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This paper investigates the growth of the most massive cosmological objects. We utilize the Simsilun
simulation, which is based on the approximation of the silent universe. In the limit of spatial homogeneity
and isotropy, the silent universes reduce to the standard Friedmann-Lemaitre-Robertson-Walker models.
We show that within the approximation of the silent universe the formation of the most massive
cosmological objects differs from the standard background-dependent approaches. For objects with masses
above 10'> M, the effect of spatial curvature (overdense regions are characterized by positive spatial
curvature) leads to measurable effects. The effect is analogous to the effect that the background
cosmological model has on the formation of these objects (i.e., the higher the matter density and spatial
curvature, the faster the growth of cosmic structures). We measure this by means of the mass function and
show that the mass function obtained from the Simsilun simulation has a higher amplitude at the high-mass
end compared to a standard mass function such as the Press-Schechter or the Tinker mass function. For
comparison, we find that the expected mass of most massive objects using the Tinker mass function is

44708 % 10" M, whereas for the Simsilun simulation it is 6.37}¢ x 10> M.
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I. INTRODUCTION

Observations of the most massive cosmological objects
can be used as a probe for cosmology. Most often, the number
of these objects and their masses is used to constrain the
properties of the dark sector or the Gaussianity of primordial
fluctuations. In this paper we investigate an environment
dependence of the growth rate of the most massive clusters.
It is already known that the growth of structure depends on
the background cosmological model—cosmological models
with higher matter density and positive spatial curvature
exhibit a much faster growth rate of cosmic structure than
models with low matter density and negative spatial curva-
ture. Here we investigate whether a sufficiently large cosmic
region with positive spatial curvature (necessary for the
overdensity to reach a turnaround) could exhibit a faster
growth in a similar fashion as the positively curved (globally)
cosmological model. For this purpose we utilize the frame-
work of a silent universe [1-4] and we use the Simsilun
simulation [5]. One of the advantages of our approach is that,
unlike in the perturbation schemes or most of the N-body
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simulations, the cosmological background enters our calcu-
lations only at the level of initial conditions. This allows us to
trace the evolution of the gravitational instability in the far
nonlinear regime without setting any background by hand.
We then focus on the observable quantity, in our case
the mass of cosmic structures. We derive predictions as
to the expected number of most massive cosmic objects.
The structure of this paper is as follows: Sec. II describes the
methods, including the calculations of the mass functions
within the Simsilun simulations; Sec. III presents the
predictions for the most massive objects both at high and
low redshifts; Sec. IV concludes the results and discusses
the possibility of using the most massive cosmic objects to
test and investigate the environment dependence of the
growth rate of the most massive clusters.

II. METHODS

A. Nonlinear relativistic evolution:
The silent universe approach

Assuming that the source of the gravitational field is
pressureless and nonrotating dust, and in addition neglect-
ing heat and the magnetic part of the Weyl tensor, then the
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Einstein evolution equations within the 1 + 3 split can be
reduced to only 4 scalar equations for density p, expansion
rate ©, shear X, and the Weyl curvature W [6,7]. The
evolution equations are [3,4]

p=-pO, (1)
®:—1®2—1Kp—622+/\, (2)
3 2
i:—§®z+zz—w, (3)
W =-ew - %sz —3IW, (4)

where x = 87G/c*. Apart from these equations, one also
needs to satisfy the spatial constraints. However, the spatial
constraints need only be satisfied at the initial instant, as
they are conserved by the above evolution equations [4,8].
Setting up the initial condition is thus an important and
nontrivial task. Here we follow the procedure of setting up
the initial conditions in the early Universe when the
assumption of the Einstein—de Sitter evolution and linear
perturbation is expected to work well.

Within the linear approximations, i.e., p — p(1 +§),
where 6 is the density contrast, the solutions of (3) and (4)
are

2 -
W = akpé and 2:—§a®5,

where a is an arbitrary constant.

The spatially homogeneous and isotropic Friedmann-
Lematitre-Robertson-Walker (FLRW) models are confor-
mally flat and shear free, and in this case @ = 0. Setting up
a = O reduces the above equations to the FLRW evolutions,
where different values of ¢ lead to different FLRW models
with different parameter Q (where Q = p/p). For the exact
silent models such as the Lemaitre-Tolman or Szekeres
models, the Weyl curvature is W = —«(p — p,)/6, where
pg 1s a quasilocal average and kp, = 6M/R® [59].
If p, were equal to p, then the constant & would be a =
a, = —1/6. For a sufficiently large domain and negligible
spatial curvature, this indeed can be the case. However,
for the formation of local overdensities, i.e., locally in the
vicinity of density peaks, this may no longer hold. In the
vicinity of density peaks, a more accurate approximation, as
verified by direct numerical calculations, is & = (1/3)a, =
—1/18. Thus, the initial conditions for our simulations are

pi=p+Ap=p(l+35), (5)
) _ 1
@,-:G)+A®:®<1—§5i>, (6)
s = L os (7)
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where p and © are the background density and expansion
rate, and §; is the initial density contrast.

