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Abstract

Community structure is one of the most important attributes of complex net-

works, which reveals the hidden rules and behavior characteristics of complex

networks. Existing works need to pre-set weight parameters to control the

different emphasis on the objective function, and cannot automatically iden-

tify the number of communities. In the process of optimization, there will be

some challenges, such as premature and inefficiency. This paper presents a

multi-objective adaptive fast evolutionary algorithm (F-SGCD) for community

detection in complex networks. Firstly, it transforms the problem of commu-

nity detection into a multi-objective optimization problem and constructs two

objective functions of community score and community fitness. Secondly, an

external elite gene pool is introduced to store non-inferior solutions with high

fitness. At the same time, an adaptive genetic operator is executed to return

a set of non-dominant solutions compromised between the two objective func-

tions. Finally, a Pareto optimal solution with the highest modularity is selected

and decoded to generate a set of independent subnetworks. Experiments show

that the multi-objective adaptive fast evolutionary algorithm greatly improves

the accuracy of community detection in complex networks, and can discover the
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hierarchical structure of complex networks better.

Keywords: community detection, genetic algorithm, multi-objective, complex

networks, adaptive

1. Introduction

Many complex systems in the real world, such as social networks, protein

networks, and transmission networks, can be abstracted into complex networks,

which have small world and scale-free characteristics [1]. At the same time,

it has a characteristic of community structure, which is characterized by rela-5

tively close links within communities and relatively sparse links among different

communities [2]. Through the discovery of the network community structure,

we can get the internal structure of the network and the interaction relation-

ship, which not only provides an effective way to solve practical problems but

also dramatically reduces the complexity of the research. Therefore, it is of10

considerable significance to carry out community detection research.

The definition of community detection pursues two different objectives: max-

imizing the internal links and minimizing the external links. The multi-objective

optimization problem is composed of multiple objective functions and some re-

lated equality and inequality constraints. The solutions are obtained through15

the use of Pareto optimality theory [3] and constitute global optimum solutions

satisfying all the objectives as best as possible. The evolutionary algorithm

for solving multi-objective optimization problems is successful because of their

population-based nature, which allows the simultaneous production of multiple

optima and a good approximation of the Pareto front [4]. Community detection20

could be formulated as a multi-objective optimization problem, and the frame-

work of Pareto optimality can provide a set of solutions corresponding to the

best compromise among the optimization objectives.

Many approaches have been proposed to employ multi-objective techniques

for data clustering. Most of these approaches cluster objects in metric spaces25

[5, 6, 7], though a method for partitioning graphs has been presented in [8] and
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a graph clustering algorithm of web user sessions is described in [9].

In recent years, researchers have gradually tended to use artificial intelli-

gence technology to optimize modularity to find the ideal community structure.

The intelligent optimization algorithms imitate natural phenomena and have a30

long-term observation, practice, and a profound understanding of natural phe-

nomena. Such as intelligent optimization algorithms imitate human thinking,

biological behavior, and physical principles. They all start from the stochas-

tic feasible initial solution and approach the optimal solution of the problem

through the strategy of eliminating the fittest. Although these intelligent opti-35

mization algorithms cannot guarantee that the optimal solution of the problem

can be obtained eventually, they can achieve a certain balance between computa-

tional complexity and search accuracy. Until now, many intelligent optimization

algorithms have been proposed, such as ant colony algorithm [10], particle swarm

algorithm [11], genetic algorithm [12], differential evolution algorithms [13], etc.40

The complex network community detection algorithm proposed in this paper

is to detect community structure. The problem is transformed into a multi-

objective optimization subproblem, and the optimal global solution or a series

of complementary dominant solutions are obtained through multiple objective

functions of an adaptive fast genetic algorithm [12]. These solutions correspond45

to the community structure of complex networks. Our main contributions can

be summarized as follows:

• We design two objective functions. Compared with the single objective

method, the advantages of the multi-objective method are that it can

optimize the multiple criteria simultaneously, and provide a set of solu-50

tions instead of a single solution. Each solution corresponds to a different

number of communities, so as to find the best equilibrium.

• We design an external elite gene pool to store non-inferior solutions with

high fitness. For the duplicate individuals that already exist in the elite

gene pool, a series of processes such as decoding and calculating the fitness55

of individuals can be avoided. Due to the convergence of the solution
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set, the introduction of the elite gene pool reduces the computational

complexity to the greatest extent.

• Logistic adaptive mutation probability and crossover probability are intro-

duced into the algorithm. The mutation probability and crossover proba-60

bility are changed according to the fitness of the population and the cor-

relation characteristics between individuals. The efficiency and accuracy

of the evolutionary process of the genetic algorithm can be significantly

improved.

• Extensive experiments on several datasets demonstrate that our proposed65

method produces significantly increased performance over the current state-

of-the-art methods in most cases.

2. Related Work

The evolutionary computation is a powerful search and optimization tech-

nology inspired by the natural evolutionary process [14]. Compared with tradi-70

tional calculus-based and exhaustive optimization methods, evolutionary com-

putation is a mature global optimization method with high robustness and wide

applicability. It has the characteristics of self-organization, self-adaptation, and

self-learning. It can deal with complex problems which are challenging to be

solved by traditional optimization algorithm without the restriction of the na-75

ture of the problem. These methods include population initialization followed

by mutation and selection operators to improve the standard values. When ex-

ploring the search space in the optimization process, the local minimum can be

avoided. Many heuristic search algorithms have been applied to solve the op-

timization problem. The extremal optimization method, applied by Duch and80

Arenas, uses the artificial intelligence method in a recursive divisive manner

[15]. The simulated annealing is used to obtain more results, but this method

is computationally very expensive.

