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Micronutrients limiting pasture production in Australia
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Abstract. Low levels of plant-available micronutrients were an inherent feature of many agricultural soils in Australia,
mostly due to the prevalence of highly weathered soil parent materials. The diagnosis and correction of the widespread
deficiencies of micronutrients, especially copper (Cu), molybdenum (Mo) and zinc (Zn), were prerequisites for the
development of productive, legume-based pastures in southernAustralia. In subtropical and tropical regions,Modeficiency

5 commonly limited pasture-legume production. Soil treatments involving micronutrient fertiliser incorporated in soils, or
applied as additives to superphosphate, were generally effective in alleviatingmicronutrient deficiencies. In the low-output
dryland pasture systems, the annual removal of micronutrients in wool and meat is small compared with rates added in
fertiliser. Hence, in general, the residues of soil-applied micronutrient fertilisers remain effective for many years, for
example, up to 30 years forCu.By contrast, shorter residual values occur formanganese (Mn) fertiliser on highly calcareous

10 soils, and for Zn in high-output pasture systems such as intensive dairy production. In the last two decades since the
recommendations for micronutrient management of pastures were developed, there have been many changes to farming
systems, with likely implications for micronutrient status in pastures. First, increased cropping intensity and low prices for
wool and meat have meant lower nutrient inputs to pastures or to the pasture phase of rotations with crops. However, when
pastures have been rotatedwith crops, ongoing small additions of Cu, Zn andMo have been common. In cropping phases of

15 farming systems, lime application and no-till may have altered the chemical and positional availability of micronutrients in
soils to pastures. However, there has been little study of the impacts of these farming-systems changes on micronutrient
status of pastures or profitability of the production system. The intensification of dairy production systems may also have
altered the demand for, and removal rates of, micronutrients. Soil tests are not very reliable for Mn orMo deficiencies, and
well-calibrated soil tests for boron, Cu and Zn have been developed only for limited areas of pasture production and for a

20 limited range of species. There is limited use of plant tests for nutrient management of pastures. In conclusion, there is
limited knowledge of the current micronutrient status of pastures and their effects on animal health. Pasture production
would benefit from targeted investigation of micronutrients status of pasture soils, pasture plants and micronutrient-linked
animal-health issues.
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Introduction

The micronutrient elements known to be essential for both grass
and legume pasture plants are boron (B), chlorine (Cl), copper
(Cu), iron (Fe),manganese (Mn),molybdenum (Mo), nickel (Ni)

5 and zinc (Zn) (Bell and Dell 2008). Legumes that depend on
dinitrogen (N2) fixation for their N supply require Mo in greater
amounts for symbiotic function than for the growth of the host
plant, and they also require cobalt (Co) as a nutrient for the
rhizobia. In addition, sodium (Na), selenium (Se) and silicon (Si)

10 have been shown to be beneficial to plants in some cases, without
satisfying the criteria for essentiality for all plants (Marschner
2011). All of the elements essential for plants, with the exception
of B, are essential for animals (Bell and Dell 2008). In addition,

animals require iodine (I), Se and chromium (Cr) (Underwood
and Suttle 1999). Under rigorously controlled laboratory
conditions, fluorine (F) and Si have also been shown to be
beneficial, particularly when added in minute amounts to

5purified diets for animals (Underwood and Mertz 1987;
Underwood and Suttle 1999). However, there is no evidence
of Cr, Ni, F or Si being deficient in pasture ecosystems, and they
are not considered further in this paper.

In Australia, most micronutrients are supplied to animals
10from the direct consumption of pasture or forage species by the

grazing animal. Both grass and legume plant species require
micronutrients to be taken up from soil solution for adequate,
normal or maximum growth. However, agricultural soils vary
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widely in total content and plant-available forms of
micronutrients and plant species may vary in their
requirements (White and Zasoski 1999). Sillanpää (1982)
reported micronutrient deficiency in plants from almost every

5 country in their study.
A generalised map of the areas of agricultural soils with

inherent micronutrient deficiency risk is presented in Fig. 1. In
south-west Western Australia (WA), ~8–9 Mha of land was
inherently deficient in Cu, Zn andMo, and to a lesser extent Mn.

10 Molybdenum deficiency was widespread in pasture legumes in
subtropical and tropical pastures of Australia, particularly on

acid basaltic soils. In southern Australia, the areas at risk
correspond well with the extent of improved pastures.

A feature of agricultural production in southern Australian
until the 1980s was the crop–pasture (ley farming) system in

5which the main pasture species was subterranean clover
(Trifolium subterraneum L), which supplied the N required
for crop production and suppressed crop diseases, especially
those of wheat (Triticum aestivum L.) (Doole and Weetman
2009). On alkaline soils, particularly in South Australia (SA),

10medics (Medicago spp.) were commonly used instead of
subterranean clover in the pasture ley in rotations with wheat
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Fig. 1. Inherent and potential micronutrient deficiencies in agricultural soils. Modifed from
Hayes et al. (2019).
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andbarley (Hordeum vulgareL.). A history of pastures in the ley
farming system and their importance to agricultural production
systems in southern Australia is outlined by Fitzpatrick (2011).

