique in each boosting iteration and
considers the majority-voting technique to classify new
instances. RUSBoost is an ensemble classifier which is an
extended version of SMOTEBoost that produces a quicker
and easier approach with an achievement which is normally
perfect and sometimes more than that of SMOTEBoost.
Seiffert et al. [29] say that RUSBoost is an unprecedented
mongrel data sampling technique, which has a strong
outline to enhance the performance of models. The accuracy
of RUSBoost is measured with SMOTEBoost [19]. The
common thing among the classifiers is that these two
classifiers RUSBoost and SMOTEBoost introduce data
sampling with the popular AdaBoost classifier. RUS, a
sampling technique that arbitrarily dispels instances from
the leading class [30] used by RUSBoost. On the other
hand, SMOTEBoost [4] which constructs new minority class
instances applies the SMOTE technique. The uses of RUS
technique into the boosting process are its intelligibility,
fastness, and performance. On the other side, SMOTE is
a puzzled and extended data sampling technique which
makes the SMOTEBoost more complex and suffers for
disadvantages of prolonged model training time as compared
to RUSBoost. The main advantage of RUS classifier is
that it reduces the period necessary for constructing a
model, especially when constructing an ensemble of models.
Though there is no universally conventional optimal class
distribution, a balanced (50: 50) distribution is often thought
to be near optimal [20]. Moreover, when instances of the
minority class are extremely uncommon, a ratio closer to
35: 65 (minority: majority) may result in better classification
performance.

4) EUSBoost: Enhancing ensembles for extremely
imbalanced datasets by the evolutionary under-sampling
method is called as EUSBoost [31]. It is based on the
RUSBoost method as it combines random under-sampling
with boosting techniques [5], [32]. EUSBoost starts with
the under-sampling technique that continued until the
currently finest under-sampled uplifted. This method is
computationally more expensive compared to the RUSBoost
algorithm as it executes EUS in all iterations of boosting. In
real-world applications, the usefulness and aptness of EUS
have been proved successfully [33]. But the main drawback
of EUSBoost is that it seeks perfect base learners that causes
diversity loss in the final output. EUSBoost training phase
is computationally more expensive than other methods. This
is due to EUS, which is executed in all iterations of Boosting.

5) SMOTEBoost: SMOTEBoost combines the oversam-
pling technique SMOTE with the AdaBoost algorithm, which
outperforms on both the SMOTE and AdaBoost algorithms
for learning from imbalanced data [34]. It acquires a balanced
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dataset by applying SMOTE in each round of iteration of the
boosting process [4].

This is an extremely potential sampling/boosting method
to learn from imbalanced data that outperform on both
for SMOTE and AdaBoost algorithms. Before building the
weak hypothesis during each round of iteration, a more
balanced training data set SMOTE is applied to the training
data. Hence, the algorithm for SMOTEBoost is analogous to
that of RUSBoost. At this point, the application of SMOTE
has two defects that RUSBoost is designed to overcome.
First, it enhances the complexity of the algorithm. SMOTE
must find the k nearest neighbors of the minority class
examples and have to make an educated guess between
them to make new instances. RUS, contrariwise, simply
eliminate the majority class instances indiscriminately.
Secondly, SMOTE requires an elongated time to train the
model, as it is an oversampling technique. When uses larger
training datasets, many models require to build for the
accurate output which produces elongated training time.
Whereas, shorter model training times will be required for
smaller training data sets [4]. However, this causes the
possibility of creating redundancy. If only the borderline
and noisy majority instances are removed then the selection
procedures try to find a representative subset of the majority
samples. As a result, the complexity of the algorithm is
increased and the training time of the model have prolonged
as well, which makes the algorithm more complex than RUS.

6) MSMOTEBoost: MSMOTEBoost combines MSMOTE
(Modified Synthetic Minority Over-sampling Technique) and
AdaBoost algorithm [7]. MSMOTE is the modified and
improved form of SMOTE method. MSMOTE categorizes
the minority class instances into three types depending on the
distances between the instances: border instances, security
instances and noisy instances [35]. By using the nearest
neighbors method MSMOTE algorithm generates synthetic
instances. The classification of MSMOTEBoost is more
accurate than SMOTEBoost for classifying minority class
instances [36]. MSMOTE generates synthetic samples by
calculating the space between each minority samples using
the nearest neighbor technique. MSMOTE Technique has
maintained the following strategy: firstly, the algorithm arbi-
trarily selects a data point from the nearest neighbor instances
for the security instances. After that, the nearest neighbor for
the border instances is selected and doesn’t perform anything
for latent noise instances. It is mandatory for this method
to compute the space among the instances of a negligible
class and all the instances in order to judge the samples
type. Security instances can improve the function of the
classifier. Whereas, Noisy instances reduce the performance
of a model and border instances are very hard to classify
for the model. The experimental analysis has proved that the
prediction accuracy of MSMOTE model is outperformed by
SMOTEBoost in case of negligible class [36].