In addition, the genetic algorithm, as an effective optimization technique,

has also been used to optimize Q [16] value. However, inefficient genetic rep-85
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resentation makes the algorithm unsuitable for large scale problems. In fact,

Arenas, Fernadez, and Gomez introduced the tabu heuristic to optimization the

modularity, which also obtained an excellent performance [17].

Over the past decade, many researchers have applied evolutionary algo-

rithms to community detection. Recent advances can be found in the litera-90

ture [18, 19, 12]. Finding community structure in a network can be regarded

as a clustering analysis problem. Clustering is also an optimization problem.

In [20], the authors proposed a memory algorithm for community detection

through module optimization and used multi-level learning strategies based on

the node level, community level, and network partition level to accelerate the95

optimization process. The authors [13] used a combination of genetic algorithm

and distance measurement based on a random walk to find subgroups in so-

cial networks. In [21], the authors proposed a discrete framework for particle

swarm optimization (PSO). Based on the discrete framework, a multi-objective

discrete particle swarm optimization algorithm is proposed to solve the network100

clustering problem. Zadeh and Kobti [22] proposed an evolutionary algorithm

based on knowledge and used a multi-population cultural algorithm to solve

the problem of community detection. The algorithm mainly extracts knowledge

from the network to guide the search direction and find the optimal solution. At

the same time, in each step, the knowledge is updated according to the current105

state of the network. However, these algorithms have some shortcomings. Ma,

Lijia, et al. [20] proposed a sub-community of the MLCD algorithm, which is

the basic unit of merging and splitting. However, if a vertex is misclassified as

a sub-community, it is difficult to jump out of the sub-community at a later

stage. In [13], the proposed algorithm can only solve the problem of community110

detection when the number of communities is known.

There are some shortcomings in the application of traditional genetic al-

gorithms. Because the traditional genetic algorithm uses the method of fixed

strategy parameters, it cannot meet the requirements of dynamic and changing

strategy parameters in the evolutionary process, especially the crossover prob-115

ability and mutation probability, which causing the optimization effect is not
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ideal. For biological evolution, even if the traditional genetic algorithm takes

into account the simulation of the population’s adaptability to the environ-

ment, it ignores the adaptive characteristics of genetic behavior and individual

growth. Especially when the population follows the evolution of the environ-120

ment, it causes a fundamental reason affecting the performance and efficiency

of traditional genetic algorithms.

In the early stage of population evolution, the genetic operators of the adap-

tive fast genetic algorithm should be searched on a large scale to avoid premature

convergence. In the later stage of population evolution, the population should125

be searched locally, and the evolutionary strategy should be adjusted to evolving

in the critical direction. The improvement of the adaptive fast genetic algorithm

in this paper mainly includes the following two points.

1. According to the fitness and similarity coefficients of individuals, the ad-

justment formulas of F-SGCD’s adaptive crossover probability [12] and130

mutation probability are designed to improve the optimization ability of

the algorithm.

2. The elite gene pool is introduced to store individuals with high adaptabil-

ity in the evolutionary process of the genetic algorithm. In the iteration

process, for the duplicate individuals already existing in the elite gene135

pool, a series of processes such as decoding and calculating the fitness of

individuals can be avoided, which improves the efficiency of the algorithm.

3. Algorithm Description

In this section, We give a detail description of the multi-objective algorithm

F-SGCD, which is used to partition the network. Many people involved in140

the research area adopted for the development of multi-objective optimization

algorithms using the application of evolutionary computation in recent years.

Evolutionary algorithms results [23] show that the evolutionary algorithm is a

feasible and effective solution to multi-objective optimization problems. It is

a very successful type of algorithms that it is population-based and allows the145
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generation of several elements of the Pareto set in a single run. The detailed

description of the algorithm is shown in Figure 1.

Figure 1: Flow chart of F-SGCD algorithm.

3.1. Encoding Scheme of F-SGCD

We adopt a coding method based on the adjacency representation of genes

[24, 25]. In this encoding style, individuals in the population are composed150

of N genomes {g1, g2, . . ., gN}, and the range of allele value for each gene is

{1,2,. . .,N }. Both genes and alleles represent the vertices of G. For example, if

the allele value of the i -th gene is j, which is expressed as there is an edge between
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vertices i and j. The encoding method needs a decoding step to identify each

connected subnetwork, and vertices located in the same connected subnetwork155

are divided into the same community.

The advantage of the encoding method is that it does not need to know the

number of communities in advance, and the number of communities can be cal-

culated automatically during the decoding process. Figure 2 shows an example

based on the adjacency representation of genes. Figure 2 (a) shows a complex160

network composed of 10 vertices, in which the solid and hollow circles represent

vertices of two communities, respectively. Figure 2 (b) shows the genotype of

an individual. Figure 2 (c) is the decoding results of the community according

to the individual encoding in Figure 2 (b). According to the calculation formula

of the modularity Q (Section 3.6), The Q value of partitioning result for the165

example network in Figure 2 is as follows.