B. The mass function

The expected number of objects at a given redshift and in
a given mass range can be inferred from the mass function

max d V Mmax d
™4 am

Zd—z Mmin m’

N = 9)

Zmin

where V is the volume; and 7 is the mass function, which is
often written in terms of the multiplicity function f,

dn py Olnoy)
Y AT

(10)

where o), is the variance of the density field smoothed at
scale M, p, is matter density, and M is the mass.

In a generic case the multiplicity function f is not an
analytic function. There are only very limited cases where
the function f has an analytic form, such as in the approach
proposed by Press and Schechter [10] or Seth and Tormen
[11]. The Press-Schechter approach assumes the density
field to have a Gaussian distribution and in addition
assumes that an object of mass M is collapsed if the
present-day linear density contrast §; is larger than a fixed
threshold o,.. In the general case, the nonlinear growth
breaks the Gaussianity, i.e., the present-day distribution of
density contrasts is no longer Gaussian but instead is much
better approximated with the log-normal distribution [12].
Similarly, a fixed (and independent of environment) thresh-
old &, is also a crude approximation. The Sheth-Tormen
approach is based on the investigation of the ellipsoidal
collapse and using the excursion set model of hierarchical
clustering. Thus, the number of cases where one can derive
a mass function that can be put in an analytic form is
limited. Still an analytic form is useful, and in the literature
one can find a number of different parametrizations. These
parametrizations are then fitted to the results of numerical
simulations. The discrepancy in the amplitude of the mass
function between different fits and parametrizations are of
order of 10%-20% for masses up to 10> M, and then up
to a factor of 2 for masses between 10> M and 106 M,
[13,14]. As it is shown in Sec. IIC, such a level of
differences between various parametrizations is small
compared to the deviation between these fits and the mass
function obtained from the Simsilun simulation. Thus, in
this paper we only consider one form of a mass function,
1.e., the Tinker mass function [15]

124036-2



ENVIRONMENT DEPENDENCE OF THE GROWTH OF THE MOST ...

PHYS. REV. D 99, 124036 (2019)

s ()

A= (0.1log A —0.05)(1 + z)™014,
a= (143 + (log A —2.3)')(1 + z)700,
b= (1.0+ (logA —1.6)""9)(1 + z)°,
loga — _[ 0.75 } 1~2’
log(A/75)
B=1.0,
c = 1.2(log A —2.35)'6,

where

(12)

For high density thresholds A, such as for A > 1600, the
parameter A = 0.26(1 + z)~%!%. For comparison, the Press-
Schechter function is recovered when A = \/2/—77 a=1,
b =35, c=2062/2, B=0, and the Sheth-Tormen function
when A =0.2162, B=1, a=-0.6, b=0.84086,,
¢ = 0.353552.

C. The mass function of the Simsilun simulation

The measurements of the mass function are a useful tool
that gives insight into cosmological properties of our
Universe, such as the Gaussianity of initial conditions or
the growth of cosmic structures that may be sensitive to the
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FIG. 1. Mass function at the present-day instant: the upper blue

line shows the mass function evaluated within the Simsilun
simulation; the lower red line shows the Press-Schechter mass
function; the dashed green line presents the Tinker mass function;
the dotted purple line presents the Sheth-Tormen mass function.

properties of the dark sector or departures from the standard
Einsteinian gravity. Thus in order to take full advantage of
this method we need to fully understand and appreciate the
nonlinear evolution of cosmic structures. Here, we infer the
mass function using a similar approach presented in [10].
We first generate the initial density field with the variance
given by

1

— [T dkk2P(k)W (kR).
2w 0

(13)

2
Oy =

where R is the radius of the object of mass M, i.e.,
M = (4/3)zaR%p); the window function W is W(kR) =
3(sin kR — kR cos kR)(kR)~3; and P(k) is the matter power
spectrum P (k) = T(k)?>D(z)*P;, where P; is the primordial
power spectrum. The function D(z) is the growth factor.
The function 7'(k) is the transfer function and is evaluated
using the parametrization in [16].