7) DataBoost: The DataBoost-IM is an ensemble
classifier that amalgamates data creation and boosting
processes to achieve high classification accuracy to classify
both the majority and minority class instances without
omitting the majority and minority classes [17]. It built
with the following three phases. Step1, an equal weight
is assigned to each training instances. Here, the original

training set is applied to build the initial classifier. Step 2,
difficult instances are identified and for each of these core
instances, a set of artificial instances is created. Finally, in
Step 3, the artificial majority and minority class instances
are merged with the original training set to create a balanced
dataset.

8) EasyEnsemble: EasyEnsemble is to build classifiers
to lead the sampling process for subsequent classifiers and
to further utilize the majority class instances disregarded
by under-sampling [37]. It has the advantage of combining
boosting and bagging methods with data balancing method.
The core concept of EasyEnsemble is straightforward and
in some direction, it is analogous to the balanced Random
Forest algorithm [38]. The final output of this method is
an individual ensemble, though it acts like an ensemble
of ensembles. Diverse researches [39], [40], [41], [42]
amalgamate various ensemble techniques to attain stronger
generalization. MultiBoosting [40], [41] amalgamates
boosting and bagging [28] through applying boosted
ensembles as foundation learners. Different ensemble
strategies are combined to release a better solution like
Stochastic Gradient Boosting [43] and Cocktail Ensemble
[42].

9) BalanceCascade: BalanceCascade uses an under-
sampling process to combine weak classifiers [44]. In this
method, the sequential reliance among classifiers is pre-
dominantly utilized for lessening the duplicate information
in the majority class. It conducts instance space for the
under-sampling method to pursue proper knowledge [23].
To be successful in the rapid testing speed test usually the
balanced cascade classifier is an appropriate choice [37].
BalanceCascade omits the duplicate instances in the majority
class and confines instance difference to pursue convenient
knowledge. Both BalanceCascade and EasyEnsemble are
analogous to their structures. The most popular technique is
called stacking, [44] which combines weak classifiers with
EasyEnsemble and BalanceCascade.

EasyEnsemble and BalanceCascade both share a common
strategy where they intentionally enhance the weights of
the instances by adding higher misclassification cost at the
time of processing a boosting approach. Both classifiers
are designed to utilize the majority class instances which
are mostly ignored by under-sampling in keeping the pace
of training speed with high quality. They almost perform
alike by sampling multiple subsets of the majority class.
Training each of the subsets and finally combining all weak
classifiers as an output. As ensemble subsets comprise
more information than a single one, which makes both
algorithms much better uses of the majority class instead
of under-sampling. The same training times and the same
number of weak classifiers are used by both the classifiers.
The principal distinction is that BalanceCascade works with
trained classifiers for subsequent classifiers. On the other
hand, EasyEnsemble samples work with independent subsets.

10) OverBagging: OverBagging is the ensemble process
of combining over-sampling with bagging methods. It
randomly over-samples minority classes in each bagging
iteration. It uses majority-voting technique to classify new
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instances, as each classifier gives its decision and final
classification made by a majority of votes. If a tie appears,
then the class with minor instances are returned [36]. The
entire over-bagging method can be done in 3 steps from
its training phase to testing phase i.e. i) re-sampling, ii)
constructing ensemble and iii) voting. Because of multiple
minorities and majority class, it is very complicated to
choose the re-sampling rate. The output of the algorithm
shows that a variety of instances dominates recall value
notably. The larger diversity consequences excellent recall
for a minority whereas poor recall for majority classes.

11) UnderBagging: UnderBagging method uses a
random under-sampling technique of majority class
instances with bagging to build an ensemble classifier
[14]. It also considers majority voting of classifiers to
classify a new/ known instance. We may lose some valuable
informative majority class instances when randomly
sampling majority class instances. The core idea of this
method is to educate each of the single components of the
ensemble classifier with a balanced learning instance. By
replacing an individual classification model, (Here the 1-NN
rule) with an imbalanced training set, by an amalgamation
of various classifiers, each model uses a balanced training
set for its learning process. To earn this, as many training
sub-samples as possible to get balanced subsets are beget.
The number of sub-samples will be discovered by the
difference between the number of prototypes from the
majority class and that of the minority class. This workflow
makes it possible to properly handle the difficulties of the
imbalance and stays away from the implicit disadvantages
to both the over and under-sampling techniques.