Since the 1980s, land use has changed towardsmore extended
5 periods of cropping or continuous cropping. No-tillage planting

of crops has become more prevalent, especially in WA and SA,
where it covers 90% of the cropping area (Rochecouste and
Crabtree 2014). In addition, low prices for wool and meat have
led to to decreased inputs, including fertiliser, in the pasture

10 phase. Soil acidification has continued because of inadequate use
of lime. Even where programs of lime application have raised
topsoil pH, subsoil acidification often continues (Gazey et al.
2014). A greater diversity of pasture legume and grass species
has also been introduced, including more herbaceous and

15 woody perennial species (e.g. Moore et al. 2006). Hence,
there have been several changes in farming systems that
have consequences for micronutrient supply and availability
to pastures and grazing animals. Although micronutrient
management packages for southern Australian (WA and SA)

20 farming systems have been developed, these were mainly for
cropping and mostly designed for farming systems >40 years
ago. These packages may not be adequate for contemporary
pasture systems. The recommendations for micronutrients may
also be inadequate for more intensive grazing systems such as

25 strip-grazing in dairy livestock systems.
According to Judson and McFarlane (1998), the main trace

element deficiencies for grazing livestock are Co, Cu, I, Mn, Se
and Zn. Mild mineral deficiencies are especially difficult to
identify because their effects are rarely distinguishable from

30 those due to underfeeding or intestinal parasitism. An initial
assessment of the actual or likely occurrence of a dietary mineral
inadequacy can be made by comparing the mineral composition
of the diet with recommended levels (Underwood and Suttle
1999). These factors are frequently not integrated into fertiliser

35 decision support systems for recommending micronutrients in
the pasture–crop system.

Essential elements for pasture and animal production

Pastures plants in Australia generally come from the grass
(Poaceae) and legume (Fabaceae) families. The function and

40 importance of the essential micronutrients for plants, rhizobia
and ruminants have been well reviewed (e.g. Minson 1990;
Blevins and Lukaszewski 1998; Gerendás et al. 1999;
Underwood and Suttle 1999; O’Hara 2001; White and
Broadley 2001; Brown et al. 2002; Hänsch and Mendel 2009;

45 González-Guerrero et al. 2014). Here we provide a brief
overview of the function of these elements for plants, rhizobia
and ruminants, and have indicated sources where more detailed
accounts can be found.

Boron

50 Boron is required in plants for cell wall structure through its
association with pectin, as well as having roles in membrane
structure and function, detoxifying reactive oxygen species
(ROS), and phenol metabolism (Blevins and Lukaszewski
1998; Brown et al. 2002).

55 In the legume–rhizobia symbiosis, B is fundamental to nod-
gene activation by root exudates and is required for nodule

initiation, infection thread development and nodule invasion
(Bolaños et al. 1996; Redondo-Nieto et al. 2001).

Chlorine

Chlorine is important to plants for osmotic regulation and turgor
5in the vacuole, reactivity of enzymes, regulation of intercellular

pH gradients, membrane potential, and photosynthesis (Welch
and Shuman 1995; White and Broadley 2001).

Cobalt

In rhizobia, Co forms the coenzyme cobalamin (vitamin B12),
10which is used for methionine synthesis, the synthesis of DNA

precursors and the synthesis of leghemoglobin, which provides
the oxygen required for the reduction of N2 to ammonia (NH3)
during N fixation (Drennan et al. 1994; Becana et al. 2000;
O’Hara 2001).

15Rumen microorganisms, similar to rhizobia, require Co
for the synthesis of vitamin B12. Cobalt deficiency leads to a
reduction in methylation, abnormal lipid metabolism, decreased
bloodhaemoglobin andprotein, urea andcholesterol in the serum,
and impaired disease resistance (Minson 1990; Spears 1999;

20Underwood and Suttle 1999).

Copper

In plants,Cuplays important roles in photosynthesis and electron
transport, as an enzyme co-factor, in cell-wall metabolism and
oxidative stress response, and in abiotic stress signalling (Yruela

252009).
In rhizobia, Cu is required for N fixation, is needed for

rhizobial respiration, and is involved in detoxification of ROS
produced in theN-fixationprocess (Preisig et al. 1996;González-
Guerrero et al. 2014).

30In ruminants, Cu is a component of many important
enzymes including lysyl oxidase, ceruloplasmin, tyrosinase,
cytochrome oxidase and superoxide dismutase, and is required
for reproduction, bone development, and growth and
development of connective tissue (Spears 1999). Insufficient

35Cu intake can lead to anaemia, bone disorders, connective-tissue
disorders, neonatal ataxia or ‘swayback’ in lambs born to
Cu-deficient ewes, cardiovascular disorders, diarrhoea,
infertility and increased susceptibility to infection (Underwood
and Suttle 1999). Copper deficiency also causes ‘steely wool’,

40where the wool is weakened and the fibre is straight and lustrous
and loses its characteristic crimp (Lee 1956); it can cause the
fleeces of black sheep to lose their pigmentation (Smith and
Gawthorne 1975).

