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Abstract 

BACKGROUND: Near Infrared Reflectance Spectroscopy (NIRS) technology can be a 

powerful analytical technique for the assessment of plant starch, but generally samples need 

to be freeze-dried and ground. This study investigated the feasibility of using NIRS 

technology to quantify starch concentration in ground and intact grapevine cane wood 

samples (with or without the bark layer). A partial least squares (PLS) regression was used on 

the sample spectral data and was compared against starch analysis using a conventional wet 

chemistry method.  

RESULTS: Accurate calibration models were obtained for the ground cane wood samples (n 

=220), one based on 17 factors (R2 = 0.88, root mean square error of validation (RMSEV) of 

0.73 mg.g-1) and the other based on 10 factors (R2 = 0.85, RMSEV of 0.80 mg.g-1). In 

contrast, the prediction of starch within intact cane wood samples was very low (R2 = 0.19). 

Removal of the cane bark tissues did not substantially improve the accuracy of the model (R2 

= 0.34). Despite these poor correlations and low ratio of prediction to deviation (RPD) values 

of 1.08-1.24, the root mean square error of cross-validation (RMSECV) values were 0.75-

0.86 mg.g-1) indicating good predictability of the model.  

CONCLUSION: As indicated by low RMSECV values, NIRS technology has the potential to 

monitor grapevine starch reserved in intact cane wood samples.   
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Introduction 

 

Deciduous woody species (such as Vitis vinifera) rely exclusively on starch reserves 

accumulated in summer to support new root and shoot growth in the following spring.1-4 

Grapevine starch reserves stored in cane wood and root have been shown to vary within and 

between seasons depending on climatic and management factors5-6 and also between 

varieties.2 Therefore, knowledge of  starch level in winter would provide opportunities to 

make informed management decisions for the subsequent season.  

 

Traditionally, quantification of starch concentration has relied on wet chemistry analytical 

methods based on colourimetric or chromatography analyses. 4,7-8 These methods are time 

consuming and labour intensive with samples typically dried and ground before extraction 

with a solvent in the laboratory. Recent work has highlighted the lack of consistency in starch 

measurement among wet chemistry methods and laboratories. 9-10 Alternative approaches 

have been explored including reflectance spectroscopy combined with on-solid iodine 

complexation11 and in vivo x-ray micro CT technology12. Chemometrics combined with near-

infrared reflectance spectroscopy (NIRS) has the potential to provide a faster and more 

reliable approach for quantification of starch concentration in various tissues. 13-14 
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NIRS is a powerful technique that has enabled rapid analysis of various compositional 

parameters in wine grapes, must and grapevine tissues13, 15-16, grapevine water potential 17-19 

and starch. Accurate predictive models of starch have been reported for a range of woody tree 

systems including grapevine, Vitis spp.8, 20-21, 73 tree species22 and Eucalyptus globulus23 

using dried and ground samples. It is currently unknown if NIS can be used to predict starch 

on intact cane wood samples though this technology has been used to successfully predict a 

range of chemical and physical wood properties of intact timber samples. The accuracy of the 

models was influenced by factors such as sample surface preparation, sample thickness and 

surface texture. 24-26 

 

In contrast to conventional wet chemistry methods, NIRS could allow analysis of a large 

number of samples as sample preparation is relatively straightforward and no chemical 

reagents are necessary. Further, the possibility of simplifying sample presentation i.e. using 

whole canes instead of ground samples could dramatically increase sample throughput and 

potentially allow for non-destructive in vivo measurement in the field with a portable NIRS. 

 

In experiments described here, starch concentration of ground and intact grapevine cane 

wood tissues was analysed using a traditional wet chemistry method as well as by spectral 

analysis to explore the potential for using multivariate data analysis to develop a rapid tool 

for the estimation of starch concentration in intact and ground grapevine tissues. To our 

knowledge, this is the first study to report the feasibility of NIR spectroscopy for the 
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determination of starch in intact cane wood samples, with or without bark. We hypothesised 

that removing bark, which could interfere with the NIR starch signal, may improve the 

accuracy of the predictive model. 