12) SMOTEBagging: SMOTEBagging builds a model by
employing SMOTE with bagging methods to balance the
class distribution. It over-samples from the minority class
instances using SMOTE. In SMOTEBagging, we need to set
the size/ amount of over-sampling of minority class instances
and also the nearest-neighbors of instances [36]. SMOTE-
Bagging is differed from UnderBagging and OverBagging,
by involving in subset creation of synthetic instances. As
claimed by the SMOTE algorithm, at first the (k) nearest
neighbors and the volume of over-sampling from minority
class (N) should be set. Here N=100, 200, 300, 400 and
500 i.e K=5 nearest neighbours. The correlative class must
be reviewed at the time of all minority class ordination. An
example is illustrated below: assume that the minority class
X consists of 10 instances and the majority class Y consists
of 60 instances. To over-sample, both X and Y through the
same N value are applied so that the two classes are inner-
imbalanced. In SMOTEBagging, x% value is used to control
the instances from each class that is used for propagating
novel instances.

V. DATASET DESCRIPTION

A. Imbalanced Datasets

In this paper, we have considered 27 datasets from KEEL
dataset repository [9]. Table II and Table V gives an outline
of the features of the selected datasets.

TABLE II: Datasets description.(All are real world data)

Sl
No.

Dataset Fea
tures

Ins tan
ces

Imbalan
ced
Ratio

1 glass1 9 214 1.82
2 ecoli0 vs 1 7 220 1.86
3 wisconsin 9 683 1.86
4 pima 8 768 1.87
5 iris0 4 150 2
6 glass0 9 214 2.06
7 yeast1 8 1484 2.46
8 haberman 3 306 2.78
9 vehicle2 18 846 2.88
10 vehicle1 18 846 2.9
11 vehicle3 18 846 2.99
12 glass0123 vs 456 9 214 3.2
13 vehicle0 18 846 1.82
14 ecoli1 7 336 1.82
15 new-thyroid1 5 215 1.82
16 new-thyroid2 5 215 1.82
17 ecoli2 7 336 1.82
18 segment0 19 2308 1.82
19 glass6 9 214 1.82
20 yeast3 8 1484 1.82
21 ecoli3 7 336 1.82
22 page-blocks0 10 5472 1.82
23 yeast-2 vs 4 8 514 9.08
24 glass-0-1-6 vs 2 9 192 10.29
25 vowel0 13 988 10.10
26 yeast-0-5-6-7-

9 vs 4
8 528 9.35

27 ecoli-0-1-3-
7 vs 2-6

7 281 39.15

B. Algorithm Parameters

We have used the following parameters for our experi-
ments:
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TABLE III: Input Parameters for the experiment

Sl
No.

Parameters Value Sl
No.

Parameters Value

1. pruned TRUE 9 Classification rate by algo-
rithm and fold

YES

2. InstancesPerLeaf 2 10 Header size in previous ta-
ble

2

3. Number of classes 2 11 Data used in previous table TEST-TRAIN
4. Folds 5 12 imbalanced Measure Area Under the ROCCurve

(AUROC)
5. K Value 3 13 imbalanced Measure Area Under the ROCCurve

(AUROC)
6. Distance Function Euclidean 14 OS used for this experi-

ments:
Linux and Mac OS

7. Train Method NORESAMPLING 15 CPU speed for this experi-
ment.

2.5 GHz

8. dataformat keel

TABLE IV: Strengths and weaknesses of 12 algorithms.

Sl
No.

Algorithm Strengths Weaknesses

1 SMOTE The classifiers are very much unique and com-
putationally simple [4].

It is a perplexed and prolonged procedure.

2 AdaBoost Prediction accuracy improve in case of minority
data set and resolve the multi class imbalanced
data set problem [7]

Ignore overall performance of the classifier.

3 RUSBoost Simpler, easier, faster and less complex algo-
rithm. RUS has been operated skilfully and
swiftly [45].

The major handicap of this model is that im-
portant data can be destroyed.

4 EUSBoost Easier, quicker and outperformed in highly im-
balanced datasets.

Computationally more expensive than that of
the other methods [32].

5 SMOTEBoost This method is a perfect selection when the
training instance size is excessively huge [4].

The possibility of creating redundancy. Besides
more complex and prolonged than RUS.

6 DataBoost Produce high accuracies of both classes (minor-
ity and majority) [17].

The use of many classifiers makes them more
complex and produces output that is very hard
to analyze

7 MSMOTE
Boost

This method has better prediction accuracy [46]. Time-consuming and perplexing task.

8 Easy Ensem-
ble

Reduce information loss. Faster training speed
of undersampling [4].

Examining only binary classification problems
[37].

