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Abstract: The Tasmanian devil (  Sarcophilus harrisii  ) is the only mammalian species known to
be affected by multiple transmissible cancers. Devil facial tumour 1 and 2 (DFT1 and
DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers
known as devil facial tumour disease (DFTD). The long-term persistence of wild
Tasmanian devils is threatened due to the ability of DFTD cells to propagate as
contagious allografts and the high mortality rate of DFTD. Recent studies have
demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the
Schwann cell lineage, an uncommon origin of malignant cancer in humans. This
unprecedented finding has revealed a potential predisposition of Tasmanian devils to
transmissible cancers of the Schwann cell lineage. In this review, we compare the
molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and
DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian
devil. We discuss a potential mechanism whereby Schwann cell plasticity and frequent
wounding in Tasmanian devils combine with an inherent cancer predisposition and low
genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare
occasions.

Response to Reviewers: We appreciate the suggestions and have incorporated all into the revised version.
Thank you.
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Reviewer comments

Minor comments:
#1 Page 2: "Transmissible cancers emerge when key enabling factors, such as a
mechanism for ongoing transmission ... from one individual to another." This phrase
should be reformulated, it is an attempt to have an enumeration of factors that in
combination lead to transmissibility. However, the phrase is vague and the only
element in the enumeration is the route of transmission. This phrase could be a sum-
up of the elements nicely described in the "Factors predisposing devils to transmissible
Schwann cell cancer" section.

Response:

Thank you for the suggestion. Our strategy was to highlight that multiple factors are
required, without providing detail, as this is covered later. But agree that our submitted
version was vague.

We  modified-

“Transmissible cancers emerge when key enabling factors, such as a mechanism for
ongoing transmission (e.g. biting, coitus), combine to overcome these barriers and
permit cancer transfer from one individual to another.”

To

“Transmissible cancers emerge when key enabling factors combine to overcome these
barriers and permit cancer transfer from one individual to another. Key enabling factors
include mechanisms for ongoing transmission (e.g. biting, coitus), strategies to
overcome allogeneic barriers (e.g. immune suppression) and a host environment
receptive for the growth and expansion of the transmitted cancer cells. Prior to the mid-
1990s, transmissible cancers were known to have emerged naturally only in Canine
Transmissible Venereal Tumour (CTVT), an ancient venereal sarcoma transmitted
between dogs during coitus [3]. Eight transmissible cancers have since been
described; two nerve sheath tumours in Tasmanian devils [12,13] and six haemic
neoplasias in marine mollusc species [4,8,9]. These discoveries suggest that cancer
transmission could occur more readily in nature than previously thought.”

#2 The references 11 and 12 should be inter-changed as chronologically the discovery
of DFTD1 and the Science paper 2010 should come first.

Response:

We have interchanged references 11 (now [12]) and 12 (now [13]) throughout the
paper to reflect the chronology of the discovery of DFT1 and DFT2.

#3 The geographic map of Tasmania is a very helpful visual aid to situate and follow
the spreading of the DFTDs. What is usually missing from these maps are geographic
barriers (i.e. high mountain chains) that could influence the spreading.

We thank the reviewer for this suggestion. We have altered this figure to include a
topographical map of Tasmania to demonstrate the geographical barriers to DFT
spread.

New figure:

Legend changed from
Fig. 1. Topographical map demonstrating distribution and spread of DFTD. DFT1 was
first observed in Mount William National Park (wukalina) in 1996 and has spread from
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east to west across the majority of the state. Only the far north-west and south-west of
Tasmania are believed to be DFT1-free. DFT2 was first observed in the
D’Entrecasteaux Peninsula region in 2014. DFT2 currently remains localised to this
region.
To

Fig. 1. Topographical map demonstrating distribution and spread of DFTD. DFT1 was
first observed at Waterhouse Point in Mount William National Park (wukalina) in 1996
and has spread from east to west across the majority of the state. Initially DFT1 spread
spread south and west to almost half the of the known devil habitiat. Geographical
barriers such as mountains (shaded brown) and rivers then affected the spread.
Consequently only the far north-west and south-west of Tasmania are believed to be
DFT1-free. However, DFT1 has caused approximately an 80% devil population decline
[22].  Ultimately DFT1 will reach the far north-west. Despite evidence for pockets of
devil populations it is unlikely that DFT1will reach the south-west of Tasmania as this
area is rugged and unsuitable devil habitat. DFT2 was first observed in the
D’Entrecasteaux Peninsula region in 2014. DFT2 currently remains localised to this
region [7] as the area is surrounded by mountain ranges and the sea.
Heat map represents topography in meters and distance scale is in kilometres. The
topographical map was sourced from Wikimedia Commons
(https://upload.wikimedia.org/wikipedia/commons/2/21/Topography_of_Tasmania.jpg)
and author (AP) overlaid the distribution and spread of DFT1 and DFT2.

#4 Page 4: "A genome wide CRISPR/Cas9 screen proposed that the epigenetic
silencing of the MHC-I processing ..." This phrase is confusing as the study is mainly
focused on mouse and human cancer studies which should be mentioned. The study
mentions that the PCR2 link to MHC-I epigenetic silencing could also explain DFTD1
observations, based on chemical inhibition of H3K27me3 in the DFTD1 cell line.
Tuning down and putting this discovery in its context would improve the accuracy.

Response:

In order to be brief we overlooked the potential to simplify and inadvertently overstate
the results. The reviewer correctly highlighted the confusion that resulted
(human/mouse versus devil).

We modified-

“A genome wide CRISPR/Cas9 screen proposed that the epigenetic silencing of the
MHC-I processing pathway in DFT1 is related to the polycomb repressive complex-2
(PRC2) [33].  Currently, MHC-I loss provides the basis for understanding the
transmission of DFT1 across genetically-diverse devil populations.”

To

“To characterize mechanisms that lead to MHC-I silencing in human cancers a
genome wide CRISPR/Cas9 screen of the MHC-I negative human erythroleukaemic
cell line, K562, was undertaken [34]. The polycomb repressive complex 2 (PRC2) was
shown to cause transcriptional silencing of the MHC-I antigen processing pathway.
Reversal of PRC2 inhibition was also found to induce expression of multiple MHC-I
genes in DFT1 cells. This led the authors to suggest that epigenetic silencing of the
MHC-I processing pathway in DFT1 is related to the PRC2.  Currently, MHC-I loss
provides the basis for understanding the transmission of DFT1 across genetically-
diverse devil populations.”

#5 The authors should mention that the isolation and study of Schwann cells in general
is very challenging and that even more so for the Tasmanian Devil, where the perfect
control for DFTD, isolated Schwann cells or cell line, is not available yet.

Response:

Thank you for the suggestion. It is valuable to reinforce some of the obstacles to
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research.

We added-

“The origin of both DFT1 and DFT2 from Schwann cells indicates a predisposition of
devils to transmissible cancers of this specific cell lineage. However, investigation of
this predisposition in devils has been hampered by difficulties in developing stable
Schwann cell lines. This difficulty is further exacerbated because the source of the
primary material (neonatal devils) is rare due to the endangered status of the
population. Studies into the nature of Schwann cells in other species will instead
provide clues as to how Schwann cells were transformed into transmissible cancers in
Tasmanian devils.”

Immediately prior to the “Schwann Cell functions and DFTD” section.

#6 Page 7: To ensure a better readability of the "Repair Schwann cells" section, the
paragraphs could be re-organised so as to present the c-Jun short-time injury repair
system and the sustained injury STAT3 repair program of the Schwann cells. And end
with the paragraph putting both DFTD1 and DFTD2 in the context of these repair
programs.

We have reordered the content of this section as suggested by the reviewer to improve
its readability.