Q =
11

19
−
(

2

19

)2

+
7

19
−
(

2

19

)2

= 0.8725 (1)

Figure 2: An example of encoding and decoding process.
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3.2. Initialization

Firstly, the population includes several individuals who are generated ran-

domly. In the encoding method based on the adjacency representation of genes

described in the previous section, if the allele of the gene i is j, it means that170

there is an edge between vertices i and j. In the output results after decod-

ing, the vertices i and j should be in the same community. Therefore, in the

initialization process of the optimization algorithm, we distribute it reasonably

according to the connection relationship of the vertices. That is to say, for the

initialization of each individual, the allele value j of gene i can only be the ad-175

jacent vertex of i. if the allele value of the i -th gene is j, but the edge (i, j ) does

not actually exist, then the allele value j will be replaced by an adjacent vertex

of i. For example, in Figure 3 (a), the allele values of the third and ninth genes

are 9 and 6, respectively. However, the edges of (3, 9) and (9, 6) do not appear

in the network of Figure 3 (a). Therefore, the allele value 9 of the third gene180

can be replaced by 2, and the allele value 6 of the ninth gene can be replaced

by 8. The replaced gene is shown in Figure 3 (b). The initialization method

can effectively restrict the size of the solution space, greatly reduce the invalid

search in the evolution process of the algorithm, and significantly improve the

convergence speed of the algorithm.185

Figure 3: Improvement diagram of gene initialization.

3.3. Selection

The purpose of selection is to eliminate unreasonable individuals according

to the fitness of individuals and the principle of survival of the fittest. F-
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SGCD uses the roulette selection method to achieve ”survival of the fittest”

among individuals in the current population, which is similar to roulette in190

gambling games. In the process of roulette selection, the probability of each

individual inherited into the next generation is equal to the ratio of its fitness

value to the sum of individual fitness values in the whole population. The higher

the fitness value of the individual, the higher the probability of the individual

being selected, and the greater the probability of being inherited to the next195

generation. Assuming that the population size is M and the fitness value of

individual k is fk. The probability of each individual being inherited into the

next generation is,

pk =
fk∑M
i=1 fi

, k = 1, 2, ...,M (2)

The cumulative probability of each individual is,

qk =

k∑
i=1

pi, k = 1, 2, ...,M (3)

The selection process is to rotate the runner M times, according to the200

following steps to select an individual to join the new population at every time.

Step 1. Generate a uniformly distributed pseudo-random number r in inter-

val [0,1];

Step 2. If r≤q1, select the first individual. Otherwise, select the k -th

(2≤k≤M ) individual to make r (qk−1≤r≤qk) valid;205

Step 3. Repeat the above steps M times.

3.4. Uniform Crossover and Mutation

Individuals with poor fitness should be given smaller mutation probabil-

ity and larger crossover probability. For individuals with better fitness, the

crossover probability and mutation probability are given according to the size210

of the fitness value of the individual and the iterative state of the population.

The closer the number of iterations approaches the maximum number of iter-

ations, the smaller the crossover probability of individual and the larger the
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mutation probability, so that the population evolution will not be stuck in a

stagnant state.215

In each iteration process, when the similarity between individuals is small,

the fitness values between individuals vary considerably, which indicates that

there are abundant genotypes in this population. Therefore, a larger crossover

probability and a smaller mutation probability should be given. If the similarity

between individuals is large and there is little difference in fitness values between220

individuals, it indicates that there are fewer genotypes in the population. There-

fore, A smaller crossover probability and a larger mutation probability should

be given.

In order to search the solution space more effectively, the concepts of stan-

dard deviation and similar parameters are introduced. Standard deviation is225

a measure of the average dispersion of a set of data. A large standard devia-

tion represents a large difference between most values and their average value.

A smaller standard deviation means that these values are closer to the aver-

age. The similarity parameter reflects the similarity degree of individuals in the

current population. When the similarity parameter is large, it shows that the230

similarity degree of individuals is high, the algorithm tends to converge, and the

overall performance of individuals is excellent. On the contrary, it shows that

the similarity degree of individuals is low, and the overall performance of the

population is poor.

gavg =
g1 + g2 + ...+ gN

N
(4)

σ =

√√√√ 1

N

(
N∑
i=1

(gi − gavg)
2

)
(5)

Ω =
gavg + 1

δ
(6)

where N denotes the number of individuals in the population. g1,g2,. . .,gN235

denotes the fitness of the individual. gavg is the arithmetic average of population
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fitness, which reflects the average fitness of individuals. σ denotes standard

deviation. Ω represents similarity parameter. With the increase of generations

number, the average fitness of population is higher and higher, but the standard

deviation is smaller and smaller, and the value of similarity parameter is larger240

and larger.

According to the above design criteria of crossover probability and muta-

tion probability, the concept of standard deviation and the definition of related

parameters are combined. the dynamic adjustment formulas of crossover prob-

ability pc and mutation probability pm can be designed as follows:245

pc = 0.5× 1

1 + e−
k1
Ω

+ 0.4 (7)

pm =
k2

5×
(

1 + e
1
Ω

) (8)

where k1 and k2 are constants, k1∈(1, ∞), k2∈(0, 1). It can be seen from the

adaptive adjustment formulas of crossover probability and mutation probability,

pc∈(0.65, 0.9), pm∈(0, 0.1). The values of crossover probability and mutation

probability are within a reasonable range. As the square difference increases,

the crossover probability decreases and the mutation probability increases, so250

the crossover probability and mutation probability meet the two design criteria

of crossover probability and mutation probability.