9 Balance Cas-
cade

Reduces the rate of creating duplicate informa-
tion. Most popular method is stacking [44] .

Performance standard reduces in multi class.

10 Over Bagging Performed masterly both in the binary and
multi-class data set

Performance standard degrades in minority
class [36].

11 Under
Bagging

This procedure makes it possible to properly
handle the difficulties of both the over and
undersampling techniques [14].

When the experimental data size is not large the
performance may be deteriorated.

12 SMOTE Bag-
ging

Increased accuracy level [14]. Biased in favor of the majority class on high-
dimensional data
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TABLE V: Datasets detail description (Cont.)

Sl
No.

Name Attributes Class

1. glass0, glass1, glass01-
23 vs 456, glass6 and
glass-0-1-6 vs 2.

RI, Na, Mg, Al, Si, K, Ca, Ba and Fe. Positive and Negative.

2. ecoli1, ecoli2, ecoli3,
ecoli0 vs 1 and ecoli-0-
1-3-7 vs 2-6.

Gvh, Lip, Chg, Aac, Alm1 and Alm2. Positive and Negative.

3. wisconsin ClumpThickness, CellSize, CellShape, MarginalAdhesion,
EpithelialSize, BareNuclei, BlandChromatin, NormalNucleoli
and Mitoses.

Positive and Negative.

4. pima Preg, Plas, Pres, Skin, Insu, Mass, Pedi and Age. Positive and Negative.

5. iris0 SepalLength, SepalWidth, PetalLength and PetalWidth. Positive and Negative.

6. yeast1, yeast3, yeast-
2 vs 4 and yeast-0-5-6-
7-9 vs 4.

Mcg, Gvh, Alm, Mit, Erl, Pox, Vac and Nuc. Positive and Negative.

7. haberman Age and Year. Positive and Negative.
8. vehicle1, vehicle2, vehi-

cle3
Compactness, Circularity, Distance circularity, Radius ratio,
Praxis aspect ratio, Max length aspect ratio, Scatter ratio,
Elongatedness, Praxis rectangular, Length rectangular,
Major variance, Minor variance, Gyration radius,
Major skewness, Minor skewness, Minor kurtosis,
Major kurtosis and Hollows ratio.

Positive and Negative.

9. new-thyroid1 and new-
thyroid2

T3resin, Thyroxin, Triiodothyronine, Thyroidstimulating and
TSH value.

Positive and Negative.

10. segment 0 Region-centroid-col, Region-centroid-row, Region-pixel-
count, Short-line-density-5, Short-line-density-2, Vedge-
mean, Vegde-sd, Hedge-mean, Hedge-sd, Intensity-mean,
Rawred-mean, Rawblue-mean, Rawgreen-mean, Exred-mean,
Exblue-mean, Exgreen-mean, Value-mean, Saturatoin-mean
and Hue-mean.

Positive and Negative.

11. page-blocks0 Height, Lenght, Area, Eccen, P black, P and, Mean tr,
Blackpix, Blackand and Wb trans.

Positive and Negative.

12. Vowel 0 TT, SpeakerNumber, Sex, F0, F1, F2, F3, F4, F5, F6, F7, F8,
F9.

Positive and Negative.
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VI. EXPERIMENTAL RESULTS

TABLE VI: The AUC comparison of SMOTE, AdaBoost, RUSBoost, SMOTEBoost, EUSBoost, DataBoost, MSMOTEBoost,
Over-Bagging, EasyEnsemble, BalanceCascade, Under-Bagging, SMOTEBagging on 27 imbalanced datasets.

Dataset SMOTE Ada
Boost

RUS
Boost

SMOTE
Boost

EUS
Boost

Data
Boost

MSMOTE
Boost

Over
Bagging

Easy
Ensem-
ble

Balance
Cascade

Under
Bagging

SMOTE
Bag-
ging

glass1 0.992 0.809 0.77 0.783 0.783 0.7 0.762 0.77 0.77 0.847 0.754 0.744
ecoli-
0 vs 1

1 0.969 0.976 0.972 0.962 0.94 0.969 0.979 0.941 0.941 0.979 0.979

wisconsin 0.955 0.961 0.956 0.965 0.944 0.960 0.939 0.98 0.989 0.99 0.961 0.967
pima 0.731 0.689 0.739 0.729 0.7 0.711 0.734 0.712 0.718 0.881 0.76 0.749
iris0 1 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.96
glass0 0.875 0.823 0.852 0.823 0.845 0.835 0.828 0.837 0.817 0.817 0.841 0.816
yeast1 0.769 0.652 0.704 0.712 0.688 0.699 0.709 0.707 0.689 0.677 0.723 0.694
haberman 0.741 0.581 0.629 0.614 0.554 0.561 0.628 0.598 0.639 0.636 0.664 0.666
vehicle2 0.968 0.966 0.972 0.981 0.971 0.966 0.947 0.960 0.952 0.952 0.961 0.967
vehicle1 0.753 0.7 0.743 0.752 0.79 0.966 0.728 0.708 0.712 0.712 0.766 0.746
vehicle3 0.755 0.681 0.764 0.744 0.722 0.691 0.738 0.720 0.728 0.728 0.791 0.791
glass-
012-
3 vs 4-
56