We reordered

From

“In comparison to DFT1 cells, which exhibit characteristics of myelinating Schwann
cells, DFT2 cells exhibit strong activation of mesenchymal pathways and are more
phenotypically similar to repair Schwann cells. This is evident from the gene
expression profile of DFT2 cells, which demonstrates activation of a wide range of
mesenchymal genes and deactivation of myelination pathways [11]. Further research
is required to understand how this mesenchymal phenotype contributes to DFT2
tumorigenesis. As in human cancers, a potential scenario is that strong activation of
mesenchymal pathways enhances proliferation, migration, invasion, ‘stemness’ and
drug resistance in DFT2 tumours [69,70]. Another possibility is that inflammatory
factors released through these pathways aid repression or modulation of anti-cancer
immune responses. A similar scenario has been observed in human lung cancers,
neurofibromas and melanoma, where factors in the tumour microenvironment promote
the trans-differentiation of resident Schwann cells into a mesenchymal repair-like
phenotype [71,72]. These tumour-associated Schwann cells promote tumour
progression via release of inflammatory factors and chemokines such as CXCL5 that
further promote cancer EMT and modulate immunosuppression [72,71,73].
Another important signalling event during the Schwann cell repair response is
activation of the transcription factor signal transducer and activator of transcription 3
(STAT3) [74]. Chronic loss of axonal contact within the distal portion of injured nerves
decreases the regenerative capacity of repair Schwann cells. Reduced production of
growth factors such as bone-derived neurotrophic factor (BDNF) and glial call-derived
neurotrophic factor (GDNF) promotes death of these cells [75,76]. Interleukin-6
(IL6)/glycoprotein 130 (gp130) and neuregulin-1 (NRG1)/ErbB2/3 signalling pathways
activate STAT3 to support the long-term survival of repair Schwann cells during this
loss of axonal innervation [74,77,78]. The NRG1-ErbB2/3-STAT3 signalling pathway is
overactivated in DFT1 through copy number gains and has been identified as a key
driver of DFT1 tumorigenesis [19,47]. Pharmacological inhibitors of this pathway such
as sapitinib killed DFT1 cells in vitro and arrested DFT1 growth in a mouse model [47].
Components of ErbB2/3-STAT3 signalling pathways were also suppressed in DFT1
cells treated with imiquimod, a drug that induces DFT1 cell death via overload of
mitochondrial and ER stress responses [79,80]. These findings suggest that ErbB2/-
STAT3 signalling pathways in Schwann cells are also critical for supporting DFT1
survival.”
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To

“Another important signalling event during the Schwann cell repair response is
activation of the transcription factor signal transducer and activator of transcription 3
(STAT3) [70]. Chronic loss of axonal contact within the distal portion of injured nerves
decreases the regenerative capacity of repair Schwann cells. Reduced production of
growth factors such as bone-derived neurotrophic factor (BDNF) and glial call-derived
neurotrophic factor (GDNF) promotes death of these cells [71,72]. STAT3 is activated
by interleukin-6 (IL6)/glycoprotein 130 (gp130) and neuregulin-1 (NRG1)/ErbB2/3
signalling pathways during this loss of axonal innervation to support the long-term
survival of repair Schwann cells [70,73,74].
Both DFT1 and DFT2 cells display activation of pathways that are up-regulated during
the repair Schwann cell response. Although DFT1 cells predominantly exhibit a
myelinating phenotype, they also display overactivation of the NRG1-ErbB2/3-STAT3
signalling pathway via copy number gains to ERBB3 [20,48]. Pharmacological
inhibitors of this pathway such as sapitinib killed DFT1 cells in vitro and arrested DFT1
growth in a mouse model, suggesting that ErbB2/3-STAT3 signalling is a key driver of
DFT1 survival [48]. Components of ErbB2/3-STAT3 signalling pathways were also
suppressed in DFT1 cells treated with imiquimod, a drug that induces DFT1 cell death
via overload of mitochondrial and ER stress responses [75,76]. In comparison, DFT2
cells demonstrate activation of a wide range of mesenchymal genes and deactivation
of myelination pathways, a similar phenotype to repair Schwann cells [13]. Further
research is required to understand how this mesenchymal phenotype contributes to
DFT2 tumorigenesis. As in human cancers, a potential scenario is that strong
activation of mesenchymal pathways enhances proliferation, migration, invasion,
‘stemness’ and drug resistance in DFT2 tumours [77,78]. Another possibility is that
inflammatory factors released through these pathways aid repression or modulation of
anti-cancer immune responses. A similar scenario has been observed in human lung
cancer, neurofibroma and melanoma, where factors in the tumour microenvironment
promote the trans-differentiation of resident Schwann cells into a mesenchymal repair-
like phenotype [79,80]. These tumour-associated Schwann cells promote tumour
progression via release of inflammatory factors and chemokines such as CXCL5 that
further promote cancer EMT and modulate immunosuppression [79, 80, 81].

Additional changes:

A recent paper (November 5, 2019) has described a ninth transmissible leukaemia
affecting two new mollusc species. We have included this discovery in the introduction
section of the manuscript to ensure that the review contains up-to-date information.

The section now reads

“ As of 2019, only nine transmissible cancers affecting eight animal species have been
identified. These involve dogs (Canis lupus familiaris) [3], Tasmanian devils
(Sarcophilus harrisii) [2,7] and six mollusc species (Mys arenaria, Mytilus trossulus,
Mytilus chilensis, Mytilis edulis, Cerastoderma edule and Polititapes aureus) [4,8,9].”
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Abstract 

The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by 

multiple transmissible cancers. Devil facial tumour 1 and 2 (DFT1 and DFT2) are independent 

neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease 

(DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD 

cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have 

demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell 

lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed 

a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In 

this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with 

DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. 

We discuss a potential mechanism whereby Schwann cell plasticity and frequent wounding in 

Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give 

rise to transmissible Schwann cell cancers in devils on rare occasions.   

Keywords 

Tasmanian devil, devil facial tumour disease, transmissible cancer, Schwann cell, nerve sheath tumour, tumour 

microenvironment 
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Introduction 

Transmissible cancers are neoplastic cell lineages that have acquired the ability to spread between 

individuals as contagious allografts [1-4]. Transmissible cancers originate within a single founder 

animal, are clonal and genetically distinct from the host in all subsequent cases of the disease. Several 

isolated cases of cancer transmission have been observed in humans [e.g. [5,6]], but epidemics 

involving wide-spread and continuous horizontal cancer transmission are rare in nature. As of 2019, 

only nine transmissible cancers affecting eight animal species have been identified. These involve 

dogs (Canis lupus familiaris) [3], Tasmanian devils (Sarcophilus harrisii) [2,7] and six mollusc 

species (Mys arenaria, Mytilus trossulus, Mytilus chilensis, Mytilis edulis, Cerastoderma edule and 

Polititapes aureus) [4,8,9]. The rarity of transmissible cancers is most likely a consequence of highly 

evolved physical barriers, allogeneic defences and anti-cancer immune responses that have been 

shaped throughout evolution to protect against negative effects of ‘non-self’ and oncogenic threats. 

Indeed, allogeneic defences are evident in species as primitive as the basal metazoans and potentially 

developed to prevent parasitism of transferred somatic cells [10,11]. Transmissible cancers emerge 

when key enabling factors combine to overcome these barriers and permit cancer cell transfer from 

one individual to another. Key enabling factors include mechanisms for ongoing transmission (e.g. 

biting, coitus), strategies to overcome allogeneic barriers (e.g. immune suppression) and a host 

environment receptive for the growth and expansion of the transmitted cancer cells. Prior to the mid-

1990s, transmissible cancers were known to have emerged naturally only in Canine Transmissible 

Venereal Tumour (CTVT), an ancient venereal sarcoma transmitted between dogs during coitus [3]. 

Eight transmissible cancers have since been described; two nerve sheath tumours in Tasmanian devils 

[12,13] and six haemic neoplasias in marine mollusc species [4,8,9]. These discoveries suggest that 

cancer transmission could occur more readily in nature than previously thought.  