Iodine

45Iodine is crucial in ruminants for the function of the thyroid
hormones, thyroxine and triiodothyronine, which control
oxidation rates and protein synthesis in cells (Spears 1999;
Underwood and Suttle 1999). These hormones are important
for fetal development, lipid, carbohydrate and N metabolism,

50regulation of energy metabolism, digestion, growth, muscle
function, reproductive performance, and immune defence
(Minson 1990; Underwood and Suttle 1999). Iodine
deficiency can result in an enlargement of the thyroid gland in
the neck (goitre). Iodine deficiency can lead to impaired brain

Micronutrients for pastures in Australia Crop & Pasture Science C
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development, impact on reproductive success, growth and
postnatal mortality, and result in low milk yield (Underwood
and Suttle 1999).

Iron

5 In plants, Fe is involved in photosynthesis, N assimilation,
synthesis of hormones, regulation of ROS, osmoprotection,
and mitochondrial respiration (Hänsch and Mendel 2009).

Many proteins involved in the legume–rhizobia symbiosis
contain Fe. These include nitrogenase, which is integral to N

10 fixation; ferredoxin, which is involved in electron transfer and
reducing the Fe component of nitrogenase; and leghemoglobin,
which helps to control oxygen concentrations for N fixation and
respiration (Brear et al. 2013).

In ruminants, Fe is an important constituent of haemoglobin
15 and myoglobin, which are vital to oxygen transport in the blood.

Iron is also involved in electron transport and is a component of
many enzymes (Spears 1999; Underwood and Suttle 1999). Its
deficiency in ruminants leads to anaemia, which can cause a loss
of appetite, reduced growth, lethargy, lightening of mucous

20 membranes, increased respiration rate, and death in severe
cases (Underwood and Suttle 1999).

Manganese

Manganese plays important roles in plants by catalysing
reactions and activating enzymes (Hänsch and Mendel 2009).

25 Examples of its functions in plants include the water-splitting
system of photosystem II, synthesis of ATP, ribulose-1,5-
bisphosphate carboxylase reactions, and biosynthesis of
chlorophyll, fatty acids, lipids, aromatic amino acids, lignins,
flavonoids and phytohormones, and it is involved in defence

30 against ROS (Campbell and Nable 1988; Hänsch and Mendel
2009; Millaleo et al. 2010). In rhizobia, Mn is required for
enzyme function and innodulation andNfixation (O’Hara2001).

Manganese is a key component of several important
enzymes in ruminants, including pyruvate carboxylase, arginase

35 and mitochondrial superoxide dismutase (Spears 1999;
Underwood and Suttle 1999). It has functions in cartilage and
bone development, synthesis of prothrombin (involved in blood
clotting), lipid and carbohydrate metabolism, and protecting cells
from damage due to ROS (Minson 1990; Underwood and Suttle

40 1999). Manganese deficiency can cause skeletal abnormalities,
reproductive disorders and disproportionate loss of female fetuses
(Minson 1990; Underwood and Suttle 1999).

Molybdenum

Molybdenum is a key component of four important plant
45 enzymes: nitrate reductase, which reduces nitrate to nitrite;

peroxisomal sulfite oxidase, which detoxifies excess sulfite;
aldehyde oxidase, which is integral to the biosynthesis of
abscisic acid; and xanthine dehydrogenase, which is important
in purine catabolism, response to pathogens and other stressors,

50 and senescence (Schwarz and Mendel 2006). In rhizobia, Mo is
required as it is a key component of nitrogenase, which enables
N fixation (O’Hara 2001).

In ruminants, Mo is a component of the enzymes xanthine
oxidase, sulfite oxidase and aldehyde oxidase (Spears 1999).

55 High Mo concentrations reduce the availability of Cu, and this

apparent Cu ‘deficiency’ due to highMo is often exacerbated by
low Cu status in the animal (Underwood and Suttle 1999;
Whitehead 2000).

Nickel

5Nickel is important for urease activity and ureidemetabolism, as
well as seed viability (Welch and Shuman 1995; Hänsch and
Mendel 2009). In rhizobia, Ni is required for efficient N fixation
because it is needed by hydrogenase, which recycles the H2

produced by nitrogenase (Gerendás et al. 1999).

10Selenium

Selenium is requiredby rhizobia because it is a crucial component
of several seleno-amino acids including selenocysteine, which is
present in several important enzymes, and selenomethionine,
which is an antioxidant important for detoxifying ROS

15(Ekanayake et al. 2017).
In ruminants, Se is a component of some enzymes

and selenoproteins including glutathione peroxidase and
iodothyronine deiodinases, and works with vitamin E to
detoxify ROS (Spears 1999; Underwood and Suttle 1999).

20Selenium is required for growth, reproduction and protection
fromdisease (Underwood and Suttle 1999). Seleniumdeficiency
can cause reductions in growth rate, milk production and fat
percentage, wool production and fertility (Minson 1990).

Zinc

25Zinc is a cofactor of many plant enzymes (Brown et al. 1993)
including zinc finger proteins, which bind DNA, RNA, proteins
and other molecules, regulate stomatal closure and provide
protection from ROS (Broadley et al. 2007).

In rhizobia, Zn is involved in carbonic anhydrase, which is
30important for root nodulation (Vance 2008). Zinc is also required

for N fixation in the nodule, although its role(s) in N fixation are
not fully elucidated (León-Mediavilla et al. 2018).