0.953 0.877 0.879 0.918 0.914 0.897 0.918 0.884 0.901 0.901 0.888 0.909

vehicle0 0.959 0.931 0.958 0.976 0.922 0.944 0.939 0.949 0.929 0.929 0.952 0.947
ecoli1 0.961 0.822 0.912 0.847 0.898 0.806 0.892 0.867 0.882 0.882 0.899 0.904
new-
thyroid1

0.986 0.931 0.932 0.988 0.96 0.957 0.988 0.954 0.955 0.955 0.966 0.977

new-
thyroid2

0.972 0.954 0.918 0.971 0.935 0.957 0.948 0.934 0.946 0.954 0.954 0.969

ecoli2 0.964 0.851 0.865 0.909 0.928 0.808 0.909 0.871 0.867 0.867 0.898 0.914
segment0 0.997 0.99 0.991 0.993 0.991 0.991 0.991 0.990 0.985 0.987 0.985 0.982
glass6 0.986 0.849 0.909 0.855 0.906 0.841 0.922 0.883 0.893 0.893 0.890 0.911
yeast3 0.918 0.840 0.916 0.887 0.885 0.897 0.914 0.897 0.907 0.907 0.932 0.934
ecoli3 0.95 0.716 0.871 0.858 0.881 0.812 0.856 0.743 0.801 0.841 0.880 0.870
page-
blocks0

0.964 0.930 0.947 0.939 0.902 0.874 0.989 0.936 0.953 0.956 0.956 0.955

yeast-
2 vs 4

0.91 0.889 0.965 0.86 0.905 0.866 0.848 0.861 0.886 0.886 0.954 0.882

glass01-
6 vs 2

0.782 0.588 0.679 0.632 0.785 0.649 0.601 0.582 0.611 0.625 0.678 0.672

vowel0 0.971 0.97 0.957 0.969 0.9854 0.97 0.943 0.951 0.947 0.947 0.946 0.971
yeast-
0567-
9 vs 4

0.817 0.645 0.845 0.781 0.757 0.737 0.765 0.715 0.751 0.751 0.788 0.802

ecoli-
013-
7 vs 26

0.731 0.648 0.83 0.831 0.804 0.548 0.844 0.74 0.817 0.817 0.802 0.828
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Fig. 2: The comparison among classifiers (AUROC value) for imbalanced data classification.

Fig. 3: The comparison among classifiers (G-mean value) for imbalanced data classification.
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TABLE VII: The G-mean comparison of SMOTE, AdaBoost, RUSBoost, SMOTEBoost, EUSBoost, DataBoost, MSMOTE-
Boost, Over-Bagging, EasyEnsemble, BalanceCascade, Under-Bagging, SMOTEBagging on 27 imbalanced datasets.

Dataset SMOTE Ada
Boost

RUS
Boost

SMOTE
Boost

EUS
Boost

Data
Boost

MSMOTE
Boost

Over
Bag-
ging

Easy
Ensem-
ble

Balance
Cascade

Under
Bagging

SMOTE
Bag-
ging

glass1 0.992 0.8006 0.77 0.784 0.788 0.794 0.787 0.743 0.743 0.743 0.751 0.740
ecoli-
0 vs 1

0.999 0.976 0.976 0.7764 0.961 0.94 0.969 0.979 0.940 0.940 0.76 0.76

wisconsin 0.955 0.960 0.955 0.964 0.962 0.959 0.939 0.955 0.946 0.949 0.961 0.967
pima 0.74 0.675 0.739 0.711 0.716 0.705 0.732 0.703 0.715 0.7312 0.784 0.748
iris0 1 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.958
glass0 0.881 0.819 0.852 0.817 0.842 0.835 0.823 0.834 0.815 0.815 0.837 0.812
yeast1 0.771 0.621 0.698 0.586 0.688 0.693 0.707 0.698 0.687 0.671 0.721 0.682
haberman 0.732 0.438 0.617 0.609 0.300 0.3488 0.623 0.577 0.635 0.630 0.660 0.666
vehicle2 0.972 0.965 0.972 0.962 0.957 0.966 0.788 0.959 0.952 0.952 0.960 0.955
vehicle1 0.776 0.679 0.740 0.747 0.787 0.962 0.728 0.697 0.707 0.709 0.766 0.743
vehicle3 0.76 0.648 0.762 0.739 0.524 0.671 0.737 0.704 0.693 0.758 0.786 0.7866
glass-
012-
3 vs 4-
56

