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ABSTRACT

The South Pacific decadal oscillation (SPDO) characterizes the Southern Hemisphere contribution to the

Pacific-wide interdecadal Pacific oscillation (IPO) and is analogous to the Pacific decadal oscillation (PDO)

centered in the North Pacific. In this study, upper ocean variability and potential predictability of the SPDO is

examined in HadISST data and an atmosphere-forced ocean general circulation model. The potential pre-

dictability of the IPO-related variability is investigated in terms of both the fractional contribution made by

the decadal component in the South, tropical and North Pacific Oceans and in terms of a doubly integrated

first-order autoregressive (AR1) model. Despite explaining a smaller fraction of the total variance, we find

larger potential predictability of the SPDO relative to the PDO. We identify distinct local drivers in the

western subtropical South Pacific, where nonlinear baroclinic Rossby wave–topographic interactions act to

low-pass filter decadal variability. In particular, we show that the Kermadec Ridge in the southwest Pacific

enhances the decadal signature more prominently than anywhere else in the Pacific basin. Applying the

doubly integrated AR1 model, we demonstrate that variability associated with the Pacific–South American

pattern is a critically important atmospheric driver of the SPDO via a reddening process analogous to the

relationship between theAleutian low and PDO in theNorth Pacific—albeit that the relationship in the South

Pacific appears to be even stronger. Our results point to the largely unrecognized importance of South Pacific

processes as a key source of decadal variability and predictability.

1. Introduction

In line with the great volume of the Southern Hemi-

sphere (SH) oceans, the South Pacific Ocean exhibits

prominent decadal climate variability (e.g., Reason

2000). That said, our understanding of Pacific and in

particular South Pacific decadal variability and pre-

dictability has been limited, despite this being an

emerging area of substantial interest and active research

(Meehl et al. 2014; Holbrook et al. 2014; Power et al.

2017). The lack of consistent long-term observations has

in part led to less attention being drawn to the South

Pacific. In recognition of the significant role that the

Southern Oceans, and in particular the South Pacific,

play in the regional and global climate combined with

the rapid development of the Argo observing system,

there is now intense interest in the variability and dy-

namics of this region. Analogous to the approach used to

define the Pacific decadal oscillation (PDO; Mantua

et al. 1997) in the North Pacific, Shakun and Shaman

(2009) recently introduced the SH equivalent as the

leading empirical orthogonal function (EOF) of sea

surface temperature anomalies (SSTA) over the South

Pacific poleward of 208S. This feature was later named

the South Pacific decadal oscillation (SPDO; e.g., Chen

and Wallace 2015). Shakun and Shaman (2009) found

that the PDO and SPDO in the North and South Pacific

are qualitatively very similar on interdecadal time

scales. In addition, Power et al. (1999) and Folland et al.

(2002) introduced the interdecadal Pacific oscillationCorresponding author: Jiale Lou, jiale.lou@utas.edu.au
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(IPO) in order to characterize the decadal variability

over the entire Pacific basin.

Many studies show that the IPO, PDO, and SPDO are

closely correlated with El Niño–Southern Oscillation

(ENSO) at low frequencies and largely characterize

the decadal to interdecadal climate variability across

the Pacific Ocean. Newman et al. (2016) examined the

temporal correlations between the sea surface tem-

perature (SST) variability of the PDO, the IPO, and

the SPDO finding significant correlations between the

low-pass-filtered time series of the IPO with the SPDO

(r5 0.82) and the PDO (r5 0.74). However, studies on

decadal variability in the South Pacific (i.e., SPDO) are

lacking and most previous studies have focused on the

SST variability (see, e.g., Shakun and Shaman 2009), but

not the subsurface, nor the potential mechanisms and

predictability of the SPDO.

In the North Pacific, it has been recognized that the

PDO is not simply a single physical mode but instead

largely represents the combination of different pro-

cesses operating on different time scales (e.g., Newman

et al. 2016; Liu and Di Lorenzo 2018). These multiscale

processes include white noise atmospheric forcing

(Hasselmann 1976; Di Lorenzo and Ohman 2013),

ENSO teleconnections (Leathers et al. 1991; Newman

et al. 2003; White et al. 2003), and fundamental ocean

dynamical processes (Deser et al. 2003; Capotondi et al.

2005; Schneider and Cornuelle 2005; McGregor et al.

2007; Lyu et al. 2017). However, even a cursory reading

of the literature indicates a considerable degree of

uncertainty as to the relative importance of any one

dynamic mechanism being the dominant cause of the

observed interdecadal variability over the midlatitude

Pacific. In the present study, we complement under-

standing of the PDO outlined in a recent review by Liu

and Di Lorenzo (2018), and that draws on the revisited

analysis by Newman et al. (2016), by analyzing the

role of stochastic surface forcing and internal ocean

dynamics on the SPDO.