Investigations into transmissible cancers have the potential to provide insights into mechanisms by 

which nature’s most robust barriers against infection can be overcome to cause disease. The first 

transmissible cancer to be identified in a mammalian species, CTVT, has been endemic in dog 
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populations for thousands of years [14,15]. Consequently, the age of the clonal CTVT cells has 

provided an impediment to investigating the genesis of this cancer. CTVT cells underwent significant 

evolution after emergence to give rise to a well-adapted transmissible cancer that has undergone 

global spread aided by human migration [14]. In otherwise healthy dogs, CTVT has a low capacity to 

become metastatic, can spontaneously regress, and exhibits high sensitivity to chemotherapeutic 

agents such as Vincristine [16-18]. As a result, this transmissible cancer does not pose a significant 

threat to the long-term survival of the dog population.  

In contrast to CTVT, Tasmanian devil populations have been considerably impacted by two fatal 

transmissible cancers that are known collectively as devil facial tumour disease (DFTD) [19,7]. The 

first of these cancers was observed in 1996 and was initially termed DFTD due to its propensity to 

affect the facial area [19]. Since the discovery of a second independent facial tumour in 2014, the 

cancers have frequently been referred to as DFT1 and DFT2 [7]. The recently emerged nature of 

DFT1 and DFT2 has provided a unique opportunity for studies into the requirements for cancer 

transmission in mammalian species. Parallels drawn between DFT1 and DFT2 suggest that these 

cancers did not emerge by chance, but due to a combination of factors that predispose devils to 

transmissible cancers of this type [20,13]. Most striking of these similarities was the discovery that 

both DFT1 and DFT2 arose from founder cells of the Schwann cell lineage [12,13]. Insights into the 

molecular nature of DFT1 and DFT2, Schwann cells and nerve sheath tumours are providing a greater 

understanding of how DFTD tumours emerge in Tasmanian devils.  

Devil Facial Tumour Disease (DFT1 and DFT2) 

The Tasmanian devil is a marsupial scavenger and hunter unique to the Australian island state of 

Tasmania. Aptly named by early European settlers for their unearthly shrieks and seemingly 

cantankerous nature, devils are the apex mammalian predator in Tasmania. Consequently, devils play 

an essential role in the Tasmanian ecosystem [19]. In the mid-1990s, the Tasmanian devil population 

was estimated at approximately 150,000 individuals [19,21]. However, the emergence of DFT1 has 

now reduced numbers in affected populations by an average of 77% [22]. The first observed case of 

DFT1 was in 1996 in Mount William National Park (wukalina) in Tasmania’s northeast (Fig. 1). 

Within twenty years, the disease spread across the majority of Tasmania [19,22]. DFT1 cancers 

present as large, disfiguring masses that severely impact body condition, frequently metastasise to 

internal organs and are usually fatal within six to twelve months of lesion appearance [23,24]. The 

cancers are usually found in and around the oral cavity [23] and are primarily transmitted by devil-to-

devil biting, a common interaction of devils during feeding and mating [25,2,26]. In populations 

where DFT1 is endemic, devils tend to become infected from around two years of age and older 

devils are rarely found [27,28]. This reduction in mature devil numbers has led to increased precocial 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

breeding of females in affected populations, which may allow maintenance of these populations at 

low numbers [27,28,22]. There is no evidence for extinction of local populations as a result of DFT1 

infection, and recent observations of DFT1-driven genetic selection have ignited predictions that 

devils could evolve to resist DFT1 [29,30]. However, with the combined influence of population 

decline and other factors such as vehicle strike, additional diseases and loss of genetic diversity [31], 

it is likely that devil populations will remain endangered for the foreseeable future. 

The initial studies into the nature of DFT1 identified unique chromosomal rearrangements that were 

consistent between different tumours and distinguishable from host tissues [2]. It was apparent that 

the tumour cells were clonal in origin, giving rise to the ‘allograft theory’. This theory proposed that 

DFT1 was a transmissible cancer spread as an allograft during biting behaviours of devils [2]. A devil 

with a pericentric inversion of host chromosome 5 provided the most compelling evidence for 

horizontal DFT1 transmission. The DFT1 cancer affecting this devil did not share this genetic 

abnormality, suggesting that the tumour must have arisen elsewhere [2]. Other studies confirmed the 

allograft theory through microsatellite and major histocompatibility complex class I (MHC-I) 

genotyping of host and DFT1 tissues [32]. An explanation for DFT1 transmission was provided in 

2013 when it was discovered that DFT1 cells lack surface MHC-I molecules, which are required for 

recognition of allogeneic cells by the immune system [33]. Indeed, components of MHC-I processing 

pathways including β2-microglobulin (β2m) and the transporters associated with antigen processing 

(TAP) -1 and -2, are suppressed by epigenetic silencing of MHC-I in DFT1, preventing MHC-I 

exposure at the cell surface [33]. To characterize mechanisms that lead to MHC-I silencing in human 

cancers a genome wide CRISPR/Cas9 screen of the MHC-I negative human erythroleukaemic cell 

line, K562, was undertaken [34]. The polycomb repressive complex 2 (PRC2) was shown to cause 

transcriptional silencing of the MHC-I antigen processing pathway. Reversal of PRC2 inhibition was 

also found to induce expression of multiple MHC-I genes in DFT1 cells. This led the authors to 

suggest that epigenetic silencing of the MHC-I processing pathway in DFT1 is related to the PRC2.  

Currently, MHC-I loss provides the basis for understanding the transmission of DFT1 across 

genetically-diverse devil populations.  

In comparison to DFT1, DFT2 was first observed in 2014 and almost immediately was determined to 

be another transmissible cancer [7]. At the gross level, DFT2 appears almost identical to DFT1. 

However, the tumours were serendipitously determined to be distinct when standard 

immunohistochemical detection of periaxin (PRX), a diagnostic marker of DFT1 tumours [35,12], 

was negative in two tumours obtained from the D’Entrecasteaux Peninsula region of southern 

Tasmania (Fig.1) [7]. Subsequent analysis of the two tumours and further tumours from this region 

revealed chromosomal rearrangements, microsatellite genotypes and MHC-I genotypes that were 

distinct from DFT1 and host tissues, but identical across all the tumours [7]. The presence of a Y 
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chromosome in DFT2 cells confirmed that the tumour arose independently from DFT1, which 

harbours genetic material from two X chromosomes and lacks a Y chromosome [36,7]. DFT2 

currently remains localised to the semi-isolated D’Entrecasteaux Peninsula region. It is unclear how 

this cancer will impact populations of devils already decimated by DFT1 if the disease spreads to 

other regions of Tasmania [37]. Nonetheless, the discovery of a transmissible tumour at an early stage 

of evolution [20] has provided a unique tool for investigating how cancers become transmissible in 

the Tasmanian devil.  

Cellular origins of DFT1 and DFT2 

Early investigations into DFT1 and DFT2 focussed on determining the founder cell type that gave rise 

to these tumours [12,13]. Immunohistochemical studies revealed that DFT1 cells were positive for 

markers of neuroectodermal cells including vimentin, S-100, melan A, chromogranin A and 

synaptophysin [38]. Investigation of the DFT1 transcriptome confirmed this finding and identified a 

gene expression profile that was most similar to peripheral nerve and brain, and distinct from other 

tissue types including spleen, heart, lung, liver, skin, testis and kidney [12]. DFT1 tumour sections 

were also demonstrated to express a range of proteins associated with Schwann cell differentiation 

and myelination, including myelin binding protein (MBP), peripheral myelin protein 22 (PMP22), 

myelin protein zero (MPZ), nestin (NES) and nerve growth factor receptor (NGFR) [12]. This finding 

suggested a Schwann cell origin for DFT1 cancers. The myelin protein PRX provided an excellent 

diagnostic marker for DFT1 due to its high specificity of expression by DFT1 cells [12,35]. 

Immunohistochemical analysis of DFT2 cells demonstrated a similar expression of neuroectodermal 

markers such as vimentin, neural-specific enolase (NSE) and S100, but a lack of myelin-specific 

proteins such as PRX [20,7]. Although PRX was absent, further analysis of DFT2 tumours revealed 

expression of other Schwann cell lineage markers including SRY-box 10 (SOX10), NES and NGFR 

[13]. Total gene expression patterns of DFT2 tumours were also found to be similar to DFT1 and 

peripheral nerve tissues, and different to a range of normal tissues including spleen, brain, heart and 

testis. Together these findings suggested that DFT2 also arose from the Schwann cell lineage, with the 

absence of PRX perhaps indicating a difference in the state of differentiation of DFT2 cells relative to 

DFT1 [13]. This was an unexpected finding due to the rarity of nerve sheath tumours in humans [39].  