0.977 0.868 0.876 0.916 0.912 0.901 0.916
0.878

0.899 0.899 0.885 0.906

vehicle0 0.969 0.931 0.958 0.975 0.944 0.943 0.939 0.949 0.928 0.928 0.951 0.947
ecoli1 0.961 0.796 0.912 0.843 0.896 0.81 0.891 0.865 0.882 0.882 0.895 0.905
new-
thyroid1

0.986 0.928 0.930 0.988 0.959 0.954 0.988 0.951 0.953 0.953 0.965 0.976

new-
thyroid2

0.972 0.952 0.917 0.971 0.934 0.954 0.947 0.931 0.945 0.954 0.954 0.968

ecoli2 0.97 0.84 0.861 0.907 0.926 808 0.908 0.866 0.822 0.865 0.897 0.912
segment0 0.997 0.989 0.991 0.993 0.991 0.991 0.991 0.993 0.985 0.987 0.985 0.982
glass6 0.986 0.836 0.908 0.841 0.824 0.845 0.991 0.993 0.985 0.987 0.984 0.981
yeast3 0.918 0.83 0.915 0.884 0.944 0.869 0.913 0.893 0.907 0.907 0.932 0.934
ecoli3 0.95 0.928 0.946 0.938 0.812 0.812 0.951 0.935 0.953 0.955 0.938 0.955
page-
blocks0

0.964 0.657 0.869 0.851 0.878 0.792 0.853 0.698 0.832 0.799 0.874 0.868

yeast-
2 vs 4

0.9 0.906 0.912 0.8528 0.9034 0.8592 0.8374 0.853 0.8824 0.8824 0.953 0.9214

glass-
0-1-
6 vs 2

0.785 0.4198 0.6668 0.5004 0.7762 0.51 0.4556 0.4184 0.574 0.5962 0.6654 0.5858

vowel0 0.97 0.968 0.9554 0.9692 0.9454 0.968 0.9404 0.9482 0.9454 0.9458 0.944 0.9704
yeast-0-
5-6-7-
9 vs 4

0.82 0.5538 0.842 0.7626 0.754 0.6954 0.7418 0.6688 0.7452 0.7452 0.7856 0.7958

ecoli-
0-1-3-
7 vs 2-
6

0.731 0.34 0.809 0.726 0.6942 0.14 0.736 0.5338 0.7934 0.7934 0.7748 0.7192
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TABLE VIII: The F-measure comparison of SMOTE, AdaBoost, RUSBoost, SMOTEBoost, EUSBoost, DataBoost,
MSMOTEBoost, Over-Bagging, EasyEnsemble, BalanceCascade, Under-Bagging, SMOTEBagging on 27 imbalanced
datasets.

Dataset SMOTE Ada
Boost

RUS
Boost

SMOTE
Boost

EUS
Boost

Data
Boost

MSMOTE
Boost

Over
Bag-
ging

Easy
Ensem-
ble

Balance
Cascade

Under
Bagging

SMOTE
Bag-
ging

glass1 0.901 0.753 0.706 0.722 0.723 0.729 0.733 0.687 0.681 0.681 0.691 0.677
ecoli-
0 vs 1

0.98 0.954 0.967 0.722 0.944 0.94 0.955 0.973 0.909 0.909 0.691 0.717

wisconsin 0.89 0.945 0.939 0.950 0.948 0.947 0.919 0.939 0.931 0.931 0.941 0.952
pima 0.7 0.588 0.663 0.646 0.651 0.624 0.659 0.622 0.640 0.642 0.688 0.674
iris0 1 0.989 0.9896 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.956
glass0 0.852 0.630 0.785 0.752 0.780 0.802 0.749 0.776 0.740 0.740 0.771 0.743
yeast1 0.722 0.499 0.578 0.589 0.6 0.572 0.584 0.583 0.561 0.566 0.603 0.566
haberman 0.699 0.399 0.460 0.451 0.353 0.422 0.471 0.417 0.483 0.698 0.510 0.510
vehicle2 0.955 0.949 0.948 0.941 0.942 0.943 0.906 0.934 0.910 0.910 0.920 0.948
vehicle1 0.722 0.556 0.593 0.618 0.645 0.951 0.605 0.563 0.554 0.554 0.613 0.607
vehicle3 0.711 0.524 0.619 0.601 0.638 0.534 0.585 0.583 0.6006 0.57 0.637 0.637
glass-
012-
3 vs 4-
56