 

Materials and methods 

Plant material 

In 2010 (n = 59), 2011 (n = 107) and 2012 (n = 39), cane wood samples were sourced from 

five commercial vineyards in southern Tasmania, Australia (vineyard a: 42°37’55”S, 

146°48’28”E; vineyard b: 42°48’28”S, 147°25’42”E; vineyard c: 42°45’49”S, 

147°23’15”E; vineyard d: 42°48’28”S, 147°25’26”E; vineyard e: 42°49’11”S, 

147°50’32”E). These samples were chosen to represent a range of analytical values, growing 

years, conditions (aspect, soil, vine age (i.e. 8 to 16 years-old) and vigour), pruning systems 

(cane and spur pruning) and grape varieties (i.e. Pinot Noir and Chardonnay growing on own 

roots). The climate is cool temperate with an annual mean rainfall of ~600 mm (Australian 

Bureau of Meteorology, www.bom.gov.au). The rainfall in 2010, 2011, 2012 and 2018 was 

531, 759, 595.5 and 535.2 mm, respectively (www.bom.gov.au). It is worthy to note that the 

total annual rainfall in 2011 was 27% higher than the long-term average value. Mean daily 

maximum/minimum temperatures are 22.5/12.5 °C and 12.0/4.0 °C in summer and winter, 

respectively (www.bom.gov.au). To minimize tissue variability due to unstable phenological 

phases, all wood samples were collected during winter dormancy at pruning (June). 
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Additional samples harvested in 2018 (n = 148) were sourced from vineyard c, Pinot Noir 

block. The vines were 18-years-old and cane pruned. 

 

Sample preparation for grinding 

Cane internodes (excluding buds) collected in 2010-2012 were cut into approximately 3 cm 

segments, and freeze-dried using a freeze-drier (Christ beta 1-8LD plus). These samples were 

firstly ground to be able to pass through a 1 mm sieve using an IKA Cutting Mill (A11 basic 

Analytical mill) then all samples were finely ground into a powder using a Mixer Mill MM 

200 (Retsch, Haan, Germany). Samples from 2018 were freeze-dried as above, then directly 

ground into a fine powder with a Mixer Mill MM 200. All ground samples were stored at -20 

°C pending NIR analysis, which was carried out within one month following collection in 

each season. Every tenth sample was done in triplicate to assure quality control of the 

laboratory method. The laboratory error of 0.19 mg.g-1 was determined by the average 

standard deviation of the triplicate analysis.  

 

 

Spectral measurements 

NIRS analysis was performed using a FT-NIR spectrophotometer (Bruker MPA, Ettlingen, 

Germany) at ambient temperature (~20 °C). Ground samples were placed into 7 mL glass 

vials for NIRS analysis. For the fresh intact cane wood samples, NIR spectra of each sample 

were recorded using a fibre optic probe at five different positions along the cane segment, 

which were then averaged to a single spectrum. Immediately after, this procedure was 
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repeated on the same sample after the bark had been removed using a scalpel. Absorbance 

spectra were taken from 12,500 to 4000 cm-1 with a spectral resolution of 8 cm-1 and 64 scans 

(vials) or 5 x 4 scans (fibre optic probe) per sample. The intact samples were then progressed 

to freeze drying and grinding as explained previously. 

 

Chemical analysis 

 

Soluble sugars were extracted from 100 mg powdered samples in 3 mL of 80% ethanol 

incubated in a water bath (60 °C) for 1 hour and then centrifuged (4000 g) for 10 min at 16 

°C. The extraction was repeated twice. The concentration of insoluble starch (expressed in 

mg g-1 of glucose equivalents) was analysed using a commercial enzyme assay kit (Total 

Starch Assay Procedure, K-TSTA-50A/K-TSTA-100A 08/16, Megazyme International, Bray, 

Ireland). The samples were determined with a Genesys 10S UV-Vis spectrometer (Thermo 

Fisher Scientific, Madison, WI, USA). Standardized regular maize starch control was used 

for the calibration curve. A D-(+)-glucose standard (1.0 mg/mL in 0.2% (w/v) benzoic acid) 

was run with every batch of 10 samples. The starch concentrations are reported as the 

percentage of dry matter. 