The origin of both DFT1 and DFT2 from Schwann cells indicates a predisposition of devils to 

transmissible cancers of this specific cell lineage. However, investigation of this predisposition in 

devils has been hampered by difficulties in developing stable Schwann cell lines. This difficulty is 

further exacerbated because the source of the primary material (neonatal devils) is rare due to the 

endangered status of the population. Studies into the nature of Schwann cells in other species will 
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instead provide clues as to how Schwann cells transformed into transmissible cancers in Tasmanian 

devils. 

Schwann cell functions and DFTD 

Myelinating Schwann cells 

As the principal glia of the peripheral nervous system, Schwann cells have the essential function of 

producing the myelin sheath, a lipid-rich substance that wraps around nerves and is required for the 

rapid conduction of action potentials along neuronal axons. Schwann cells originate in the ectoderm 

and Schwann cells differentiate from neural crest stem cells through three developmental stages; from 

Schwann cell precursors, to immature Schwann cells, and finally to mature Schwann cells [40,41]. 

Mature Schwann cells exist as both myelinating and non-myelinating (Remak) Schwann cells, which 

differ via activation of key transcription factors required for myelination such as early growth 

response protein 2 (EGR2; also known as Krox20) [41,42]. EGR2 is required for expression of key 

myelin proteins including PRX, MPZ, MBP and PMP22 [43]. During development, immature 

Schwann cells are randomly associated with axons that determine the state of EGR2 activation via 

paracrine and juxtacrine neuregulin 1 (NRG1)-ErbB2/3 signalling [44,45]. Larger axons are 

dependent on myelination and promote EGR2 activation and differentiation of myelinating Schwann 

cells. In comparison, smaller neurons promote the differentiation of non-myelinating Remak Schwann 

cells, which maintain nerve integrity by wrapping multiple small axons in membrane protrusions 

(Remak bundles) [41,46]. The ErbB2/3-EGR2 pathway exhibits high plasticity and can be up- or 

down-regulated in both Remak and myelinating Schwann cells via regulation of NRG1 isoform 

expression and concentration [45,46,44]. Indeed, transplantation of Remak Schwann cells onto larger 

neurons leads to activation of ERG2-mediated myelination, demonstrating the high plasticity of this 

pathway [47].   

The function of Schwann cells is likely to be conserved in Tasmanian devils due to the necessity of 

myelination for nerve integrity. Indeed, devil peripheral nerve samples have been demonstrated to 

express a range of myelin genes, indicating that these functions are intact [12,13]. Recent studies have 

indicated that DFT1 cells are phenotypically similar to myelinating Schwann cells due to 

overactivation of ERBB3 signalling and high expression of a range of myelin-specific proteins 

[13,48]. Compared to DFT2, DFT1 cells also express high levels of genes associated with channel 

activity, which is required for communication between axons and myelinating Schwann cells [13]. 

Myelinating Schwann cells play vital roles in maintaining axons and respond to external cues such as 

damage-associated molecules and metabolic factors, to provide appropriate nerve support [49,50]. 

Interaction between ATP released from axons and purinergic P2X receptors (ligand-gated ion 
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channels) in Schwann cells is thought to be critical for proper myelination and to promote nerve 

regeneration upon injury [51,49]. In DFT1, maintenance of these functions could allow the cancer 

cells to remain responsive to changes within the tumour microenvironment. 

Repair Schwann cells 

A second essential role of Schwann cells involves regulation of the regenerative response to 

peripheral nerve damage. This process, frequently referred to as Wallerian degeneration, involves the 

trans-differentiation of myelinating and Remak Schwann cells located distal to an injury into 

mesenchymal-like cells that migrate to the site of damage and participate in several sequential 

functions to repair damaged nerves [52-54]. These functions include release of growth factors to 

support neuron survival and regrowth [55-57], production of inflammatory factors that recruit and 

activate innate immune cells for wound healing [54,58,59], formation of tracks called Bands of 

Bünger that guide axons back to their targets [53,52], activation of autophagic pathways to remove 

myelin debris [60,61], and finally, remyelination [52,62]. Various factors have been implicated in 

stimulating this phenotypic shift in Schwann cells, including damage-associated molecules such toll-

like receptor (TLR) ligands and ATP [50,63,49], and cytokines such as transforming growth factor-β 

(TGFβ) and interleukin-1β (IL1β) [54,64]. The transcription factor c-Jun is a critical mediator of the 

trans-differentiation of a mature Schwann cell into a repair Schwann cell and at high levels initiates 

the down-regulation of EGR2-mediated myelination to promote this response [53,56,65,66]. Other 

signalling events that are required for an effective Schwann cell repair response include activation of 

merlin-mediated Hippo signalling, and reversal of epigenetic regulation by the histone 

methyltransferase PRC2 [67-69].  

Another important signalling event during the Schwann cell repair response is activation of the 

transcription factor signal transducer and activator of transcription 3 (STAT3) [70]. Chronic loss of 

axonal contact within the distal portion of injured nerves decreases the regenerative capacity of repair 

Schwann cells. Reduced production of growth factors such as bone-derived neurotrophic factor 

(BDNF) and glial call-derived neurotrophic factor (GDNF) promotes death of these cells [71,72]. 

STAT3 is activated by interleukin-6 (IL6)/glycoprotein 130 (gp130) and neuregulin-1 

(NRG1)/ErbB2/3 signalling pathways during this loss of axonal innervation to support the long-term 

survival of repair Schwann cells [70,73,74].  

Both DFT1 and DFT2 cells display activation of pathways that are up-regulated during the repair 

Schwann cell response. Although DFT1 cells predominantly exhibit a myelinating phenotype, they 

also display overactivation of the NRG1-ErbB2/3-STAT3 signalling pathway via copy number gains 

to ERBB3 [20,48]. Pharmacological inhibitors of this pathway such as sapitinib killed DFT1 cells in 

vitro and arrested DFT1 growth in a mouse model, suggesting that ErbB2/3-STAT3 signalling is a 
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key driver of DFT1 survival [48]. Components of ErbB2/3-STAT3 signalling pathways were also 

suppressed in DFT1 cells treated with imiquimod, a drug that induces DFT1 cell death via overload of 

mitochondrial and ER stress responses [75,76]. In comparison, DFT2 cells demonstrate activation of a 

wide range of mesenchymal genes and deactivation of myelination pathways, a similar phenotype to 

repair Schwann cells [13]. Further research is required to understand how this mesenchymal 

phenotype contributes to DFT2 tumorigenesis. As in human cancers, a potential scenario is that strong 

activation of mesenchymal pathways enhances proliferation, migration, invasion, ‘stemness’ and drug 

resistance in DFT2 tumours [77,78]. Another possibility is that inflammatory factors released through 

these pathways aid repression or modulation of anti-cancer immune responses. A similar scenario has 

been observed in human lung cancer, neurofibroma and melanoma, where factors in the tumour 

microenvironment promote the trans-differentiation of resident Schwann cells into a mesenchymal 

repair-like phenotype [79,80]. These tumour-associated Schwann cells promote tumour progression 

via release of inflammatory factors and chemokines such as CXCL5 that further promote cancer EMT 

and modulate immunosuppression [79, 80, 81].  

Schwann cell phenotypes and DFTD emergence 

DFT1 and DFT2 cancers exhibit phenotypic differences, despite sharing a similar Schwann cell 

origin. We propose two models that could explain how DFT1 and DFT2 tumours with distinct 

phenotypes arose from the same cell type (Fig. 2). In the first model, DFT1 and DFT2 tumours arose 

from Schwann cells at different functional stages and have maintained key pathways that were 

activated at the time of transformation (Fig. 2a). For DFT2 cells, transformation could have occurred 

during peripheral nerve injury, accounting for deactivation of myelination pathways and activation of 

a mesenchymal signature [13]. In comparison, activation of ErbB2/3-ERG2 mediated pathways in 

DFT1 is consistent with transformation of this tumour from a Schwann cell participating in 

myelination, with STAT3 activation indicating that the tumour could have arisen during the late 

stages of nerve repair [13,48]. While possible, this model assumes that DFTD phenotypes are static. 