0.91 0.835 0.805 0.872 0.847 0.867 0.872 0.840 0.829 0.829 0.808 0.849

vehicle0 0.92 0.892 0.906 0.946 0.866 0.906 0.872 0.911 0.842 0.842 0.876 0.883
ecoli1 0.933 0.750 0.806 0.755 0.799 0.833 0.802 0.780 0.778 0.668 0.777 0.787
new-
thyroid1

0.988 0.884 0.847 0.946 0.874 0.951 0.946 0.937 0.862 0.862 0.899 0.946

new-
thyroid2

0.977 0.940 0.810 0.922 0.833 0.951 0.915 0.898 0.863 0.899 0.896 0.911

ecoli2 0.95 0.765 0.699 0.814 0.778 0.722 0.814 0.773 0.697 0.655 0.755 0.778
segment0 0.905 0.986 0.966 0.984 0.99 0.984 0.981 0.984 0.940 0.951 0.939 0.969
glass6 0.955 0.774 0.749 0.772 0.782 0.755 0.859 0.790 0.689 0.689 0.693 0.809
yeast3 0.85 0.712 0.693 0.749 0.752 0.748 0.760 0.762 0.686 0.686 0.743 0.778
ecoli3 0.82 0.874 0.797 0.845 0.856 0.759 0.863 0.860 0.804 0.8008 0.845 0.839
page-
blocks0

0.912 0.548 0.567 0.632 0.603 0.611 0.631 0.521 0.519 0.481 0.537 0.601

yeast-
2 vs 4

0.81 0.815 0.713 0.706 0.671 0.754 0.679 0.709 0.662 0.662 0.716 0.720

glass-
0-1-
6 vs 2

0.682 0.333 0.273 0.404 0.383 0.488 0.317 0.317 0.206 0.219 0.270 0.404

vowel0 0.771 0.951 0.847 0.906 0.810 0.951 0.882 0.908 0.774 0.777 0.766 0.918
yeast-0-
5-6-7-
9 vs 4

0.717 0.370 0.536 0.542 0.405 0.505 0.515 0.477 0.368 0.368 0.421 0.468

ecoli-
0-1-3-
7 vs 2-
6

0.631 0.75 0.141 0.444 0.388 0.283 0.741 0.869 0.128 0.128 0.194 0.45
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Fig. 4: The comparison among classifiers (F-measure) for imbalanced data classification.

Fig. 5: The comparison among classifiers (Execution-time) for imbalanced data classification.
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TABLE IX: The Processing speed i.e. the Execution Time (second) of SMOTE, AdaBoost, RUSBoost, SMOTEBoost,
EUSBoost, DataBoost, MSMOTEBoost, Over-Bagging, EasyEnsemble, BalanceCascade, Under-Bagging, SMOTEBagging
on 27 imbalanced datasets.

Dataset
SMOTE Ada

Boost
RUS
Boost

SMOTE
Boost

EUS
Boost

Data
Boost

MSMOTE
Boost

Over
Bag-
ging

Easy
Ensem-
ble

Balance
Cascade

Under
Bagging

SMOTE
Bag-
ging

glass1 0.02 0.80 1.12 2.47 36.57 16.04 1.91 1.46 0.60 0.61 1.50 1.58
ecoli-
0 vs 1

0.14 0.59 0.36 1.14 12.76 14.0 0.88 0.39 0.90 0.43 0.65 0.76

wisconsin 0.07 1.42 1.64 3.49 5:40.51 3.37 4.77 2.89 0.94 1.16 1.79 2.31
pima 0.09 1.75 2.40 4.84 6:42.64 7.18 5.41 3.47 1.42 1.41 2.16 3.32
iris0 0.12 0.37 0.25 0.25 1.88 0.25 0.25 0.24 0.24 0.27 0.15 0.24
glass0 0.01 0.78 0.81 1.83 40.7

5:30.76
1.84 1.447 0.65 0.61 0.94 1.28

yeast1 0.23 4.14 3.83 10.2 19:55.82 29.26 14.9 8.09 3.70 4.21 3.33 6.29
haberman 0.02 0.52 0.63 1.39 29.3 1.48 1.17 1.55 0.89 0.79 0.52 0.96
vehicle2 0.19 2.25 2.49 9.83

8:33.50
10.59 13.07 6.80 1.31 1.35 2.97 6.10

vehicle1 0.16 2.55 3.33 10.06 8:15.48 9.87 11.87 7.36 1.35 1.38 3.08 5.87
vehicle3 0.19 2.46 3.11 10.36 0.762 27.2 12.23 8.48 1.44 1.63 3.31 2.89
glass-
012-
3 vs 4-
56