An improved uniform crossover operator is adopted in F-SGCD to ensure

the effectiveness of the offspring. The crossover probability of uniform crossover

for the individual population is pc, and the crossover operation is carried out255

at each position of the chromosome of the paternal individual with the same

probability. Firstly, a binary cross-module of length N (number of vertices) is

generated randomly. Each value on the cross-module is 0 or 1. For each gene

of offspring C, if a position on the cross-module is 1, the corresponding allele

value in the parent B is inherited. If a position on the cross-module is 0, the260

corresponding allele value in the parent A is inherited, while the opposite is

true for the offspring D. in practice, the preferred initialization mentioned in
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the previous section is used, i.e. the i -th gene in the parent has an allele value j,

then the edge (i, j ) will exist. By means of uniform crossover, the value of each

gene location in the offspring is inherited from the parent, which can ensure the265

effective connection of each node in the network of offspring individuals.

Figure 4: An example of uniform crossover.

The mutation operation is as follows. For the individual to be mutated, a

gene is randomly selected by adaptive mutation probability pm, and the allele

value of the gene is changed to its corresponding arbitrary adjacent vertex. This

mutation method also avoids searching for invalid solution space. Therefore, the270

possible value of an allele is limited to the adjacent gene of gene i. For example,

in the network topology of Figure 3 (a), the allele value of the gene at the third

position is only 2,4,5,6.

In the early stage of evolution, mutation operation is carried out, and the

mutation probability in the process of evolution is set to the adaptive mutation275

probability pm mentioned above. If the mutation operator randomly changes
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the allele value j of gene i, it will lead to an invalid search of search space,

so in the actual mutation process, the allele value of the gene changes to its

corresponding arbitrary neighbor nodes. This mutation method ensures that

each vertex is connected to only one of the adjacent vertices in the generated280

mutation offspring, and improves the search efficiency of the solution space.

3.5. Fitness function

Establishing an objective function is the most crucial step in optimal design.

With the deepening of research on complex networks, it is found that the nature

of community structure is often found in many complex networks, which is char-285

acterized by relatively close links within communities and relatively sparse links

among different communities. This partitioning has two competing objectives:

one is to minimize the links between communities, the other is to maximize the

links with the vertices in the community. The problem of community detection

should not be neglected in order to meet one goal. Therefore, it is suitable for290

multi-objective optimization.

In the study of community detection for complex networks, we construct

two objective functions, namely community fitness function and community

score function. The first objective function is to minimize community fitness

value, which is expressed as follows.295

fitness =

k∑
j=1

p (Sj) (9)

P (Sj) =
∑
i∈s

kini (S)

kini (S) + kouti (S)
(10)

where k is the number of communities, ki
in(S ) denotes the number of edges of

the vertex i connects the other vertices in subnetwork S and ki
out(S ) represents

the number of edges of the vertex i connects the other vertices outside the

subnetwork S. The second objective function is to maximize the community
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fitness value, which is expressed as:300

CS =

k∑
i=1

score (Si) (11)

score (S) = M (S)× Es (12)

M (S) =

∑
i∈s (ui)

r

|S|
(13)

ui =
1

|S|
kini (S) (14)

where |S | denotes the number of vertices in community S. Es denotes the total

number of edges in community S, and ui denotes the proportion of the number

of neighbors of vertex i in S to the number of all vertices. r is called a resolution

parameter and is a positive real number. Generally, it is set to 2 and used to

control the size of the network community. Because 0≤ui≤1, r≥1, the weights305

of vertices with more connections in community S are strengthened, and those

with less connections in community S are weakened. For a complex community

network, when ki
out(S )=0, P(S ) reaches its maximum value.

3.6. The solution selection of Pareto

Each solution of the F-SGCD algorithm represents different trade-offs be-310

tween two objectives, which results in many different network community de-

tection schemes. Therefore, we need to establish a standard parameter to select

a Pareto solution. The multi-objective adaptive fast genetic algorithm adopts

modularity proposed by Girvan and Newman [26].

Q =

k∑
s=1

[
ls
m
−
(
ds
2m

)2
]

(15)

ls denotes the total number of edges in community S, ds is the sum of de-315

grees of vertices in S, and m is the total number of edges in the network. The

closer the Q value to 1, the stronger the community structure. In the actual
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network, the value usually ranges from 0.3 to 0.7. In the fast multi-objective

adaptive genetic algorithm, the Pareto solution set formed by multi-objective

partition is stored in the elite gene bank. In this paper, modularity is regarded320

as an optimal solution selection criterion, and the network corresponding to the

solution with the largest modularity is divided into the optimal partition of the

current network.

3.7. Elite gene pool

After crossover, mutation, and selection, the squared difference of the im-325

proved genetic algorithm decreases gradually. The individuals tend to converge,

and the individuals with the same gene coding will increase progressively. There-

fore, we introduce the elite gene pool to store those individuals with higher

adaptability. For the repetitive individuals that already exist in the elite gene

pool, a series of processes such as decoding and calculating individual fitness330

can be avoided. The elite gene pool can reduce the complexity of the algorithm,

improve the efficiency and practicability of the operation. The size of the elite

gene pool is 0.2∼0.3 times the size of the individual population.