Zinc is a constituent in many ruminant enzymes including
DNA and RNA polymerases, alcohol dehydrogenase and

35pyruvate dehydrogenase. It is important in vitamin A
metabolism, is involved in gene expression and membrane
stability, and regulates appetite (Spears 1999; Underwood and
Suttle 1999). Zinc deficiency can reduce growth, fertility and
milk production, cause a loss of appetite and skeletal disorders,

40and impair testicular development (Minson 1990; Underwood
and Suttle 1999). Zinc deficiency can also cause wool to become
brittle and thin and to lose its crimp (Millset al. 1967;Underwood
and Somers 1969).

Soil factors affecting micronutrient availability

45Pasture plants and their associated symbiotic microorganisms
obtainmost of theirmicronutrients via the soil (see exampleofZn
in Fig. 2). However, the availability of these micronutrients for
uptake is significantly affected by several soil factors including
concentration of the element, soil type, clay percentage and clay

50type, organic matter concentration, soil pH and soil moisture
(Whitehead 2000; Bell and Dell 2008).

In general, the availability of the micronutrients occurring as
cations, especially Fe, Mn, Zn and Co, tends to increase with
declining soil pH, whereas the availability of the micronutrients

D Crop & Pasture Science R. F. Brennan et al.
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occurring as anions (B, Mo and Se) tends to decrease with
declining soil pH. The effects of lime on concentrations of
micronutrient elements in pasture herbage are due partly to
the addition of Ca and partly to the increase in soil pH. When

5 liming results in an appreciable increase in soil pH (e.g. from pH
<5.5 to �7.0), there is usually a substantial reduction in the
concentrations of Fe, Mn and Co, a small reduction or little
difference in Zn and Cu, and an increase in Mo (Mitchell 1963;
Stewart and McConaghy 1963; Price and Moschler 1965, 1970;

10 John et al. 1972; Edmeades et al. 1983).
Soil pH in particular has a large effect on the availability of

micronutrients for plant uptake, with B, Co, Cu and Mn being
most available at pH in the range 5.0–7.0 (Bell and Dell 2008),
and Mo at pH 5.0–6.0 (Sillanpää 1982). Victoria, Tasmania,

15 coastal New South Wales and Queensland, and south-west WA
have generally acidic topsoils (pH 4–5.5) (de Caritat et al. 2011),
which can make micronutrients such as Mo relatively
unavailable for pasture uptake (Fig. 1). These areas also
happen to include important areas for improved pastures

20 supporting dairying (Dairy Australia 2018), beef production
(MLA 2018a) and sheep production (MLA 2018b); therefore,
the low pH in these regions may significantly affect Australian
pasture and animal production as a whole, in part through effects
on micronutrient availability.

25 Species and varietal differences in micronutrient
concentrations

There can be considerable differences in micronutrient
concentrations among species of grasses and legumes
(Whitehead 2000). Legumes often contain higher

30 concentrations of Fe, Zn, Cu and Co than grasses, whereas Mn
concentrations are sometimes higher in grasses than in legumes
(O’Hara 2001). However, whether legumes or grasses have

higher concentrations also depends on the soil concentration of
the element (i.e. high or low; Whitehead 2000).

Differences in shoot micronutrient concentrations also exist
among cultivars or varieties of the same species. Significant

5differences in micronutrient concentrations have been found
among cultivars of prairie grass (Bromus willdenowii Kunth)
for Fe, Mn, Zn and Cu (Rumball et al. 1972); Rhodes grass
(Chloris gayanaKunth) forB,MnandZn (Jones et al. 1995); and
red clover (Trifolium pratenseL.) for Fe andZn (Lindström et al.

102013). Differences in micronutrient concentrations were also
found in cocksfoot (Dactylis glomerata L.) for Co, Cu, Mn and
Zn (Forbes and Gelman 1981) and in perennial ryegrass (Lolium
perenne L.) for B, Co, Cu, Fe, Mn, Mo, Se and Zn (Crush et al.
2018). However, inter-varietal differences in micronutrient

15concentrations were not always consistent among sampling
times or sites. More data are needed to establish whether it is
feasible to breed varieties of pasture grasses or legumes with
consistently higher shoot micronutrient concentrations.

Residual value of micronutrient fertiliser additions

20Adistinctive featureofmicronutrientmanagement for pastures is
the long residual value ofmicronutrient additions to soils relative
to that of macronutrient fertilisers. Hence, after diagnosis of
deficiency and determination of the optimum rate to correct
deficiency in pastures, the next key step in fertiliser decision

25making is to estimate the residual value of the applied fertiliser.
The residual value refers to how long after the initial application
an adequate supply of nutrient to the pasture plant is maintained
for maximum pasture and animal production. Knowledge of the
residual value of micronutrient fertiliser is therefore important

30for determiningwhen a further application of themicronutrient is
required to prevent deficiency re-occurring and reducing pasture
herbage yield or animal production (including wool and milk
output). To estimate the residual value of a micronutrient

Slowly released
adsorbed Zn

on clays, siIica,
Fe & AI oxides

High pH Soluble Zn Organic matter
adsorption

A compound that
can dissolve

Fertiliser

oxides sprays

Soluble source

Minor losses
farm produce (grain,

wool, meat)

erosion
excreta

Readily
released

exchangeable

Fig. 2. The soil–plant–animal cycle, using zinc (Zn) as an example, with possible Zn additions
and losses to this system for soils of Western Australia (Brennan 2005). Note that the leaching process is
non-existent for zinc.
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fertiliser, it is necessary to know which soil properties control
chemical reactions, losses and additions in the soil–plant cycle
because these determine the availability of the nutrientwithin the
soil for pasture plants (Fig. 2).