 

Chemometrics and data analysis 

A partial least square (PLS) regression model was created correlating the quantitative starch 

data with the corresponding NIR spectra using the Unscambler® X software (version 10.1, 

CAMO Software, Oslo, Norway). Principal component analysis was performed to detect 
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potential spectral outliers27, defined as those data points having a Mahalanobis distance (i.e. 

data point to centroid) greater than three. 28 

We used the NIPALS algorithm (Non-linear Iterative PLS) for the determination of loadings 

and scores. The scores and loadings were calculated pair-by-pair by an iterative procedure. 

For the ground cane wood starch model, the data set was randomly divided into two groups 

prior to applying the PLS procedure – one group would be used for either the calibration 

model (n = 220) or the external validation model (n = 133) to assess the calibration equation 

as a prediction model. We chose the external validation approach over the cross-validation 

procedure to obtain true independent validation29. For the intact cane wood samples, cross-

validation of the model was preferred due to overall small sample number. 

Numerous calibration models were trialled using different and a combination of spectral –

pre-processing and spectral ranges. The performance of the validation and cross-validation  

models were evaluated by the root mean square error of validation (RMSEV) or the root 

mean square error of cross-validation (RMSECV), the bias, ratio of performance deviation 

(RPD), the regression coefficient (R2) between the predicted and reference values and 

RMSEV relative to the laboratory error. RMSEV or RMSECV expresses the average error of 

validation that is indicative of the error for future predictions when the model is applied to 

unknown samples. 30 RPD (calculated from the ratio of the SD of laboratory references 

values to RMSEV or RMSECV) is a useful statistic that gives an assessment of the predictive 

power of the model relative to the data range. The RPD values should be larger than 2.5, 

however, lower RPD values can result from a narrow range of the reference values (small 
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SD) or to a large error in the prediction (RMSEV or RMSECV) as compared with the 

variability of the reference values31-32.  

 Results  

 

Ground cane wood samples 

Table 1 shows the range between maximum and minimum values, mean and SD for starch 

concentration of the calibration and the validation sets analysed by reference methods. 

Chemical variation found in the reference analyses could be considered acceptable and wide 

enough for the development of the aimed calibration equations for the ground cane wood 

samples however, it the range of the intact cane wood samples was more limited (i.e. 5.9 to 

8.3%) (Table 1). Figure 1 shows the absorbance spectra of all ground cane wood samples. 

The wave number range of 4250–8000 cm−1 was used to develop the calibration models. 

 

The score plots of Factors 1 and 3 of the starch prediction model indicate that clustering of 

spectral data was evident for growing season (Fig. 2) but not variety, pruning method and 

vineyard (data not presented). Despite this clustering, PLS regression of NIRS spectra and 

laboratory values produced a good calibration model (Fig. 3; Table 2). The best calibration 

model based on high R2 and low RMSEV was achieved by using a Multiplicative Scatter 

Correction (MSC) for the spectral range between 4246-9404 cm-1. A 17-factor model gave 

the highest R2 and the lowest RMSEV (Model A; R2 = 0.88, RMSE = 0.73 mg.g-1), however, 

a much simpler model comprising of only 10 factors (Model B) produced an only marginal 

lower R2 of 0.85 and a slightly higher RMSEV of 0.80 mg.g-1 (Table 2). The RPD values of 
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both models were above 2.5 (Table 2). The histogram plot of starch concentrations of ground 

cane wood samples (Appendix 1a) showed a non-normal distribution due to the skew towards 

high measured starch results.  

 

Factors 1 to 3 explained 64% of the variation (i.e. Factor 1: 49% (variance), 13% 

(contribution to the model), Factor 2: 47%, 10%, Factor 3: 3%, 41%). Factors 1 to 3 and in 

particular, Factor 3, show that the major regions of interest occurred between 4000 to 8000 

cm-1 (Fig. 4), a region that contains many vibrational signals related to starch.33 In particular, 

dominant bands attributed to starch included 5300-5200 cm-1 (amylose and amylopectin helix 

structures), 4700-4600 cm-1 (C-H stretching and C-O stretching combination) and 4420-4283 

cm-1 (C-H stretching and CH2 deformation combination band). In addition, the complexity of 

the model suggests that it most likely also includes variation in lignin and cellulose.  