This is perhaps an unlikely property of the tumours given the high plasticity of Schwann cells during 

normal nerve maintenance.  

Our second model of DFTD emergence proposes that DFT1 and DFT2 tumours assumed a phenotype 

post-transformation that was most fitting for immune evasion and survival under certain conditions 

(Fig. 2b). In this model, DFT1 and DFT2 cells benefit from Schwann cell plasticity and adopt a 

phenotype in response to external cues provided by host cells in the tumour microenvironment. 

Recent studies of MHC-I regulation in DFT1 and DFT2 provide support for this second model. In 

DFT1, high ERBB3/STAT3 signalling is thought to contribute to the observed down-regulation of 

MHC-I at the cell surface [48,33]. Comparatively, DFT2 tumours express MHC-I, but achieve 
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immune evasion by displaying alleles expressed by the infected host devil (i.e. non-polymorphic 

classical MHC-I alleles), or suppressive non-classical MHC-I alleles [82]. So far, this has been an 

effective method of immune evasion given that DFT2 is currently localised to a semi-isolated 

peninsula where genetic diversity among devils is likely to be low [7,37]. Early evidence from a small 

number of DFT2 tumours affecting hosts with different classical MHC-I alleles has revealed that 

MHC-I is down-regulated or lost in these DFT2 cancers, presumably in response to increased 

allogeneic immune pressure [82]. Given that ERBB3 signalling likely contributes to both MHC-I 

down-regulation and EGR2-mediated myelination in DFT1 [48], and that EGR2-mediated 

myelination is mutually exclusive to the repair phenotype in other models [83,66], an increased 

requirement for MHC-I suppression in DFT2 as it spreads into genetically diverse populations of 

devils could result in the cancer adopting a similar phenotype to DFT1. Similarly, DFT1 may have 

existed with a similar phenotype to DFT2 prior to the commencement of its spread across Tasmania in 

the late 1990s. 

Studies in human cancer also support our second model of DFTD emergence. Single-cell analysis of 

28 glioblastoma tumours has recently revealed four distinct and highly plastic cellular states driven by 

gene amplifications and the tumour microenvironment [84]. In DFTD, genomic studies have similarly 

revealed amplifications to ERBB3 in DFT1 and PDGFRA in DFT2 [85,20], which have known roles 

in driving myelination and mesenchymal pathways, respectively [86,44]. While ERBB3 signalling is 

closely linked to the myelinating phenotype present in DFT1, PDGFRA signalling has not been 

directly implicated in Schwan cell repair pathways. However, this gene does drive epithelial to 

mesenchymal transitions (EMT) in human gliomas [86,84], and could give rise to a mesenchymal 

phenotype in DFT2 tumours that is similar to the repair phenotype. This difference in the 

mesenchymal state of DFT1 and DFT2 tumours reflects evidence from other cancer studies that 

suggests that cancers exist in different states of differentiation based on relative activation of EMT 

pathways [87-89,77]. Indeed, human tumours often exist in an intermediate EMT state, with 

characteristics of both epithelial and mesenchymal cells [88,90,89]. Furthermore, it is now clear that 

human tumour cells can also undergo mesenchymal to epithelial (MET) transitions, allowing 

metastasising cells to establish tumours at distant sites via re-activation of certain epithelial proteins 

[88,91,92]. DFT1 and DFT2 cells display distinct morphology in cell culture and via histology, which 

could reflect the increased activation of mesenchymal pathways in DFT2 cells (Fig.3).  

DFTD and nerve sheath tumours 

Knowledge of nerve sheath tumours in other animal species could provide insight into the emergence 

of DFTD cancers in Tasmanian devils. Relative to humans, benign and malignant nerve sheath 

tumours are perceived as rare in animal species. These tumours have most frequently been reported in 
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the veterinary literature in animals that tend to undergo regular monitoring through routine veterinary 

care, such as dogs, cows and horses [93-95]. Nerve sheath tumours arising in these species can be 

benign or malignant, but very few studies have been performed to understand the factors driving their 

genesis [95]. As a result, the human nerve sheath literature provides a better source of information for 

understanding DFTD cancers in devils. Although animal species such as dogs exhibit biting, licking 

and fighting behaviours that could pose as mechanisms of nerve sheath tumour transfer, to our 

knowledge there have been no reports of transmission of these cancers in any other animal species. 

Human nerve sheath tumours are classified by the neoplastic proliferation of cells with Schwannian 

differentiation [96]. These cancers present frequently as benign Schwannomas or neurofibromas, and 

on rarer occasions as malignant peripheral nerve sheath tumours (MPNSTs), perineuriomas, granular 

cell tumours or histologically indistinct ‘hybrid’ tumours with diagnostic characteristics of multiple 

nerve sheath tumour types [97,98]. Most nerve sheath tumours have a low capacity to become 

malignant. This is especially the case for schwannomas, which arise directly from Schwann cells in 

the periphery of the nerve, consist solely of Schwann cells and are often asymptomatic [97]. In 

comparison, neurofibromas are heterogeneous benign tumours that arise from the centre of the nerve 

fibre and are composed of a variety of cell types including Schwann cells, perineural cells, vascular 

cells, fibroblasts and inflammatory cells [97,98]. Unlike Schwann cells, neurofibromas can give rise 

to MPNSTs, a rare form of malignant sarcoma affecting around 1 in 10 million people per year in the 

USA [39]. Prognosis is poor for patients affected by MPNSTs, with most of these cancers being of a 

high grade and particularly prone to recurrence [98,99].  

DFT1 and DFT2 cells have genomic aberrations that are similar to those that drive neoplasia in 

human Schwannomas, neurofibromas and MPNSTs (Table 1) [20].  In humans, Schwannomas most 

frequently arise sporadically and are associated with loss of function mutations to the tumour-

suppressor gene neurofibromin 2 (NF2) [100,97,98]. In a smaller portion of cases, schwannomas are 

associated with the autosomal dominant disorder neurofibromatosis 2, which is characterised by 

germline mutations to NF2 [101,100]. NF2 encodes the protein merlin, a key initiator of the anti-

proliferative Hippo signalling pathway that inhibits oncogenic YAP1 and TAZ transcription factors 

[102,103]. In DFT1, the genomic locus on chromosome 2 that encodes NF2 has undergone significant 

rearrangement [85,20]. However, the NF2 gene lacks somatic changes and is highly expressed in both 

DFT1 and DFT2 transcriptomes suggesting that it is functional [13,20]. Instead, aberrations in other 

Hippo signalling components might alter this anti-proliferative pathway in DFT1 and DFT2. Of 2883 

single nucleotide variants (SNVs) and 410 indels in DFT1, and 3591 SNVs and 573 indels in DFT2, 

only 18 variants in DFT1 and 19 variants in DFT2 are non-synonymous [20]. Of these non-

synonymous variants, just one each in DFT1 and DFT2 were predicted to be loss-of-function changes, 

affecting the genes WWC3 and MPDZ, respectively [20]. Both WWC3 and MPDZ aid the 
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sequestration of YAP1/TAZ in the cytoplasm to promote Hippo-mediated suppression of cell 

proliferation [104,105]. In a similar manner to NF2 inactivation, mutation of WWC3 and MPDZ in 

DFT1 and DFT2 may result in overactivation of YAP1/TAZ, inhibiting Hippo signalling and driving 

DFTD proliferation. Additionally, interaction of MPDZ with CAMK2A in humans is associated with 

synaptic plasticity, and disruption of this pathway can attenuate stress-induced p38 MAPK activity 

[106]. A subset of DFT1 cells contains an in-frame CAMK2A-NEURL1B gene fusion. The 

convergent alterations of pathways involving CAMK2A (DFT1) and MPDZ (DFT2) suggests that 

functional disruption of synaptic signalling pathways could be important for DFTD synapse formation 

and motility. 