5 Reactions of appliedmicronutrients with the soil constituents
are themajor cause of reduction in nutrient availabilitywith time.
Losses by leaching appear negligible even in sandy soils formost
micronutrients (e.g.Cu,Gartrell 1981;Zn,BrennanandMcGrath
1988). Boron, by contrast, is leachable on sands (Bell 1999). The

10 amounts of micronutrients removed in harvested products from
pastures (hay, wool, bodymass) vary markedly for each element
but generally are low or minute compared with the amounts
added in fertiliser (Table 1). The typical removal of Zn for wool
and meat (<10 g Zn ha–1) is 60–80% less than for dairy cattle

15 production for milk (27–46 g ha–1 year –1). However, in dairy
production systems, cattle are fed grain and other supplements
bought onto the farm. Further studies are needed to determine the
micronutrient balance in typical dairy systems, after accounting
for all input and outputs.

20 Based on the rates of Zn fertiliser applied to soils of WA for
cereal and pasture production, Zn is predicted to have a long
residual value (Brennan and Bolland 2007). Even if 70% of an
initial Zn application is strongly sorbed by the soil, based on
the small rates of Zn removal, the residual Zn is likely to supply

25 crop and pasture requirements for 17 years (Brennan 2005).
According to Brennan andBolland (2007), 1 kg Zn ha–1 added as
fertiliser would remain effective for 40 years of supply on a
yellow duplex soil. In another study, after 17 years, the 1 kg Zn
ha–1 remained fully effective in correcting Zn deficiency in six

30 grain crops (Brennan and Bolland 2006); however, like much of
this work, the study did not include pasture species, and data are
still limited to a small range of soil types. Micronutrients may
also be supplied in NPK fertilisers, as either intentional or
incidental constituents. Some fertilisers contain appreciable

35 amounts of micronutrients, especially those derived from
phosphate rock. For example, Verloo and Willaert (1990)
reported Zn concentrations varying from 6 mg kg–1 in
potassium chloride and 12 mg kg–1 in ammonium nitrate to
244 mg kg–1 in superphosphate. Similarly, research with cereal

40 crops inWA has shown that regular (usually annual) application
of>150kg superphosphate ha–1 incidentally containing 400–600
mg Zn kg–1 supplied sufficient amounts of Zn to meet the
requirements of the current crop and pasture production
indefinitely (Brennan 2005). Frequently, these additions of

superphosphate have maintained adequate Zn levels in soils
despite any decline in the effectiveness of the original Zn
application as Zn fertiliser (Brennan 1998, 2000).

Micronutrient additions through applications of
5macronutrient fertiliser to agricultural soils are a major source

of micronutrient supply for pasture plant growth (Naidu et al.
1996). It is unusual for the amount of micronutrients added in
macro or compound fertiliser to be taken up and completely
removed; hence, the remainder adds to the soil reserves of

10micronutrients. Also, a proportion of the fertiliser nutrient that
is taken up is subsequently returned to the soil in plant residues or
manures and urine of grazing animals, and hence adds to the
micronutrient soil reserves. Other inputs from straw, hay, silage,
sewage waste and animal manure are generally less important

15sources of micronutrients for pasture systems in Australian
agriculture (Fig. 2). Similarly, industrial and manufacturing
processes and the disposal of domestic and industrial wastes
that contribute to micronutrient enrichment of soils are not
currently of major importance for Australian agriculture.

20Increased recycling of urban composts or sewerage sludge
and their derivative products would increase the recycling of
Zn, Cu and Ni, in particular, onto agricultural land. In this
situation, a risk assessment based on the increased load of
micronutrients and soil reactivity would be needed.

25Case study of the residual value of Zn for pasture

Zinc cycling in the soil–plant–animal system is a process notwell
documented in the literature. The Zn in herbage harvested as
pasture hay is either returned to the soil via animal excreta or
removed if the produce is exported off the farm (meat, wool, and

30milk). For example, pasture hay yielding 7 t ha–1 would remove
~175 g Zn ha–1 if taken away from the farm, as calculated from
pasture Zn levels in WA from Masters and Somers (1980). The
amounts removed in the produce of animals are typically low
relative to the amount of fertiliser Zn applied. In animals, the

35wholebodyconcentrationofZnona freshbasis ranges from20 to
30 mg kg–1 in cows (Miller et al. 1974) and sheep (Grace 1983),
or on a dry-weight basis from 20 to 250 mg kg–1 (Underwood
1977;O’Dell 1979;Hill et al. 1983a, 1983b, 1983c).However, in
the case of sheep, ~55%of the body’s Zn can be inwool.Masters