The cosmological parameters used to evaluate the initial
conditions are based on [17] and read h = 0.6781, Q,h? =
0.02226, Q h* =0.1186, Q, = 0.694, n = 0.9681, and
og = 0.815.

We then evolve the set of initial conditions (smoothed on
different scales) using the silent equations (1)—(4). Then, at
a given time, we count the ratio of collapsed objects to
the total number of numerically generated domains to
obtain the cumulative distribution and consequently the
mass function. The collapse condition 6 > A can vary

Simsilun
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FIG. 2. Evolution of the mass function at z = 0, 1, and 2. The
solid line shows the mass functions evaluated using the Simsilun
simulation, and for comparison the dashed line shows the Tinker
mass function.
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FIG. 3.  Volume covered by the full-sky and ACT-like surveys
(solid red lines). For comparison the volumes needed to observe
at least one object evaluated using the Simsilun (upper panel) and
Tinker (lower panel) mass functions are also presented. The
shaded region corresponds to the mass range of 1.77 £ 0.21 x
10" M, (the density threshold A is set to 200 with respect to the
critical density, i.e., M»g.).

(where 6 is the density contrast with respect to the back-
ground density and A is the density contrast of the
collapsed object). This condition can be fixed freely;
e.g., for Figs. 1 and 2 we use A = oo (i.e., we stop just
before the collapse is reached). This choice has been made
to have a meaningful comparison with the Press-Schechter
approach. However, for Figs. 3 and 4 we use A = 200 with
respect to the background critical density; this was done in
order to have a meaningful comparison with the measure-
ments obtained by the Atacama Cosmology Telescope. For
Fig. 5 we use A = 200 but with respect to the background
matter density, which has been done in order to have a
direct comparison with the results obtained by [18] (cf. their
Fig. 1). Once the threshold is reached we stop the evolution.
If we were to continue evolving past the threshold, then the
region would have collapsed to a point. A typical timescale
for A =200, from passing the threshold to reaching the
final stage of the collapse, is approximately 100 Myr.
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FIG. 4. Expected number of objects observed within an ACT-
like survey (455 deg?). The number corresponds to an expected
number of objects with redshift at least z and masses above
1.77 £ 0.21 x 10" M. The upper panel presents the expected
number evaluated using the Simsilun mass function and the lower
panel shows the expected number inferred from the Tinker mass
function.

Figure 1 shows the mass function obtained as described
above. The mass function is evaluated at the present-day
instant (i.e., z = 0). For comparison, the Tinker mass
function is also presented. The procedure of evaluating
the mass function is similar to the procedure implemented
by Press and Schechter, where the evolution of over-
densities and their collapse is modeled with a homogeneous
top-hat model. In fact, if we set £ = 0, VW = 0 (which is
equivalent to the FLRW evolution), and A = 1.69, we
recover the Press-Schechter mass function, which is also
presented in Fig. 1.

This approach has several limitations: it does not include
such effects as the baryonic feedback, cloud-in-cloud
problem, and the scale-dependent bias [19]. In addition
since the Press-Schechter procedure does not allow for
halos to merge, the approach implemented within the
Simsilun simulation also does not account for mergers.
Thus, unlike in the real Universe, or as observed within
the N-body simulations, small halos do not merge, which
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FIG. 5. Predictions for the most massive object in the Universe
obtained using the Simsilun mass function (upper panels) and
Tinker mass function (lower panels). The density threshold A is
set to 200; i.e., the presented predictions are for the quantity M,
in units of 10'> M. The contours show 1¢ and 26 regions.

means that this procedure overestimates the number of
objects at the lower end of the mass function. All of these
effects are relevant for masses below 10'* M. Consequently
one should not use the Simsilun simulation for reliable
estimation of the mass function in this mass range. However,
above a certain scale these effects become less relevant.
The so-called “matter horizon” [20] is of order of 5 Mpc, i.e.,
a particle (be it a galaxy or an active galactic nuclei mass
ejection) can only move up to a few Mpc within the age of a
universe. A region of size 10 Mpc has approximately a mass

of 10'* M, and this is also the scale where the amplitude of
the Press-Schechter mass function becomes smaller than the
Tinker mass function (cf. Fig. 1). Consequently, it is safe to
assume that an object of mass beyond 10'> M is created
only by a collapse and mergers of smaller objects that are
already within the a domain of influence of this object; i.e., it
is not created by a merger of objects of masses ~10'5 M,
(i.e., by objects that were separated in comoving coordinates
by more than 10 Mpc). Therefore, the predictions based on
the high-mass end of the mass function recovered with the
Simsilun simulation should be considered as reliable.