0.01 0.49 0.50 2.31 17.85 2.44 2.08 1.04 0.36 0.37 0.61 1.23

vehicle0 0.14 2.08 2.52 8.62
15:22.81

21.95 12.44 5.61 1.19 1.18 2.49 5.46

ecoli1 0.02 0.504 0.74 2.04
2:34.58

2.23 1.62 0.75 0.48 0.71 1.47

new-
thyroid1

0.01 0.34 0.20 1.48 4.98 0.83 1.39 0.57 0.25 0.25 0.24 1.17

new-
thyroid2

0.01 0.30 0.18 1.64 4.08 0.82 0.98 0.50 0.22 0.21 0.19 0.66

ecoli2 0.01 0.53 0.43 2.34 23.6 2.43 1.71 0.43 0.36 0.57 1.614
segment0 0.58 6.53 3.94 25.6 40.2 3:16.28 22.5 2.79 2.73 4.70 23.6
glass6 0.01 0.51 0.34 2.47 9.34 2.86 2.06 1.09 0.29 0.30 0.34 1.55
yeast3 0.11 2.33 1.54 11.6 7:12.56

5:42.67
16.4 7.78 1.06 1.01 1.43 7.17

ecoli3 0.02 0.65 0.52 2.48 22.4 14.7 2.54 1.82 0.39 0.37 5.22 1.69
page-
blocks0

1.53 27.9 5.76 1:20.76 71.5 2:57.31
1:35.86

12.6 13.0 5.036 40.3

yeast-
2 vs 4

0.0346 1:23:88 1:1.78 5.9974 1:1.0876 24.3274 4.639 2.6286 0.4326 0.5346 1:8.02 3.0108

glass-
0-1-
6 vs 2

0.0088 0.5302 0.339 3.14 13.1314 8.3452 2.0932 1.4462 0.2984 0.3358 0.5076 1.748

vowel0 0.0938 1.2344 1.2376 10.5064 2:50.21 6.1576 6.892 1.6404 1.4578 0.7336 1.2776 7.9642
yeast-0-
5-6-7-
9 vs 4

0.0262 1.591 0.7512 4.469 56.5524 34.8614 5.0538 3.4094 0.4764 0.6704 0.7926 3.1722

ecoli-
0-1-3-
7 vs 2-
6

0.01 0.4786 0.1468 2.2808 6.2428 4.3724 2.3444 1.6222 0.185 0.2336 0.1646 1.7924
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Fig. 6: AUCROC line charts of algorithms and datasets (Randomly given 4 out of 27 : PIMA, ecoli2, ecoli3, glass01).
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VII. RESULTS

We have tested the performance of 12 machine learning
algorithms for imbalanced data classification using the Area
Under Curve (AUC) with 5-fold cross-validation. The ex-
perimental results are tabulated in Table VI (in terms of
ROC) and in Table IX (in terms of processing speed). Also
in the table VII and VIII we present the experiment result
of other two popular performance measure of imbalance
data set such as G-mean and F-measure. Fig. 2, 3, 4 and 5
shows the comparison of the 12 classifiers using difference
performance evaluator such as AUC, G-mean and F-measure
and execution speed of the classifiers on 27 imbalanced
datasets respectively. In all cases, we can see based on
performance measures and processing speed of the classifiers
in spite of being a single classifier SMOTE performs best
compare with other ensemble classifiers.

VIII. CONCLUSION

In the last decade, several machine learning methods have
been proposed for dealing with class imbalanced datasets
to improve the performance of classifiers for classifying
minority class instances. In this paper, we have reviewed
some machine learning algorithms for imbalanced data clas-
sification. We have tested the performances of 12 imbalanced
data classification methods: SMOTE, AdaBoost, RUSBoost,
EUSBoost, SMOTEBoost, MSMOTEBoost, DataBoost, Easy
Ensemble, BalanceCascade, OverBagging, UnderBagging,
SMOTEBagging on 27 datasets from the KEEL Repository
[9] with a high imbalanced ratio. The experimental results
sum up that SMOTE has performed better in most datasets
in comparison with ensemble classifiers. On the other hand,
ensemble classifiers are more complicated to implement and
understood. In general, a combination of both over-sampling
and under-sampling techniques with ensemble classifier such
as bagging and boosting achieve the highest accuracy for
classifying both majority and minority class instances. In
future work, we will apply these imbalanced data classi-
fication methods in real-life high-dimensional imbalanced
big data and apply sampling techniques with RandomForest
algorithm. In Table IV we represent the common strengths
or weaknesses based on the experimental results of our
mentioned algorithm with some differences.
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