According to the fitness of chromosomes in the current population, the cod-

ing of chromosomes with higher fitness and the corresponding fitness values are335

added to the elite gene pool, and the fitness values are sorted from large to

small. Then, In the evolutionary process of offspring, when calculating the in-

dividual fitness, we first search for individuals with the same coding in the elite

gene pool. If the same individual exists, the fitness value of the corresponding

individual in the elite gene pool is directly taken as the fitness value of the340

current individual; if not, the fitness value is calculated according to the fitness

function, and the fitness value is compared with that of the individuals in the

elite gene pool, if the fitness value is greater than the minimum fitness in the

elite gene pool, the individual is put into the elite gene pool. If the number

of individuals in the elite gene pool reaches the specified size, the less fitness345

individual in the elite gene pool is discarded.

In the prophase of the genetic algorithm, the individuals in the population
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change substantially, the individual repetition rate is relatively low. However,

after a certain generation number, the elite gene pool will be constructed to

reduce the inefficiency of the elite gene pool in the early stage.350

Although the introduction of the adaptive fast genetic algorithm into the

elite gene pool in the actual solution, it is more complex than the traditional

adaptive genetic algorithm. The elite gene pool is, to the greatest extent, to

avoid the individual’s adaptability to the problem of repeated calculation. By

the late stage of evolution, the role of the elite gene pool became more and more355

obvious as the repetitive individuals appeared frequently.

4. The algorithm flow of F-SGCD

In the F-SGCD algorithm, the first step is to initialize the population ran-

domly. Each individual represents a network structure, and each of its com-

ponents is a connected subgraph of G. F-SGCD calculates the two objective360

function values of each individual, ordering and classifying the two objective

function values of each individual according to the domination between Pareto

solutions, and then executes an adaptive crossover mutation operator to gener-

ate a new population. After several iterations, the F-SGCD algorithm finally

returns a Pareto optimal solution with the highest modularity. The procedure365

of F-SGCD is summarized in Algorithm 1.

In the framework of algorithm 1, Initialization() is used to initialize the

population. Select() is a selection operation in F-SGCD algorithm. Adaptive()

is used to calculate adaptive crossover probability pc and adaptive mutation

probability pm according to Formula (7) and Formula (8). the functions Muta-370

tion() and Crossover() represent mutation operation and crossover operation,

respectively. Update() represents updating the current population, i.e. selecting

individuals with higher fitness from population P and Pchild. Termination() de-

notes the termination condition of the loop statement. ElitePool() is to update

the genes in the elite gene pool, which ranks non-Pareto non-inferior solutions375

according to fitness values. Given a graph G=(V, E ), F-SGCD performs the
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Algorithm 1 Framework of F-SGCD Algorithm

Input: Population size Population; Maximum number of iterations Generation

Output: The results of community detection

1: Initialization: Adaptive parameters: adaptive crossover probability pc of

population P, adaptive mutation probability pm of population P

2: P←Intialization(Population);

3: While Termination(Generation);

4: Pparent←Select(P)

5: pc, pm←Adaptive();

6: pcross←Crossover(Pparent, pc)

7: pchild←Mutation(Pcross, pm)

8: P←Update(Pchild);

9: ElitePool();//{Update the elite gene pool}

10: End;

11: return The results of community detection //{Transforming the most

adaptable non-inferior solutions from the elite gene pool into community

detection results}

following specific steps:

Step 1. The community detection problem is transformed into a multi-

objective problem, and two objective functions are established, namely the com-

munity score objective function and the community fitness objective function.380

Step 2. According to the adjacency principle, the individuals in the popula-

tion and the elite gene pool are initialized, and the size of the elite gene pool is

about 0.2∼0.3 times the size of the population.

Step 3. For gene selection, if the same chromosome exists in the elite gene

pool, the fitness of individuals can be obtained from the gene pool. If the385

same chromosome does not exist, the chromosome is decoded. According to the

domination between the two objective functions, the elite gene pool is updated

by sorting according to the Q value.

Step 4. Select individuals by roulette.
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Step 5. Calculate the adaptive crossover probability and mutation probabil-390

ity, then perform a crossover mutation operation to generate the next generation

population.

Step 6. Determine whether the maximum number of iterations is reached. If

so, the non-inferior solution with the highest modularity in the elite gene pool

is returned as the optimal solution of the final output.395

5. Experimental results and discussions

To test the performance of the F-SGCD algorithm, real-word networks, and

artificial networks of different scales are used to carry out comparative exper-

iments. Furthermore, we also applied the same networks in the competing

algorithms, including CNM [26], SCORE [27], LPA [28], MOEA [29], SPOC400

[30] and FuzAg [31]. The experiment was carried out on a single computer with

3.1GHz Pentium 4CPU and 16GB memory. The software platform is python

2.7 in Windows.