 

Intact cane wood samples 

NIR spectra of intact wood sample correlated poorly with the starch values as indicated by 

the low R2 (0.19) and RPD (1.08) values (Table 1). The removal of bark did not improve the 

accuracy of the predictive model (0.34; Table 1). However, the low RMSEV values (< 0.85 

mg.g-1) of intact cane wood indicate similar predictability of the model, and was comparable 

to the larger data set of ground cane wood samples. The histogram plot of starch 

concentrations for intact cane wood show a non-normal distribution with a skew towards 

medium values due to a lack of low starch concentrations < 6% (Appendix 1). 
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Discussion 

 

A good predictive model was obtained for freeze dried and ground cane wood, as similarly 

reported for ground grapevine trunk tissues using PLS and NIRS (R2 = 0.79 and RMSEP= 

1.29% DW21), and PLS and ATR-FT-MIR (R2 = 0.95 and RMSEP= 1.43% DW20). While the 

predictability of Model B was better than Model A, Model A is more robust in practical 

applications as it is based on 10 factors only. Histogram plots of starch concentrations show a 

non-normal distribution due to the skew towards the high measured starch results. Therefore, 

the accuracy of model A could be further improved by expanding the dataset to include 

additional low starch values. Despite the first three factors explaining 99% of the spectral 

variation, a further seven were required to improve the accuracy of the model – such a high 

number most likely reflects the complexity of the data set, which included samples obtained 

across four growing seasons, two grape varieties, two pruning systems and five commercial 

vineyards. Although only growing season was found to cause clustering of the spectral data 

(most likely due to differences in total annual rainfall, particularly in 2011), the other factors 

are also likely to contribute to the variation of the data set. Nonetheless, the RPD values of 

both models were above 2.5, indicating that both models are very reliable. The relative error 

of RMSEV versus laboratory error of the triplicate starch measurements was surprisingly 

high ranging from 3.8 to 4.2, however this is partly due to a very low laboratory error (i.e. 

0.19 mg.g-1) as determined in this study as compared to previous studies which are much 

higher, ranging from e.g. 3-5 mg.g-1.23 
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The correlation of NIR spectra to starch concentration for intact cane wood samples was 

poor, even with the removal of the bark layer. A closer examination of the distribution of 

starch granules in cane wood confirm that they are largely occurring in the ray parenchyma of 

the xylem and phloem (Fig. 5). For such non-homogenous samples, capturing this large 

variation may be challenging, particularly as the penetration depth into the sample of 

reflectance measurements is quite small. According to the literature, the penetration depth of 

wood tissue and powders can range from 300 µm up to 4 mm depending on the physical, 

optical and composition characteristics of the sample. 34-35 

 

NIRS analysis of intact Pinus taeda wood samples showed poor calibrations of specific 

gravity and insoluble lignin, most likely due to variation in moisture content and surface 

roughness. 36 In contrast, good calibrations (R2: 0.75 - 0.84, SEC:1.02-1.37) were developed 

for predicting extractives, lignin and cellulose contents from solid wood samples of E. 

globulus. 24 Strong calibrations of physical properties (e.g. density, modulus of elasticity and 

modulus of rupture) were obtained for intact wood surfaces (both radial and transverse), 

particularly using a larger-sized probe (spot size of 10 mm) which enabled it to capture more 

sample variability.26 In this study, the probe circular spot size was 3 mm, and we addressed 

the heterogeneity of the cane wood surface by analysing 5 different spots. However, this 

could not address the variation in the longitudinal distribution of starch in the sample.  

 

Despite the poor correlation and low RPD, it is worthy to note that the RMSECV values of 

intact cane wood samples were similar to those obtained for ground cane wood samples 
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suggesting good predictability of the model. As shown is Appendix 1, there was a non-

normal distribution with a skew towards medium values in the intact cane wood samples. 

Previous work has demonstrated RPD to be a less reliable indicator of the quality of the 

model for non-normally distributed datasets. 37 As such, future work should aim to include a 

more even distribution of a large range of starch concentrations to improve the correlation. 

Further, increased sampling that includes season and variety variability would also allow the 

development of a more robust model, as has already been developed for ground plant 

samples.9,14,21 Therefore, it is still worth pursuing the use of intact samples for predicting 

starch concentration by NIRS, if not for non-destructive real time measurements in the field, 

but to reduce the sample preparation time of collected samples. Collecting NIR spectra from 

transverse and/or longitudinal sections of the cane wood rather than from the outer surface of 

the cane wood, as done in this study, may also help improve the correlation. Similar to the 

standard procedure used for intact timber core increments, these intact cane wood samples 

could also be dried to reduce the effect of moisture content on the accuracy of the model. 