Schwannoma development in humans is also a characteristic of the condition Schwannomatosis, an 

autosomal dominant disorder involving inactivation of either SWI/SNF-related matrix-associated 

regulator of chromatin B1 (SMARCB1) or leucine zipper-like transcriptional regulator 1 (LZTR1) 

[107,108]. In DFT1, rearrangement of chromosome 2 has resulted in an out-of-frame fusion of a 

single allele of the LZTR1 gene with the potassium calcium-activated channel N1 (KCNN1) gene [20]. 

LZTR1 encodes a transcription factor that promotes ubiquitination and regulation of the oncoprotein 

RAS [109]. Although DFT1 tumours express moderate to high levels of RAS genes including KRAS 

and MRAS (Table 1) [13], the impact of the heterozygous LZTR1 fusion on RAS activation in DFT1 is 

currently unknown. 

Neurofibromas are usually caused by sporadic loss-of-function mutations to the tumour suppressor 

gene neurofibromin 1 (NF1), a negative regulator of the proliferative protein RAS [97,98]. In some 

cases, neurofibromas are associated with the autosomal dominant condition neurofibromatosis 1 , 

which is caused by germline mutation to NF1 [110,97]. Patients with neurofibromatosis 1 are also at 

greater risk of developing MPNSTs, with around half of these sarcomas diagnosed in these patients 

[111]. Neither DFT1 or DFT2 exhibit somatic mutations to NF1, and expression of this gene is high in 

both tumours suggesting that it is functional (Table 1) [20,13]. However, DFT1 and DFT2 tumours do 

exhibit genomic aberrations that are similar to other common changes in MPNSTs including 

overexpression of receptor tyrosine kinases (RTKs) [112-114,20,48] and inactivation of proteins 

involved in cell cycle checkpoints [115,116,20,117]. Several genes involved in RTK signalling 

exhibit copy number gains in DFT1 (ERBB3, PDGFA, PDGFB and PDGFRB) and DFT2 (PDGFRA) 

[85,20]. As in human nerve sheath cancers [118-121,113], it is plausible that these pathways 

contribute to DFTD tumorigenesis by increasing proliferation, migration and invasion. In other 

models, RTK signalling has been shown to positively regulate YAP1/TAZ activity and RAS 

signalling [122-125]. As YAP1/TAZ signalling also promotes RTK activation and might be 

overactivated in DFT1 and DFT2 [126,127,123,20], cross-talk between ERBB3, PDGF and 
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YAP1/TAZ signalling could represent a key positive feedback loop controlling tumorigenesis in these 

cells.  

YAP1/TAZ overactivation is common in MPNSTs and has been demonstrated to drive oncogenic 

transformation of Schwann cells in animal models by giving rise to common aberrations including 

loss of function mutations to the cell cycle regulator TP53 [126]. Although TP53 is not mutated in 

DFT1 or DFT2, DFT2 tumours demonstrate homozygous deletion of TP73, a transcription factor 

related to TP53 that associates with YAP1 to positively regulate apoptosis in response to DNA 

damage [20,128,129]. MPNSTs also frequently exhibit inactivating somatic mutations of polycomb 

proteins SUZ12 (SUZ12) and EED (EED). These genes are members of the histone methyltransferase 

PRC2, which trimethylates histone H3 on lysine 27 (H3K27me3) to regulate target gene repression 

[116,130,131] . It has been hypothesised that loss of PRC2 in cancer leads to a reduction in the 

threshold of transcriptional activation for target genes such as growth factors and proteins involved in 

immune evasion [132,133]. Furthermore, PRC2 loss may contribute to epigenetic suppression of 

MHC-I antigen presentation pathways in nerve sheath tumours [133]. In a subset of DFT1 tumours, 

EZH2, which encodes the third member of the PRC2 complex, has undergone an in-frame fusion with 

the gene ETNK2 [20]. However, rather than contributing to MHCI suppression, studies have 

suggested that PCR2 loss in DFT1 cells potentiates MHC-I up-regulation in response to interferon-

gamma [34]. Additional studies are required to determine how the ETNK2-EZH2 fusion contributes to 

MHC-I regulation in DFT1.  

Table 1. Mutation and expression of genes frequently aberrant in human nerve sheath tumours 

[20,13]. 

Gene Function Mutation in DFT1* 
Expression 
in DFT1+ Mutation in DFT2* 

Expression 
in DFT2+ 

NF1 Negative regulation of RAS signalling nd high nd high 

NF2 Positive regulation of Hippo signalling nd high 
germline missense variant, 
impact unknown 

high 

SMARCB1 Chromatin remodelling nd high nd high 

LZTR1 Transcriptional regulation 
heterozygous SV, impact 
unknown 

moderate nd moderate 

WWC3 Positive regulation of Hippo signalling 
truncating SNV; copy 
number loss, predicted LOF 

moderate 
heterozygous copy number 
loss 

high 

MPDZ Positive regulation of Hippo signalling nd high 
truncating SV, frame-shift; 
copy number loss, 
predicted LOF 

low 

YAP1 
Proliferative transcription factor 
inhibited by Hippo signalling 

nd high nd high 

TAZ 
Proliferative transcription factor 
inhibited by Hippo signalling 

nd moderate nd high 

ERBB3 RTK signalling 
copy number gain; three 
germline missense variants, 
impact unknown 

moderate 
three germline missense 
variants, impact unknown 

high 

PDGFRA RTK signalling nd low copy number gain high 
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PDGFRB RTK signalling copy number gain high nd high 

PDGFA RTK signalling copy number gain high nd high 

PDGFB RTK signalling 
copy number gain; germline 
missense variant, impact 
unknown 

high 
germline missense variant, 
impact unknown 

high 

NRAS RAS signalling nd not found nd not found 

KRAS RAS signalling nd high nd high 

HRAS RAS signalling not found not found not found not found 

MRAS RAS signalling nd moderate nd moderate 

CDKN2A Cell cycle regulation not found not found not found not found 

TP53 Cell cycle regulation, pro-apoptotic nd high nd high 

TP73 Cell cycle regulation, pro-apoptotic copy number gain moderate 
homozygous copy number 
loss, predicted LOF 

moderate 

SUZ12 Subunit of the PRC2 complex nd high nd high 

EED Subunit of the PRC2 complex nd moderate nd moderate 

EZH2 Subunit of the PRC2 complex 
heterozygous SV; copy 
number loss, impact 
unknown 

high nd moderate 

      

nd: none detected; SV: structural variant; SNV: single nucleotide variant; LOF: loss of function 
Genes unannotated by Ensembl in Devil_ref v7.0 are denoted as ‘not found’  

*Gene aberrancies reported by Stammnitz et al. [20] in one or more DFT1 or DFT2 tumours. 
+Gene expression in DFT1 and DFT2 cell lines as measured by Patchett et al. [13]. Expression was classed as high, moderate or 
low based on position in the top, middle or bottom third of all genes ranked by RPKM-normalised read count.   

 

Factors predisposing devils to transmissible Schwann cell cancers  

The identification of two transmissible Schwann cell cancers in Tasmanian devils within twenty years 

highlights the susceptibility of this species to cancers of this nature [13]. Transmissible cancers must 

overcome robust allogeneic and oncogenic defences to survive across genetically distinct animals. 

Consequently, the susceptibility of devils to cancer transmission is potentially due to a combination of 

factors acting in unison to allow DFTD emergence. No exogenous pathogens and carcinogens have 

been associated with DFT1 or DFT2 to date, but several endogenous factors have been described 

[36,20]. The potential contributions of these factors to DFTD emergence are discussed below.  