40and Moir (1980) found ~110 mg Zn kg–1 in the wool of sheep
from WA. Typical wool production is 60–80 kg ha–1 during
spring (August–November) in intensively grazed pasture
systems of WA (Thompson et al. 1994, 1997; Hyder et al.
2002). Hence, annual Zn removal in wool ranges from ~6.5 to

458.8 g ha–1. Similarly, 50-kg mature Merino wethers grazed at
12 sheep ha–1 (Thompson et al. 1997) and containing 30 mg
Zn kg–1 body mass (Grace 1983) would remove ~1.8 g Zn ha–1

from a grazed pasture system inWA. The annual loss of Zn from
an intensively grazed system, assuming complete removal of the

50animals and wool (~8–10 g Zn ha–1) from the system, represents
~1–1.5% of the amount of Zn typically applied initially as a
fertiliser in agricultural systems of WA. In set-stocking-rate
grazing systems (Thompson et al. 1994, 1997; Hyder et al.
2002), the loss of Zn from the system would be about one-

55third toone-half that calculated for the intensively grazed system.
The set-stocking-rate grazing system is the more typical system
for dryland pastures in WA and should remain adequately

Table 1. Typical amounts removed of copper (Cu), molybdenum (Mo)
and zinc (Zn) in wheat or barley grain, lupin seed, wool, meat or milk

Product Cu Mo Zn

Wheat or barley grain (g t–1) 8A, 3B 0.16–0.2C 5–25B,D

Lupin seed (g t–1) 5E, 4B 1.8E 17–30B,D

Sheep for wool production (g ha–1) 0.3A <10D

Sheep for meat production (g ha–1) >12A <10D

Dairy cattle for milk production (g ha–1) 27–46F

AGartrell (1981). BWhite et al. (1981). CGupta (1971). DBrennan (2005).
EWhite et al. (2007). FDrM Staines, DPIRD, Busselton, WA, provided milk
production data used for the calculation, which accounts only for removal in
milk, not for removal in bodyweight of animals removed; Zn concentrations
in milk taken from Dunshea et al. (2019).

F Crop & Pasture Science R. F. Brennan et al.
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suppliedwithZn for>15years after a typical initial applicationof
1 kg Zn ha–1, or longer if pastures are topdressed with P fertiliser
enriched with Zn.

Summary of the residual value of micronutrient fertiliser for
5 pasture

Similar to Zn,Cu has a long residual value and frequent additions
of Cu are not required (Table 2). The residual value of Mo in
south-west WA was estimated to be 5–10 years, whereas in
subtropical and tropical regions, the residual effectiveness was

10 only 2–5 years (Table 2). By contrast, Fe applied to the soil
surface for 1 year was ~60% as effective as Fe sulfate applied
immediately before pasture growth commenced, whereas Fe
applied 5 years before was about one-third as effective as the
recently applied Fe for herbage production (Brennan and

15 Highman 2001).
Most of the estimates of residual value of micronutrient

fertilisers have been derived from studies with crops. For
pasture species, differences are likely among species and
cultivars for uptake of micronutrients such as Zn (Grewal and

20 Williams 1999) that would need to be accounted for when
determining the residual value of fertiliser. For example,
among 15 lucerne cultivars that differed in Zn efficiency,
there was a 2-fold difference in Zn uptake by shoots under
Zn-deficient conditions, but with adequate Zn supply in the

25 soil, all cultivars absorbed similar amounts of Zn into shoots
(Grewal and Williams 1999). Cultivar differences in residual
value of micronutrient fertiliser have not been researched.
Similarly, there are no data on residual value for the newer
pasture species such as legumes serradella (Ornithopus sativus

30 Brot.), annual medics, tedera (Bituminaria bituminosa) and
biserrula (Biserrula pelecinus (L.) C.H.Stirt.) and a range of
grasses such as Italian ryegrass (Lolium multiflorum Lam.) now
grown in pasture systems. The residual values of B, Se and Mn
are poorly defined for Australia pasture–animal systems.

35 Similarly, the residual value of micronutrients may have
changed as a result of the effects of liming on acid soils.

Micronutrient diagnosis and prognosis of deficiency

Soil and plant tests are used for the initial diagnosis of
micronutrient disorders, and to determine when a re-

40 application of micronutrient fertiliser is needed. However,
total soil levels of Cu, Zn, Mn, B or Fe in agricultural soils
are poor predictors of micronutrient deficiency in pasture plants

because plant availability depends on the form of the
micronutrients in soils, which in turn is determined by soil
pH, organic matter content, adsorptive surfaces, and other
physical, chemical, and biological conditions in the

5rhizosphere (Bell and Dell 2008).
In general, inaccurate soil andplant test results aremore likely

with micronutrients than with macronutrients because, by
definition, they are present in very low concentrations so that
the risk of results being affected by contamination is high.