5.1. Datasets

5.1.1. Real-word networks405

We chose four real-world networks, including Bottlenose Dolphins [32], Zachary’s

Karate Club [32], American Coll. Football [33] as well as Krebs’ book [33]. Table

1 describes in detail the characteristics of four network structures (the number

of edges (m), the number of nodes (n), and the number of real communities

(|C |)).410

Networks n m |C | Ground truth

Karate 78 34 2 Known

Dolphin 159 62 2 Known

Football 613 115 12 Known

Krebs’ Books 441 105 3 Known

Table 1: Characteristics of four network structures.
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5.1.2. Artificial networks

We use the LFR (Lancichinetti-Fortunato-Radicchi) Benchmark [34] pro-

posed by Lancichinetti and Fortunato to produce artificial networks, which to

test the feasibility and validity of the algorithm. The network consists of 128

vertices and 4 communities. Each community has 32 vertices, and the average415

degree of vertices is 16. The mixed parameter µ controls the ratio of the external

degree of the vertex to the vertex degree. The smaller the value µ, the smaller

the proportion of vertices connected to other communities, and the clearer the

community structure. In the experiment, we adjusted the value of µ from 0 to

0.5, and the interval is 0.05. When µ
.
=0.5, half of the vertices connected with420

each vertex are in other communities, and the community structure is relatively

vague. When µ<0.5, the ratio of the external degree of a vertex is less than that

of internal degree. When µ
.
=0, the ratio of the external degree of vertex to the

vertex degree is 0, and the vertex is only connected with the vertices in their

own community. At this time, the community structure is the most obvious.425

5.2. Evaluation metrics

Normalized Mutual Information (NMI). NMI is a useful information

measure in information theory. It is introduced by Leon Danon et al. [35] and

used to measure the similarity between the detected communities and the known

communities. Given two partitions A and B of a network in communities, let C430

be the confusion matrix whose element Cij is the number of nodes of community

i of the partition A that are also in the community j of the partition B. The

normalized mutual information I (A, B) is defined as follows:

I (A,B) =
−2
∑CA

i=1

∑CB
j=1 Cij log (CijN/Ci·C·j)∑CA

i=1 Ci· log (Ci·/N) +
∑CB

j=1 C·j log (C·j/N)
(16)

where CA is the number of groups in the partition A, CB is the number of

groups in the partition B. Ci· is the sum of the elements of C in row i. C·j is435

the sum of the elements of C in column j. N denotes the number of nodes. The

closer the NMI value is to 1, the more similar the detected community is to the
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known community. On the contrary, the closer the NMI value is to 0, the less

similar the detected community is to the known community.

Modularity. Newman et al. citeclauset2004finding proposed the concept440

of modularity, which is a criterion for evaluating the quality of community de-

tection. The definition of modularity is as follows:

Q =
∑
C

[
lC
m
−
(
kC
2m

)2
]

(17)

where lC the total number of edges joining vertices of community C and kC the

sum of the degrees of the vertices of C. Large values of Q are then supposed to

indicate partitions with high quality.445

5.3. Experiments on synthetic LFR networks

Figure 5 shows that the number of iterations of the F-SGCD algorithm is set

to 100 times, and the population size is set to be different. Under the Bench-

mark simulation network with different mixed parameter µ, the algorithm runs

20 times, taking the maximum value of NMI as a result. As can be seen from450

Figure 5, when µ≤0.25, the maximum NMI values of the F-SGCD algorithm

with population sizes of 50, 100, 150, and 200 are all 1, which shows that the

effect of community detection is perfect. When 0.25≤µ≤0.3, the NMI values of

population size 50 and 100 began to decrease, while the values of other pop-

ulations remained at 1. When µ≥0.3, the NMI value of population size 150455

began to decline, while the NMI value of population size 200 remained at 1,

and the NMI value of population size 50 and 100 continued to decline. When

0.35≤µ≤0.4, the NMI of the F-SGCD algorithm with population size 100 and

150 decreases faster, while the maximum value of NMI with population size 200

is still 1. When µ>0.45, the NMI values of the F-SGCD algorithm with a pop-460

ulation size of 200 decreases sharply, while those of 50, 100, and 150 decreases

slowly. When r decreases to 0.5, the NMI values of 50, 100, 150, and 200 are

similar.
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Figure 5: The maximum NMI value obtained by F-SGCD algorithm running Benchmark

network 20 times under different population sizes.

Figure 7 shows that the population size of the F-SGCD algorithm is set

to 150, and the maximum number of iterations is set to be different. In the465

Benchmark simulation network with different mixed parameters, the algorithm

runs 20 times, taking the maximum value of NMI as a result. We can see from

Figure 5 that when µ≤0.25, the maximum NMI of the F-SGCD algorithm is

1 when the number of iterations is 50, 100, 150 and 200, which shows that the

effect of community detection is perfect. When µ
.
=0.25 iteration times are 50,470

the NMI of iteration times 100, 150, and 200 are 1, when µ≥0.45, the maximum

NMI values decrease at the same rate for different iterations.
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Figure 6: The maximum NMI value obtained by F-SGCD algorithm running Benchmark

network 20 times under different iterative times.

Figure 7: Comparison of F-SGCD and other algorithms.