Inherent predisposition and immune function 

Since its emergence in 1996, DFT1 has become the primary cause of mortality in wild Tasmanian 

devils. Interestingly, non-DFTD neoplasia is a major cause of mortality and morbidity of devils in 

captivity. A recent study reported that over an eight-year period in Tasmania, non-DFTD cancers 

accounted for 43% of deaths in captivity [134]. Of these cancer-related mortalities, cutaneous 

lymphomas, cutaneous round cell tumours, squamous cell carcinomas and adenocarcinomas were 

most common. No cancers of neural origin were recorded, although neurodegenerative conditions 

leading to hindlimb paralysis, including leucoencephalomyelopathy and spinal Wallerian 
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degeneration, were the second leading cause of mortality [134]. Historical data from the San Diego 

Zoo supports the susceptibility of devils to cancer, with a reported incidence at necropsy that was 

twice any other measured species and ten times higher than average [135,136]. Together these studies 

indicate that devils could be genetically predisposed to the emergence of cancers, including DFTD. 

Indeed, both DFT1 and DFT2 arose from devils with similar ‘eastern’ genotypes, and candidate 

germline alleles with a potential role in DFTD predisposition have been identified in these tumours 

[20]. However, these alleles were not associated with variants of known inherited cancer risk in 

humans, and further investigation is required to determine if they play a role in DFTD susceptibility 

[20]. Other heritable factors that may play a role in the emergence of cancers in Tasmanian devils 

include their unusual telomere organisation (extreme length dimorphism), which could predispose 

cells to chromosomal rearrangements [20,137].  

Aberrancies among pathways involved in cancer prevention, such as immune function, responses to 

DNA damage and cell cycle checkpoints are ideal candidates for an increased cancer predisposition in 

devils. Given the transmissible nature of DFT1 and DFT2, the immune system of the Tasmanian devil 

has been investigated for defects that could explain the emergence of these unusual cancers. 

Marsupials were traditionally thought of as having weak immune systems a concept that was 

supported by the detection of weak mixed-lymphocyte responses in the short-tailed opossum 

(Monodelphis domestica) [138], and poor antigen-specific responses in the koala (Phascolarctos 

cinereus) [139]. However, this concept has been challenged by studies in the Tasmanian devil, which 

have so far failed to reveal significant insufficiencies among immune responses. Tasmanian devils 

have all the expected primary and secondary lymphoid organs and a full complement of leukocytes 

[140,141]. Important immune functions including toll-like receptor (TLR) activation, phagocytosis, 

leukocyte proliferation, allogeneic detection, antibody production and cytotoxicity are also effective 

[142,141,143,144], and rapid and potent recall responses to antigenic challenge have been observed 

[143,145]. Given that DFT1 cells lack MHC-I expression [33], the function of natural killer (NK) 

cells, which detect and kill aberrant cells lacking MHC-I, remains under investigation. NK cells have 

been difficult to assess in the Tasmanian devil due to a lack of available reagents for detecting this 

cell subset. However, evidence for rapid antibody-dependent and mitogen-induced killing of human 

tumour cells suggests that these cells are also present and functional in Tasmanian devils [146,147]. 

Although devils have a functional immune system, there is evidence for a decline in immune function 

once they reach adulthood. Adult devils exhibit reduced lymphocyte abundance and T-cell receptor 

(TCR) diversity relative to juveniles, which could affect host defences and perhaps increase their 

susceptibility to cancer transmission [148,149]. Despite this age-related decline in immune function, a 

proportion of adult devils can activate immune responses against DFT1 tumours. This has been 

demonstrated through monitoring programs that have detected a small number of wild devils with 
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increased levels of DFT1-specific antibody and spontaneous DFT1 regressions [150,151]. Studies in 

captivity have also demonstrated immune-mediated rejection of DFT1 tumours after immunotherapy 

[152]. Although it is unknown whether natural immune responses against DFT1 are protective against 

subsequent DFT1 encounters, these findings suggest that the genesis of DFTD in devils is not limited 

to reduced immune function. Instead, the emergence of DFT1 and DFT2 as successful transmissible 

cancers was likely influenced by the acquisition of active mechanisms of immune evasion by the 

cancer cells. In support of this, modulation of MHC-I expression appears to be critical to survival of 

DFT1 and DFT2 cells under different conditions [82,33]. In addition, TCR diversity is markedly 

decreased after DFT1 infection suggesting that DFT1 cells directly alter their immune landscape 

[148]. Other strategies used by DFT1 and DFT2 to modulate immune responses could involve 

expression of immunosuppressive cytokines and inhibitory immune checkpoint molecules [153-155].  

Low genetic diversity 

A lack of genetic diversity among devil populations has long been implicated as a potential 

mechanism contributing to DFTD emergence [32]. Historical evidence suggests that devils have 

undergone population fluctuations and bottlenecks, with factors such as climate events, disease, 

increased human density and historical culling postulated to have played a role [156,157,19]. These 

fluctuations have resulted in low diversity among devils which is detectable through genomic 

sequencing and analysis of MHC-I and microsatellite genotypes [158,31,32,159,160]. A failure of the 

immune system to reject allografts has been observed in the cheetah, which suffered severe inbreeding 

and reduced genetic diversity following a previous population bottleneck [161]. In devils, early 

experiments revealed low mixed-lymphocyte responses between devils from similar locations, 

suggesting that a lack of diversity could account for DFT1 tolerance [32,162]. To determine if this 

was the case, allogeneic skin transplants were performed between devils [162]. Within two weeks all 

allografts displayed extensive immune infiltration and were subsequently rejected. These findings 

convincingly demonstrated that Tasmanian devils are capable of allorecognition, and it was proposed 

that low genetic diversity could not fully account for DFT1 transmission among devils. 

The discovery of DFT2 in 2014 revealed an alternative role for low genetic diversity in the emergence 

of DFTD cancers. As discussed above, DFT2 cells predominately express MHC-I alleles that are 

common in the population where they emerged, allowing the cancer to avoid allogeneic detection in 

any host also expressing these MHC-I alleles [82]. Low genetic diversity increases the number of 

hosts with these common MHC-I alleles, thus providing a larger pool of individuals for the tumour to 

initially infect. This may in turn increase the chance that successful tumour variants will evolve that 

can spread into genetically diverse devils (i.e. through MHC-I loss). While these findings suggest that 

low genetic diversity is important to the initial emergence of a transmissible cancer, the evolution of 
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MHC-I down-regulation appears to be fundamental to the subsequent transmission of these tumours 

into genetically diverse populations [33,82]. In dogs, CTVT cells also exhibit low MHC-I expression 

that is thought to prevent allorecognition, but is likely sufficient for inactivation of NK responses 

[163,3]. MHC-I down-regulation can be transient in CTVT, and induced expression of this molecule 

supports host survival by enabling tumour rejection [164,165]. 

The role of low genetic diversity in the emergence of DFT1 and DFT2 could explain the recent 

appearance of these cancers. Low genetic diversity in devil populations is believed to have arisen 

before or during the mid-Holocene [156,157]. However, population fluctuations that occurred as 

recent as the mid-1900s could have further reduced genetic diversity in devil populations to allow 

transmissible cancers to emerge [156]. Similarly, regrowth of the population after these latest 

bottlenecks could have given rise to a common genotype predisposing devils to cancer. Understanding 

the contribution of low genetic diversity to DFTD emergence will be important for mitigating the risk 

of further transmissible cancers emerging in Tasmanian devils. 

Devil behaviour 

For a cancer to become transmissible, it must acquire an effective route of tumour cell transfer. In the 

Tasmanian devil, DFTD cancers appear on external surfaces as large, often ulcerated and friable 

tumours that are accessible for contact-dependent transmission [23]. Devil-to-devil biting provides an 

uncontrolled means of contact for this cell transfer to occur. Biting is a common behaviour of devils, 

particularly during mating interactions [26,25]. Tumour transfer is thought to occur when a healthy 

devil bites the tumour of an infected devil and the cells become established in existing wounds within 

the oral cavity of the new host. Cancer cells may also be transferred when an infected devil bites a 

healthy devil and inoculates cancer cells into the bite wound of the recipient [26]. Wounds provide a 

break in the protective epithelium of the skin or oral cavity, thus allowing the tumour cells to 

overcome a major barrier to infection. Furthermore, wounds provide an ideal immunomodulatory 

environment for tumour establishment. A key step in the wound healing responses involves the 

release of growth factors and cytokines that promote tissue healing and growth [166]. Similar events 

are involved in tumour establishment, with recruited fibroblasts and innate cells playing key roles in 

building the tumour stroma and establishing a suppressive tumour microenvironment [167-169]. 