10Analytical methods such as inductively coupled plasma-mass
spectrometry have greater sensitivity, and therefore greater
ability to determine low concentrations than the methods used
when much of the Australian soil micronutrient research was
completed. Errors may arise at various stages of the soil or plant

15testing process. Appropriate procedures for sampling the soil or
pasture are essential to achieving accurate analytical results,
and are particularly important with soil because of the marked
spatial variability that occurs in paddocks. Herbage may be
contaminated by soil before or during collection, or by dust

20during the drying and grinding operations, and such
contamination will increase the apparent concentration of
micronutrient elements, especially Fe, Co and I, whose
concentration is much greater in soil than in plant material.

Samples, particularly of plant material, can be subject to
25contamination from the packaging used during collection or

storage; various types of plastic and paper contain appreciable
amounts of some micronutrient elements, especially Zn and B
(Bell and Dell 2008). In addition, soil, plant and animal tissue
samples can all be contaminated during drying and grinding

30through abrasion of the grinding mechanism. Steel components
may contaminate the samplewith Fe, brass componentsmay add
Cu and Zn, and rubber fittings may add Zn (Bell and Dell 2008).

Soil tests

Micronutrient availability in soils can be assessed by using
35chemical and biological tests. Various chemical extractants

including mineral acids (e.g. 1 N HCl), salt solutions (e.g. 0.01
M CaCl2), buffer solutions (e.g. 1 M NH4OAc) and chelating
agents (e.g. DTPA) have been used to measure micronutrient
availability in soils (Sutton et al. 1984; Payne et al. 1988; Sims

40and Johnson 1991; van der Watt et al. 1994). For micronutrient
metals, chelating agents such as EDTA and DTPA are usually
more reliable (Sims and Johnson 1991) because they are more
effective in removing potentially plant-available soil fractions.
One of the most well-calibrated soil tests for micronutrients

45in pastures in southern Australia is the DTPA Zn soil
test, developed for prognosis of potential Zn deficiency
in subterranean clover (Brennan and Gartrell 1990).
Development of similar calibrations for Zn on other pasture
species would require many new field experiments on a range of

50soil types. Considering that Zn deficiency rarely exists now
owing to the widespread use of fertilisers that contain Zn, the
conditions are not available to acquire such new experimental
data readily. Themore feasible approachwill be to determine the
response of the new species relative to that of subterranean

55clover on a limited selection of soil types. A similar approach
was suggested by Conyers et al. (2013) to address the paucity of
soil test data for pulses and oilseeds relative to wheat.

Table 2. Residual values proposed for a range of micronutrients for
pasture production and animal nutrition, based on the recommended
application to originally deficient soil for set-stocking systems in south-

west Australia or for tropical pastures

Element Residual value (years) Source

Copper 15–20 Brennan 2006
Zinc 15–20 Brennan and Bolland 2006, 2007
Molybdenum 5–10 Brennan 2002

2–5A Johansen et al. 1977
Iron 2–3 Brennan and Highman 2001
Cobalt 1–2 Adams et al. 1969

AFor tropical pasture legumes, on a range of soil types.

Micronutrients for pastures in Australia Crop & Pasture Science G
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Reuter et al. (1983) suggested that plant species differ in
characteristics of Cu uptake and translocation within the plant.
Therefore, it is likely that separate calibrations for soil Cuwill be
required for different plant species, as has been found for soil

5 testing for phosphorus (Bell et al. 2013a, 2013b). We consider
it highly unlikely that soil-test Cu calibrations will now be
developed for a range of pastures on different soils in
Australia. This would require many field experiments over
many years, as well as a range of soil types that are Cu-

10 deficient. Such conditions are less common now owing to
widespread use of fertiliser Cu on soils that were originally
deficient across Australia. As discussed above for Zn, there
would be merit in determining the response of new pasture
species to Cu relative to the response of subterranean clover.

15 It would then be feasible to adapt the clover Cu decision tools to
the alternative pasture species.

Critical values for predicting micronutrient limitations in
pastures are reported in Peverill et al. (1999). Most of the soil
tests are based on sampling the 0–10 cm layer during the dry

20 season and using standardised laboratorymethods (Rayment and
Lyons 2011).

Although soil tests are not as accurate as plant tests for
predicting micronutrient deficiencies, they can be useful for a
general assessment of the risk of deficiency, and to identify

25 changes in availability due to soil-management practices such as
lime application and no-till cropping and as a consequence of
increasing acidity.

An alternative approachwas developed byWong et al. (2005)
for B, for which no calibrated soil tests had been developed. This

30 involveddevelopinga risk-predictionmap forBdeficiencybased
on soil pH, soil texture, geology, and limited cases of B response
in crops toB fertiliser in pot experiments. This approach could be
applied across pasture-growing areas in Australia to develop
deficiency risk maps that reflect current farming systems as well

35 as the inherent risk of deficiencies as described by Hayes et al.
(2019).

Plant tests

Plant tests are inherently more reliable than soil tests for
predicting micronutrient deficiencies because the

40 concentration in the plant relates directly to plant
requirements and represents the integrated effect of various
factors that determine uptake by the plant (Smith and
Loneragan 1997). Plant tests are used for diagnosis of
observed or suspected disorders (deficiency or toxicity), for

45 the prognosis or prediction of a disorder that may emerge
later in the growing season, or for monitoring long-term
trends in nutrient status (Smith and Loneragan 1997). The
most accurate plant tests are those based on defined young
leaves of pasture species (Smith and Loneragan 1997). Such

50 leaves tend to reflect current nutrient supply to the plant from
soils and hence reflect the current availability for pasture growth.