5.4. Experiments on real-world networks

Table 2 shows the results of 20 runs of different algorithms in four real

networks. NMImax denotes the maximum of 20 results, NMIavg denotes the475

average of 20 results. FuzAg, F-SGCD, SPOC, and MOEA algorithms have a

better effect. Among them, many values of NMImax and NMIavg are 1. The
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results of CNM, SCORE, and LPA algorithms are poor. For the Karate network,

the NMIavg values of the F-SGCD algorithm are 9.1%, 5.5%, and 15.2% higher

than those of CNM, SCORE, and LPA, respectively. For the Dolphin network,480

the NMIavg values of the F-SGCD algorithm are 14.4%, 1.9%, and 5.0% higher

than those of CNM, SCORE, and LPA, respectively. For the Football network,

the NMIavg values of the F-SGCD algorithm are 14.4%, 1.9%, and 5.0% higher

than those of CNM, SCORE, and LPA, respectively. For Krebs’ books network,

the NMIavg values of the F-SGCD algorithm are 26.7%, 4.7%, and 36.5% higher485

than those of CNM, SCORE, and LPA, respectively. LPA algorithm is very

unstable because its NMImax is quite different from NMIavg.
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Network Karate Dolphin

NMIavg NMImax NMIavg NMImax

CNM 0.890 0.963 0.872 0.968

SCORE 0.942 1.000 0.901 0.972

LPA 0.973 0.981 0.826 0.957

MOEA 0.956 1.000 0.912 1.000

SPOC 0.857 1.000 0.943 1.000

FuzAg 1.000 1.000 0.945 0.991

F-SGCD 1.000 1.000 0.951 1.000

Network Football Krebs’ books

NMIavg NMImax NMIavg NMImax

CNM 0.817 0.894 0.419 0.472

SCORE 0.918 1.000 0.507 0.581

LPA 0.891 1.000 0.389 0.417

MOEA 0.925 0.981 0.498 0.590

SPOC 0.896 0.904 0.521 0.530

FuzAg 0.924 1.000 0.527 0.597

F-SGCD 0.935 1.000 0.531 0.610

Table 2: NMI values of the eight compared algorithms on four real-world networks, averaging

over 20 runs.

Table 3 shows the results of 20 runs of different algorithms in four real

networks. Qmax denotes the maximum of 20 results, Qavg denotes the average

of 20 results. FuzAg, F-SGCD, SPOC, and MOEA algorithms have better490

effect. Especially for FuzAg, the Qmax value in the result of Karate exceeds

the algorithm proposed in this paper. The results of CNM, SCORE, and LPA

algorithms are poor. For the Karate network, the Qavg values of the F-SGCD

algorithm are 15%, 8.7%, and 33.9% higher than those of CNM, SCORE, and

LPA, respectively. For the Dolphin network, the Qavg values of the F-SGCD495

algorithm are 8.7%, 32.1%, and 141% higher than those of CNM, SCORE, and
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LPA, respectively. For the Football network, the Qavg values of the F-SGCD

algorithm are 13.5%, 8.8%, and 29.3% higher than those of CNM, SCORE, and

LPA, respectively. For Krebs’ books network, the Qavg values of the F-SGCD

algorithm are 11.2%, 14.2%, and 238.3% higher than those of CNM, SCORE,500

and LPA, respectively. LPA algorithm is very unstable because its Qmax is quite

different from Qavg.

Overall, for F-SGCD, the performance of finding optimal solutions has been

improved in the community detection process. It can produce results that are

close to the real network and exhibit better performance.505

Network Karate Dolphin Football Krebs’ books

Qavg Qmax Qavg Qmax Qavg Qmax Qavg Qmax

CNM 0.380 0.380 0.480 0.501 0.591 0.609 0.493 0.513

SCORE 0.402 0.402 0.429 0.473 0.617 0.654 0.480 0.480

LPA 0.326 0.415 0.217 0.396 0.519 0.623 0.162 0.276

MOEA 0.419 0.421 0.487 0.501 0.604 0.647 0.483 0.517

SPOC 0.416 0.419 0.521 0.525 0.601 0.604 0.506 0.523

FuzAg 0.423 0.480 0.517 0.520 0.627 0.681 0.516 0.516

F-SGCD 0.437 0.479 0.522 0.526 0.671 0.694 0.548 0.529

Table 3: Q values of the eight compared algorithms on four real-world networks, averaging

over 20 runs.

5.5. Network hierarchy of Pareto solution

Modules [36] refer to a group of nodes that are physically or functionally

linked together to accomplish a relatively independent function. Many systems

contain modules, and high modularity is the basic design requirement of a large

complex system. The modules of the network are identified according to the510

network topology, and the effectiveness of module partition can be explained by

analyzing the relationship between these modules and functions. In highly con-

nected community sub-networks, nodes with a small degree have high clustering

coefficients; On the contrary, high degree central nodes have lower clustering co-
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efficients, which only connect different subnetworks. In a hierarchical modular515

network, many small-scale nodes with dense internal connections are relatively

loose, thus forming a larger-scale topology module. This kind of topology struc-

ture is arranged hierarchically, and the network generated by module iteration

is called a hierarchical network. Hierarchical networks have the characteristics

of local clustering, modularity, and scale-free topology.520

Hierarchical modularity: Module refers to a group of vertices that are

physically or functionally linked together to accomplish a relatively indepen-

dent function. Many systems contain modules, and high modularity is the

basic design requirement of a large complex system. People can identify net-

work modules based on the network topology structure. The validity of mod-525

ule partition can be demonstrated by analyzing the relationship between these

modules and their functions. In densely connected community sub-networks,

vertices with a small degree have a higher clustering coefficient. On the con-

trary, high-degree vertices with a low clustering coefficient, which only connect

different sub-networks. In a hierarchical modular network, many small-scale530

vertices with dense internal connections are loosely connected, and thus form-

ing a larger-scale topology module. This topological structure is arranged in

hierarchical order, and the network that generates modules iteratively is called

hierarchical network [37]. Hierarchical networks have the characteristics of local

clustering, modularity, and scale-free topology.535

Bottlenose Dolphins: Lusseau et al. [38] observed the behavior of 62

dolphins over a long period. The edge connection between the two dolphins

indicated that they often contacted each other. There are 159 edges in the

network, forming two communities. In Lusseau’s research, firstly, the whole

Dolphins network is naturally divided into two groups: A and B, which cor-540

respond to female Dolphins and male Dolphins, respectively. Through further

research, Lusseau found that the male Dolphins network was further divided

into three community groups, and speculated that these three network groups

belonged to three different matrilineal pedigrees [36].