Relative to the extensive literature on the PDO, the

SPDO has been less widely discussed. One possible

reason is that the PDO dominates the interdecadal time

scales while the surface variability of the SPDO exhibits

more interannual to quasi-decadal features (Chen and

Wallace 2015; Newman et al. 2016). Another possible

reason is that observed South Pacific Ocean data are

sparse (Basher and Zheng 1998) relative to those in the

North Pacific.

Motivated by similarities with the spatiotemporal

characteristics of the PDO (Liu and Di Lorenzo 2018),

and cognizant of the fact that the SPDO integrates

multiple dynamics of the atmospheric forcing, ENSO

teleconnections, and oceanic processes in the SH, in this

study, we show the requisite atmospheric stochastic

forcing in combination with tropical teleconnections and

oceanic dynamics required in combination to generate

the SPDO.

Although the SPDO is much less well understood,

there is a growing body of evidence that highlights the

importance of different dynamics over the South Pacific.

For example, from an atmosphere perspective, the

Pacific–South American pattern 1 (PSA1), which was

defined as the second leading mode of the 500-hPa

geopotential height (Z500) over the SH (Lau et al.

1994; Mo 2000; O’Kane et al. 2017), is characterized by

multiple time scales from intraseasonal to decadal

(Kiladis and Mo 1998). Mo (2000) showed that the at-

mospheric PSA1 is highly correlated to the ENSO-like

SST pattern on interannual time scales. O’Kane et al.

(2017) identified the influence of tropical convection on

the thermal wind as the source of this correlation.

From the ocean perspective, some studies also em-

phasize the importance of oceanic dynamics to decadal

variability in the South Pacific (Holbrook and Bindoff

1997; Linsley et al. 2000; Power and Colman 2006;

McGregor et al. 2007; O’Kane et al. 2014b; Sloyan and

O’Kane 2015, Chung et al. 2017). For example, in a

numericalmodeling study,Holbrook et al. (2011) showed

that long baroclinic Rossby waves provided an important

mechanism for modulating East Australian Current

(EAC) transports and corresponding observed sea level

variations in Sydney Harbour on ENSO to decadal time

scales. Using ocean state estimates, Hill et al. (2011)

further showed decadal scale changes in EAC intensity in

opposition to that in the Tasman Front.

Aside from long baroclinic Rossby waves, O’Kane

et al. (2014b) showed that nonlinear instabilities in

ocean storm tracks are key to the multiscale properties

of Rossby waves and further enhance decadal variability

over the South Pacific. Sloyan and O’Kane (2015) con-

cluded that internal ocean dynamics are important

drivers of decadal variability in the Tasman Sea, and that

the stability of the EAC is linked, via the South Cale-

donian jet, to the stability of the pan-basin subtropical

South Pacific Ocean ‘‘storm track.’’ Travis and Qiu

(2017) argued that changes in oceanic stratification and

vertical shear of horizontal velocities can cause decadal

variability of baroclinic instability in the subtropical

countercurrent (STCC) region over the South Pacific.

Utilizing an ocean general circulation model, Rieck

et al. (2018) also show that the STCC region (i.e., 258–
338S, 1538–1758W) exhibits significant decadal baroclinic

instability.

Given the importance of decadal climate variability

and gaps in our current knowledge (Holbrook et al.

2014), understanding the mechanisms and predictability
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of the IPO-related variability therefore has great soci-

etal value. Some studies argue that long-term climate

predictability is limited by the effects of high-frequency

processes (Boer 2004; Power andColman2006; Frederiksen

et al. 2016), while others argue that the main limitation is

from the growth of initial errors due to flow instabilities

(e.g., Griffies and Bryan 1997; Boer 2000; Yang et al. 2008;

Branstator et al. 2012).

Because of different perspectives, predictability can

take different forms—for example, the terms ‘‘diagnostic/

potential predictability’’ and ‘‘prognostic/practical pre-

dictability’’ are referred to separately for distinction. The

former is more a statistical concept and provides an esti-

mate of the upper limit to predictive skill assuming a

perfect model, and often termed as the ratio of the vari-

ance of the potentially predictable component relative to

the variance of the total variability (e.g., Boer 2000;

Frederiksen et al. 2016; Lou et al. 2017). Predictability is

‘‘potential’’ in the sense that the presence of appreciable

long time scale variability is not directly indicative so that

it may be skillfully predicted (Kirtman et al. 2013). Nev-

ertheless, it provides a convenient and simple measure of

the relative importance of decadal variability (Liu and Di

Lorenzo 2018). The latter is investigated by perturbing

initial conditions in numerical simulations to estimate the

rate of separation of initially close trajectories about the

climate attractor (Yang et al. 2008; Meehl et al. 2009,

2010;Meehl andTeng 2012;Meehl et al. 2014; Nadiga and

O’Kane 2017). However, the period for which climate

model simulations can accurately track the nonlinear

trajectory of the climate is hampered by an insufficient

record length of subsurface ocean observations with

which to constrain the models, the computational cost of

ensemble coupled data assimilation, and the large model

biases in the current generation of general circulation

models.