III. THE MOST MASSIVE OBJECTS IN
THE UNIVERSE

Assuming perfect completeness of a survey, the expected
number of objects with masses between M, and M,
detected in a survey of angular coverage dQ2 and redshift
range Zmin—Zmax can be inferred directly from Eq. (9). There
are two competing effects that contribute to the observed
number of objects. The first one is the volume, i.e., the
larger the redshift range, the larger the volume, and hence a
larger number of expected objects. The second effect is
related to the fact that the number density of the most
massive objects decreases with redshift (cf. Fig. 2), where
the amplitude of the mass function is significantly lower at
higher redshifts. These two competing effects are presented
in Fig. 3.

A. Most massive objects at high redshifts

Figure 3 shows the volume covered by the 455 deg”
survey and full-sky survey (as a function of redshift).
For comparison, the volume needed to observe one object
with mass 1.77 4+ 0.21 x 10> M, (weighted average of
the five most massive ACT clusters), at that redshift is
also presented. The upper panel shows the results for the
Simsilun mass function and the lower panel for the Tinker
mass function. One should note that this is for comparison
only, as these two volumes are not directly related. The
volume covered by the survey is the volume within the past
light cone; i.e., this is the volume which is evaluated across
different times, from the present-day #(z = 0) to a particu-
lar redshift #(z). In contrast, the volume needed to observe
one object is the volume evaluated at a single time instant,
i.e., this is the volume evaluated at that particular redshift. If
the number density were constant and did not change with
time, these two volumes would be directly comparable; i.e.,
if the volume covered by the survey were equal to the
volume needed to observe one object at that redshift, then
we would expect to see one object within the survey.
However, since the number density decreases with redshift,
thus when the volume covered by the survey is equal to the
volume needed to observe one object at that redshift, we
should expect to see at least one object (if not more).
Consequently, if the volume covered by the survey is
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always smaller than the volume needed to observe one
object, then it is unlikely to expect to see any such objects
in the survey.

As seen from Fig. 3 there are two regimes sensitive to the
mass function. The first regime is the low-redshift
Universe, where low volumes prevent observing most
massive objects (since their number density is small, one
requires a large volume to observe these rare objects). The
second one is the high-redshift Universe where the most
massive objects are not sufficiently evolved yet; conse-
quently their very small number density makes them
extremely rare, despite large volumes.

At high redshift the most effective method of detecting
clusters is by the observations of the Sunyaev-Zel’dovich
effect. However, this method does not allow us to estimate
the mass of the observed cluster, and so one needs to
implement other methods to estimate the mass. For the
Atacama Cosmology Telescope (ACT) survey, the masses
of the clusters (detected with the Sunyaev-Zel’dovich
effect) were estimated using the scaling relations between
the observed velocity dispersion and their mass. The five
most massive clusters observed within the ACT survey are
ACT-CL J0102-4915 at z = 0.8701 £ 0.0009 with mass
Moy = 1.68 +0.39 x 1015 My; ACT-CL J0237-4939 at
7 =0.3344 £ 0.0007 with mass Mygy. = 2.06 == 0.43x
10" My; ACT-CL J0330-5227 at z = 0.4417 & 0.0008
with mass My, = 1.77 £0.41 x 10" My; ACT-CL
J0438-5419 at z = 0.4214 £ 0.0009 with mass M,y =
2.18 +£0.52 x 105 M; and ACT-CL J0559-5249 at z =
0.6091 £ 0.0014 with mass My =1.5440.44x 10 M,
[21]. The average uncertainty-weighted mass of these five
clusters is 1.77 £ 0.21 x 10" M. As seen from Fig. 3, for
the Tinker mass function, these five most massive clusters
are not expected to be seen within a 455 deg” survey; they
are only expected to be observed within the full-sky survey.
On the contrary, the Simsilun mass function does not have
problems with explaining the existence of these objects;
also their observed redshift range is in perfect agreement
with predictions of the Simsilun simulation.

This discrepancy between the number of objects with
masses 1.77 +0.21 x 10'5 M, expected to be observed in
a 455 deg? survey, is further presented in Fig. 4. Figure 4
shows the number of objects evaluated from Eq. (9) with
My = 1.77 £0.21 x 10" My and z,;, = z. The redshift
position and the expected numbers are also presented in
Fig. 4, where the upper panel shows the results for the
Simsilun mass function and the lower panel for the Tinker
mass function. As seen from Fig. 4, the Simsilun simulation
with a slightly higher amplitude at the high-mass end of
the mass function (compared to the Tinker mass function)
has no problems with explaining the observed number
of the most massive clusters observed by the ACT survey.
On the other hand, the Tinker mass function seems to be at
odds with the observed data.