Transforming growth factor-β (TGFβ) is a key suppressive cytokine released by cells at the site of 

wounding that activates mesenchymal transcription factors and repair pathways within Schwann cells 

and has many tumour-promoting effects [54,170]. Previous studies have detected TGFβ expression 

within DFT1 tumours, suggesting that this cytokine could be important to DFTD tumorigenesis [153]. 

 

In humans, chemicals and conditions that cause tissue damage contribute to mutagenesis by 
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promoting the release of inflammatory mediators, growth factors and damaging molecules such as 

reactive oxygen and reactive nitrogen species [171]. These agents prevent tumour suppression, 

promote cell proliferation and cause DNA damage, increasing the chance of tumour development. It 

has been hypothesised that tumours are “wounds that do not heal” [168], with repetitive injury or 

unresolved inflammation leading to an unchecked wound healing process that promotes cancer 

growth and survival [169]. This situation could apply to the Tasmanian devil, where consistent 

wounding through bite injuries and scavenging on sharp bone fragments has potential to produce 

repeated inflammation among Schwann cells of the innervated sensory vibrissae. The high plasticity 

and proliferative nature of Schwann cells during injury might leave these cells vulnerable to 

oncogenic transformation. Indeed, the YAP1/TAZ and ERBB3 pathways that have been implicated as 

potential drivers of DFT1 and DFT2 tumorigenesis are also regulated during the Schwann cell repair 

response during injury [67,70,20,48]. These pathways are driven by inflammatory factors such as 

TGFβ and IL1β, which act in wound and cancer microenvironments to modulate both cancer cells and 

immune responses [64,54,170].  

We have previously proposed that a vulnerability of Schwann cells to undergo oncogenic 

transformation could be exacerbated in Tasmanian devils due to the high frequency of peripheral 

nerve injury in this species [13]. As biting also accounts for the transmission DFTD cancers, it is 

possible that this combination of frequent wounding and Schwann cell plasticity underlies both the 

genesis and persistence of DFTD cancers in Tasmanian devils (Fig. 4). Other contributing factors, 

such as an inherent cancer susceptibility, low genetic diversity and successful evolution of 

tumorigenic mechanisms, could be fundamental to progression through the different stages of DFTD 

evolution. This model suggests that the emergence of DFTD cancers in the Tasmanian devils is the 

consequence of a ‘perfect storm’ of factors that in combination overcome robust defences against 

cancer transmission to allow for successful propagation of DFTD tumours [172]. The simultaneous 

occurrence of similar factors in other species is likely to be unusual, perhaps explaining the rarity of  

cancer transmission within mammalian species. 

Conclusion 

The emergence of two transmissible Schwann cell cancers in the Tasmanian devil was unexpected 

due to the rarity of cancer transmission in nature and malignant Schwann cell cancers in humans. 

Accumulating evidence suggests that these cancers are the consequence of key enabling factors that 

combined on two occasions to give rise to founder DFTD tumours that were able to be transmitted 

among devils. A lack of fossil or anecdotal evidence for DFTD-like cancers in devils prior to 1996 

suggests that the emergence of these cancers may be a recent phenomenon, perhaps influenced by 

recent population ‘bottlenecks’ that have impacted the genetic diversity of the species. Alternatively, 
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these diseases could be a downstream consequence of previous disease-associated selection events 

that have channelled the devil's genetic architecture into an increased predisposition for transmissible 

Schwann cell cancers. It is possible that long-term genetic selection and loss of diversity imposed by 

DFT1 and DFT2 could similarly leave the species vulnerable to further transmissible cancers or other 

disease threats in the future. Strategies for genetic rescue and management of devil populations have 

potential to reduce this risk. Meanwhile, continued investigations into the nature of DFT1 and DFT2 

will be driven by knowledge of Schwann cell function and nerve sheath tumours in other species. 

These studies will direct the identification of molecular targets and inform the development of DFTD 

interventions such as vaccines, which could mitigate the threat of transmissible Schwann cell cancers 

in Tasmanian devil populations. 
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Figure Legends 

Fig. 1. Topographical map demonstrating distribution and spread of DFTD. DFT1 was first 

observed at Waterhouse Point in Mount William National Park (wukalina) in 1996 and has spread 

from east to west across the majority of the state. Initially DFT1 spread spread south and west to 

almost half the of the known devil habitiat. Geographical barriers such as mountains (shaded brown) 

and rivers then affected the spread. Consequently only the far north-west and south-west of Tasmania 

are believed to be DFT1-free. However, DFT1 has caused approximately an 80% devil population 

decline [22].  Ultimately DFT1 will reach the far north-west. Despite evidence for pockets of devil 

populations it is unlikely that DFT1will reach the south-west of Tasmania as this area is rugged and 

unsuitable devil habitat. DFT2 was first observed in the D’Entrecasteaux Peninsula region in 2014. 

DFT2 currently remains localised to this region [7] as the area is surrounded by mountain ranges and 

the sea.  

Heat map represents topography in meters and distance scale is in kilometres. The topographical map 

was sourced from Wikimedia Commons 

(https://upload.wikimedia.org/wikipedia/commons/2/21/Topography_of_Tasmania.jpg) and author 

(AP) overlaid the distribution and spread of DFT1 and DFT2. 

Fig. 2. Models of DFTD emergence in Tasmanian devils. a) Static model of emergence: DFTD 

cells arose from founder Schwann cells at different states of differentiation, giving rise to tumours 

with different phenotypes. In DFT1 tumours, the ‘myelinating’ phenotype, driven by ERBB2/3 

signalling, enabled MHC-I down-regulation to permit tumour transfer across genetically-dissimilar 

hosts. In DFT2 tumours, suppression of ERBB2/3 signalling via the mesenchymal ‘repair’ phenotype 

meant that alternative mechanisms of immune evasion, such as expression of non-polymorphic and 

non-classical MHC-I, were required. b) Plastic model of emergence: Founder Schwann cells 

transformed into tumour cells. In DFT1, spread of the tumour into genetically-diverse populations 

gave rise to rise to a ‘myelinating’ phenotype and low MHC-I expression driven by ERBB2/3 
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signalling. In DFT2, low allogeneic pressure gave rise to a mesenchymal phenotype with low 

ERBB2/3 signalling and high expression of non-polymorphic and non-classical MHC-I. It is not yet 

known how DFT2 tumours will change upon spread into genetically-diverse populations of devils. 

Fig. 3. Morphology of DFT1 and DFT2 tumour sections and cell cultures. (a, b) Haematoxylin 

and eosin staining of (a) DFT1 (TD553) showing the characteristic pleomorphic round cells arranged 

in a distinct bundle (top right) and (b) DFT2 (TD523) with sheets of pleomorphic cells arranged in a 

solid pattern tumour sections. Scale bars represent 100 µm. (c, d) Scanning electron microscopy of (c) 

a representative DFT1 cell line (C5065) showing characteristic round cell bodies and short projections 

and (d) a representative DFT2 cell line (RV) displaying flattened cell bodies and long projections. 

Scale bars represent 50 µm. 

Fig. 4. Factors hypothesised to contribute to DFTD emergence in Tasmanian devils. a) An 

inherent susceptibility to cancer combines with frequent Schwann cell wounding from biting to give 

rise to a DFTD tumour in a founder Tasmanian devil. b) Biting behaviours allow transmission of the 

cancer cells into the wounds of new hosts. Low genetic diversity in the founder population combines 

with the plastic nature of Schwann cells to prevent allogeneic rejection of the DFTD allograft. c) 

Biting behaviours allow transmission of the cancer cells into the wounds of genetically-diverse devils. 

The cancer cells evolve tumorigenic mechanisms, such as loss of MHC-I, which combine with the 

plastic nature of Schwann cells to avoid allogeneic responses. 
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