While the values associated with ground wood calibrations have shown to be generally higher 

than those obtained for solid wood24, the advantages to using solid wood calibrations may 

outweigh the slight decrease in accuracy.  

 

Conclusions 

Consistent with previous studies, the current results show that NIRS technique is suitable for 

the determination of grapevine reserve carbohydrate of ground cane wood samples, despite 

clustering across growing year. For the intact cane wood samples, while only a single season 
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was examined, the results indicated that, despite poor calibrations, NIRS has the potential to 

assess the starch content of intact cane stems as evidenced by low RMSECV values. Contrary 

to our hypothesis, removal of the cane bark tissues did not substantially improve the accuracy 

of the model.  
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Table 1. Statistical summary for the parameters used in the present paper, separately showing 

the a) calibration and b) validation datasets. SD = standard deviation. Standard error of 

laboratory = 0.19 mg.g-1 

      Sample (n) Mean Min Max SD 

Calibration data set   

Starch concentration (mg.g-1) of ground 220  6.7 1.8 10.4 1.87 

cane wood samples (2010-2012 & 2018) 

Validatation data set      

Starch concentration (mg.g-1) of ground 133  6.9 2.1 10.4 2.08 

cane wood samples (2010-2012 & 2018) 

Starch concentration (mg.g-1) of intact  147  8.2 5.9 10.8 0.93 

cane wood samples (2018 only)
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Table 2. Calibration statistics for the estimation of starch concentration (mg.g-1) for ground and intact cane wood (Vitis vinifera) obtained by 

PLS regression.  

Sample type        Bias  R2(V) or R2(C)  RMSEV or RESEC (mg.g-1) RPD    

Ground cane wood samples*  

Independent validation Model A (10 factors)   -0.01  0.85    0.80   2.6    

   

Independent validation Model B (17 factors)   -0.05  0.88    0.73   2.85    

2018 intact cane wood (with bark)    

Cross-validation data       0.004  0.20    0.86   1.08    

2018 intact cane wood (no bark)  
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Cross-validation data       0.001  0.36    0.75   1.24    

* included data from 2010, 2011, 2012 and 2018 growing seasons, RPD (residual predictive deviation) = SD of laboratory values/RMSEV or RMSEC

This article is protected by copyright. All rights reserved.



 
 

 

Figure 1. Absorbance (A) raw, and (B) multiplicative scatter correction spectra acquired for 

ground cane wood (Vitis vinifera) collected over four seasons (2010, 2011, 2012 and 2018). 

A 

B 
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Figure 2. PLS score plot for starch concentration (%) of ground cane wood (Vitis vinifera) 

obtained across four growing seasons [2010 (open square), 2011 (circle), 2012 (grey square) 

and 2018 (black triangle)]. 
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Figure 3. Relationship between starch concentration (%) of ground cane wood 

(Vitis vinifera) measured with the standard reference methods (x-axis) and those predicted by 

NIR (y-axis) for data collected over four seasons (2010, 2011, 2012 and 2018) for Model A 

(10 Factors) and Model B (17 Factors). Linear fit in black while dotted line fit 1:1 line. N = 

220 and 133 for predicted and independent validation models, respectively. 
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Figure 4. The first three partial least squares regression coefficients (Factors 1, 2 and 3) for 

the partial least square model developed to predict starch concentration (%) using the 

transformed NIR spectrum collected on ground cane wood (Vitis vinifera) obtained across 

four growing seasons (2010, 2011, 2012 and 2018). 
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Figure 5. Light micrographs of transverse section, stained with 1% aqueous solution of 

iodine-potassium iodide, showing starch grains (arrows) in the ray parenchyma of 

Chardonnay (A) and Pinot Noir cane wood (B). Scale bar = 2 mm 
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 Appendix 1. Histograms of starch concentration (%) of A) ground cane wood (Vitis vinifera) 

obtained across four growing seasons (2010, 2011, 2012 and 2018) and B) intact cane wood 

obtained in 2018. 

A 

B 
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