B. Most massive objects at low redshifts

Apart from the high redshift, the second regime which is
very sensitive to the prediction of the mass function is the
number of the most massive objects at low redshifts, where
the number of these objects is low due to small volumes.
The larger the mass, the larger the volume is needed to
observe such extreme objects. If the mass is too high, the
probability of observing such objects goes to zero, and so
there is an upper limit on the mass of the most massive
objects. The predictions for the most massive objects
obtained using the Simsilun and Tinker mass functions
are presented in Fig. 5. The most massive object is of the
mass 6.37)9 x 10" M, for the Simsilun simulation, and
44708 x 10> M, for the Tinker mass function.

If we were to compare these predictions with obser-
vations, the most massive supercluster observed to
date is most likely the Shapley Concentration, whose
mass is estimated to be between 6 x 10'5 M [22] and
8 x 10'> M, [23], but likely even higher [24]. While the
existence of such a massive object is in agreement with the
Simsilun simulation, its existence is slightly at odds with
the Tinker mass function.

However, if we take into account that the distance to the
Shapley Concentration is approximately 200 Mpc, then the
probability of observing such a massive object within
such a small volume drops. The probability of observing
an object with a mass of at least 6 x 10'> M, within the
distance of 200 Mpc is 3 x 1072 and 3 x 1073 for Simsilun
and Tinker mass functions, respectively. While this could
be explained using the extreme value statistics, the prob-
ability of observing two very massive objects within the
distance of 200 Mpc is very low and poses a challenge
for the standard cosmological model [25]. Indeed, for the
Tinker mass function the probability of observing two
objects with masses above 5 x 10'> My and within the
distance of 200 Mpc is 6 x 1073, which makes it inconceiv-
ably small. For the Simsilun mass function the probability
of observing two objects with masses above 5 x 1015 M,
and within the distance of 200 Mpc is 3 x 1073, which is
still within 36. Thus, taking into account the existence of the
Great Attractor—distance between 50 and 80 Mpc and mass
between 4 x 10! My and 6 x 10" M [26]—it seems that
again (as in the case of the ACT clusters) the predictions for
the most massive objects obtained from the Tinker mass
function are at odds with the data.

IV. CONCLUSIONS

This paper investigated the formation of the most massive
objects within the framework of the silent universes. This
framework is based on the solution of the Einstein equations
obtained within 1 + 3 comoving coordinates. Within this
framework, the evolution is characterized by locally varying
expansion rate, density, shear, and curvature. In the limit
of spatial homogeneity and isotropy, they reduce to the
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FLRW models. Consequently, local properties differ from
the global properties of the Universe. For example, overdense
regions could be characterized by positive spatial curvature,
which could affect the growth rate.

The approach implemented in this paper allows for
cosmological properties of the Universe to vary.
Consequently, the expansion rate or spacial curvature
depends on the environment. Within this approach, we
study the evolution of cosmic structures and focus on the
formation of the most massive objects, i.e., objects with
masses 10" My and above. The obtained results suggest
that the formation of these extremely massive objects
proceeds faster within the Simsilun simulation compared
to the standard approach.

We compare the results obtained within the Simsilun
simulation to the predictions obtained using the Tinker
mass function and test them against observational data. We
find that the prediction for the number of the most massive
objects obtained using the Tinker mass function is at
odds with the observational data, whereas the Simsilun
simulation correctly predicts the number of most massive
ACT clusters, as well as the existence of the Shapley
Concentration and the Great Attractor.

However, one should keep in mind that the Simsilun
simulation does not allow for rotation or transfer of energy
between various regions of the Universe, and thus, at sub-
Mpc scales where these effects are important, the Simsilun
simulation is not expected to work well. Therefore, more
work is needed especially using more advanced schemes,
such as the one based on the Lagrangian framework

[27-30]; the first application of this framework to obser-
vationally realistic, standard N-body cosmological initial
conditions was recently published in [31].

In summary, the results of this paper suggest that the
formation of the most massive object could proceed in a
slightly faster way than previously anticipated [18]. Our
study was based on a simplified model, therefore, more
investigation of this phenomenon is needed. If indeed the
environment dependence of the growth rate of the most
massive clusters is confirmed by more detailed study, then
these effects will be of significance when analyzing the data
from the next-generation satellite missions such as Euclid
[32] and eROSITA [33].
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