Whole shoot samples are used by some commercial testing
services (e.g.NUlogic; CSBP,Kwinana,WA).Whole shoots are
easier to samplebutmay reflect earlier growth conditions and soil

55 nutrient supply rather than current conditions. In the case of the
phloem-immobile or variably mobile micronutrients (B, Cu, Fe,
Mn, Zn), high concentrations that accumulated in old leaves

during early growth may give a false diagnosis of adequate
supply (Smith and Loneragan 1997); in the same plants, under
current soil supply, young leaves may contain deficient
concentrations.

5Whether young leaves or whole shoots are sampled,
diagnosis depends on calibrated critical concentration or
critical ranges for that nutrient defined for a specified time
of sampling. Reuter and Robinson (1997) provide the most
comprehensive listing for pasture species in Australia

10of critical concentrations for the diagnosis and prognosis of
micronutrient deficiencies. A selection of critical
concentrations is provided in Table 3. However, there is a
paucity of calibrated critical-range data for micronutrient
deficiencies in new pastures species.

15Fertiliser decision-making practices for micronutrients

For micronutrients such as Cu, Zn and Mo that generally have a
long residual effectiveness in soils, paddock-by-paddock records
of the last time of micronutrient fertiliser application probably
provide the most useful information for micronutrient-fertiliser

20decisionmaking. Simple models such as that of Brennan (2005),
as reported in Bell and Dell (2008), based on estimated
availability of fertiliser, annual removal and the input from
fertiliser can be useful in estimating the frequency of re-
application (Table 4). Based on this model, in cases where

25Zn-enriched fertilisers are applied regularly, Zn supply to
pastures should be indefinitely adequate as long as there is no
major change in rate of removal or an increase inZn reactionwith
the soil. Lime application is a soil-management practice thatmay
decrease availability and hence trigger a need to re-assess the

30residual value of the Zn fertiliser (Brennan et al. 2005).
Another approach would be to conduct soil tests every

5–7 years to monitor the micronutrient status in soils that
have previously had additions of micronutrient fertiliser and
are receiving small supplementary additions on a regular basis in

35macronutrient fertiliser.Althoughsoil testing isnot as reliable for
predicting crop responses to micronutrient fertilisers, repeated
soil testing over time can be useful for establishing a time trend.
This use of soil testing should detect declines over time in
availability, or significant changes in availability due to lime

40or other soil-management practices.
Plant tests early in the season can be used to determine

whether remedial applications by foliar application are needed
during the season.

Table 3. A selection of critical concentrations (mg kg–1) of
micronutrients for maximum pasture production, in youngest open
leaves and whole shoots of subterranean clover before flowering

(Pinkerton et al. 1997)

Youngest open leaves Whole shoots

Copper 4.3–5.5 <3.5–4.5
Zinc 15–25 10–15
Molybdenum 0.1–0.2 0.1–0.2
Boron 20–24 –

Iron 50–75 –

Manganese 15–20 –

Cobalt <0.04 <0.04–0.10
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Micronutrient additions indairy systems areprimarily focused

on animal health rather than pasture production; therefore, these
micronutrient deficiencies are usually corrected by using animal-
based interventions such as licks, injections or boluses. Decisions

5 about micronutrient interventions for animal health are usually
informed by past or present deficiency symptoms in the animals
on the farm or at a nearby farm, or, more rarely, by soil or forage
test results (PJM Raedts, pers. comm.).

Themajority ofAustralian dairy farmers are usingN-fertiliser
10 application to drive pasture growth and arewary of having a large

legume component because of the risk to livestock of bloat.
Therefore, they tend to have a small legume component in their
sward. Hence, Co and Se, which are required by rhizobia but not
for grass growth, arenot often applieddirectly topastures in dairy

15 systems. Furthermore, even the models and courses that
researchers, advisors and consultants use to make fertiliser
decisions or give fertiliser guidance, such as DairyMod
(Johnson 2016), SGS Pasture Model (Johnson 2016), Dairy N
Fertiliser Advisor (Stott et al. 2015) and Fert$mart (Dairy Soils

20 and Fertiliser Manual Team 2013), have little or no inclusion of
micronutrient management and fertilisation. Inclusion of
micronutrients in these models and courses could be useful to
improve animal health and legume N fixation for organic and
low-input systems.

25 Conclusions

For management of micronutrients in pastures, growers face a
dilemma.On the one hand, for old clover-based pastures systems
in WA and SA, there is rich literature on management of
micronutrients, especially Co, Cu, Mo and Zn (less so Mn).

30 However, it is not clear howmuch of this knowledge can still be
applied in those areas because of changes in farming systems and
practices, or whether it is reasonable to extrapolate to other parts
of Australia with different soils, climates and pasture species.
On the other hand, there is limited contemporary research

35 on micronutrient status of pastures. Given this uncertainty, an

updated assessment of micronutrient status in representative
pasture systems in Australia is warranted, to define the
knowledge gaps that are hampering pasture productivity or
animal productivity and health.
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