The Dolphins network was executed 20 times, and the eight Pareto frontiers545
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in the elite gene pool during one operation were shown in Figure 8. The abscissa

and ordinate coordinates represent the function values of community fitness

and community score, respectively. The two values in the box represent the

corresponding NMI and Q values of the solution. The maximum value of NMI

is 1, and the maximum value of Q is 0.5196. The results of the community550

network partition corresponding to these two solutions are shown in Figure 9 and

Figure 10. Figure 11 is the result of network partitioning when NMI = 0.8076.

As shown in Figure 9, when NMI = 1, the result of partition is the same as

that of real community partition, the Dolphins network is divided into two sub-

networks of A and B. Figure 10 shows that the network B in Figure 9 is further555

divided into two sub-networks, while Figure 11 shows that the subnetwork C in

Figure 10 is further divided into two more density subnetworks of C and D.

Figure 8: Pareto solution in elite gene pool when running Dolphin network.
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Figure 9: NMI=1, Q=0.3897.

Figure 10: NMI=0.9312, Q=0.5196.
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Figure 11: NMI=0.8076, Q=0.4432.

The hierarchical structure of complex networks is to integrate communities of

different granularity and levels in complex networks. Some sub-networks of the

complex network can also be subdivided into several density sub-communities at560

a low level. According to the analysis of the above experimental results, F-SGCD

provides a complete set of Pareto frontier solutions for researchers in network

community partitioning and finds out the hierarchical structure of the network.

We can better understand the internal structure of the complex network, which

is conducive to the development and utilization of the complex network. In this565

respect, it has more advantages than a single-objective optimization method.

6. Conclusion

The traditional community detection algorithm has the disadvantages of low

efficiency and a single optimization solution. We design a multi-objective adap-

tive genetic algorithm. Firstly, it transforms the problem of community detec-570

tion into a multi-objective optimization problem and constructs two objective

functions of community score and community fitness. Secondly, an external

elite gene pool is introduced to store non-inferior solutions with high fitness.

For the duplicate individuals that already exist in the elite gene pool, there is

no need to re-decode and re-calculate individual fitness. At the same time, an575
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adaptive genetic operator is executed to return a set of non-dominant solutions

compromised between the two objective functions. Finally, a Pareto optimal

solution with the highest modularity is selected and decoded to generate a set

of independent sub-networks. The performance of the algorithm is evaluated

by normalized mutual information and modularity. The experimental analysis580

shows that the adaptive genetic operator and elite gene pool constructed accord-

ing to the characteristics of the problem are helpful to improve the optimization

and stability of the algorithm in community detection of complex networks.

F-SGCD algorithm based on the Pareto solution is helpful in discovering the

hierarchical structure of complex networks. The inherent parallel mechanism585

of F-SGCD and its global optimization characteristics are suitable for solving

multi-objective optimization problems.
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[6] V. Poulin, F. Théberge, Ensemble clustering for graphs: Comparisons and

applications.

[7] S. Saha, S. Bandyopadhyay, A symmetry based multiobjective clustering

technique for automatic evolution of clusters, Pattern Recognition 43 (3)610

(2010) 738–751.

[8] D. Datta, J. R. Figueira, Graph partitioning by multi-objective real-valued

metaheuristics: A comparative study, Applied Soft Computing 11 (5)

(2011) 3976–3987.

[9] G. N. Demir, A. Uyar, Gunduzoguducu, Multiobjective evolutionary clus-615

tering of web user sessions: a case study in web page recommendation, soft

computing 14 (6) (2010) 579–597.

[10] P. Ji, S. Zhang, Z. P. Zhou, A decomposition-based ant colony optimization

algorithm for the multi-objective community detection (2).

[11] C. Sammut, G. I. Webb, Encyclopedia of machine learning and data mining.620

[12] M. Guerrero, F. G. Montoya, R. Banos, A. Alcayde, C. Gil, Adaptive

community detection in complex networks using genetic algorithms, Neu-

rocomputing 266 (2017) 101–113.

[13] A. Firat, S. Chatterjee, M. Yilmaz, Genetic clustering of social networks

using random walks, Computational Statistics δ Data Analysis 51 (12)625

(2007) 6285–6294.

32



[14] D. Fogel, Artificial intelligence through simulated evolution, in: National

Conference on Emerging Trends δ Applications in Computer Science, 1966.

[15] L. Danon, A. Diazguilera, J. Duch, A. Arenas, Comparing community

structure identification, Journal of Statistical Mechanics: Theory and Ex-630

periment 2005 (09) (2005) 09008.

[16] M. Tasgin, H. Bingol, Community detection in complex networks using

genetic algorithm.
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