While many studies on potential predictability exist

in the literature, most have a tropics–North Pacific

focus. Notable studies include those on climate vari-

ability (Newman et al. 2003; Chen et al. 2004; Alexander

et al. 2008), sea surface temperature (Newman 2007;

Frederiksen et al. 2016), atmospheric circulation (Lou

et al. 2017), precipitation (Ying et al. 2018), ocean heat

content (Li et al. 2017), and ocean subsurface tem-

peratures (Power and Colman 2006), to give only a

few examples. In addition, first-order autoregressive

(AR1) models (Boer 2000; Newman et al. 2003), linear

inverse models (Newman 2007; Alexander et al. 2008;

Newman et al. 2011, 2016), decadal decomposition

methods (Frederiksen et al. 2016; Lou et al. 2017; Ying

et al. 2018), and other statistical or physical models

have also been applied to quantify the potential

predictability.

Frankignoul and Hasselmann (1977) introduced

the AR1 model and applied it to investigate the North

Pacific air–sea system. AR1-based models are linear sto-

chastic models driven by white-noise forcing where the

low-frequency variability is simply associated with the

persistence of itself with some empirically determined

decorrelation time scale. The AR1 model can be applied

in a number of ways, for example, including remote

forcing of ENSO as a noise term (e.g., Newman et al.

2003; Power and Colman 2006; Liu 2012) or by repeat

(double) integration of AR1 model(s) (Di Lorenzo and

Ohman 2013).

In the present study, we apply various decomposition

methods, including 1) the fractional contribution made

by the decadal component in the South Pacific, tropical

Pacific, and North Pacific Oceans, respectively; and 2)

the doubly integrated AR1 model to investigate how

atmospheric variability, sea surface temperature vari-

ability and subsurface ocean temperature variability

combine to produce the SPDO. We examine model

simulations and observational datasets to better ex-

plore and analyze the relationship between surface and

subsurface Pacific Ocean temperature variability and

potential predictability.

This paper is organized as follows. The data and model

details used in this study are described in section 2. Next,

we compare the surface (section 3) and subsurface (sec-

tion 4) temperature variability—where observed SST

(HadISST) and simulated ocean temperature variability

and vertical structure are based on an atmosphere-forced

ocean model (previously described in section 2). In sec-

tion 5 we undertake a sectoral correlation analysis of

decadal variability over the Pacific basin. The role of at-

mospheric forcing in generating the ocean response is

examined in section 6.Our discussion and conclusions are

given in section 7.

2. Data and model

This study uses observed monthly SST data from

HadISST.1.1 on a 18 3 18 grid, covering the period

from 1870 to 2017 (Rayner et al. 2003) and available

from https://www.metoffice.gov.uk/hadobs/hadisst/data/

download.html. For the purposes of our analysis, the

HadISST.1.1 SST data have been regridded to a 2.58 3
2.58 grid.
Themodel used is theAustralian Community Climate

and Earth-System Simulator-Ocean (ACCESS-O) con-

figuration of the GFDL MOM4p1 ocean-ice code

(Delworth et al. 2006). The model configuration is de-

scribed in O’Kane et al. (2014b). For comparison, the

original 360 3 300 tripolar ACCESS-O ocean model

grid has been interpolated to a regular 2.58 3 2.58 grid in
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this study. ACCESS-O has 50 model levels in the ver-

tical covering 0–6000m with depth intervals ranging

from 10m in the upper ocean (0–200m) to about 333m

for the abyssal ocean (O’Kane et al. 2014a; 2014b).

ACCESS-O is forced by observed atmospheric fields

from the Coordinated Ocean-Ice Reference Experi-

ments (COREs; 1948–2007) (Griffies et al. 2009).

At the same time, we also use monthly mean sea

level pressure (SLP) and Z500 reanalysis data over the

period 1948–2007 in this study, taken from the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) and avail-

able at https://www.esrl.noaa.gov/psd/data/gridded/data.

ncep.reanalysis.surface.html and https://www.esrl.noaa.gov/

psd/data/gridded/data.ncep.reanalysis.pressure.html, re-

spectively. The SLP and Z500 data were analyzed at the

data-provided 2.58 3 2.58 resolution.
In performing EOF and other statistical analyses

upon the variables, we make use of the detrended and

anomalous monthly data. That is, all the observed and

simulated data were linearly detrended at each grid

point first. Then, the seasonal climatology was removed

from the monthly data at each grid point to derive the

anomalies. The principal component (PC) time series

derived from the EOF analysis is then regarded as the

relevant climate index.

In addition, we refer to some previous published cli-

mate indices in this paper. Most are predicated upon the

SST field. We also apply the same definition to the in-

tegrated subsurface ocean temperature field, which we

will discuss in section 4a. Abbreviations, brief definitions

and references for these climate indices are listed in

Table 1.

The significance of the correlation and cross-correlation

coefficients has been performed following the approach of

Davis (1976). This takes account of the effective number

of degrees of freedom due to serial correlation, and a

simple t statistic was applied to assess whether the two

time series were significantly correlated.

3. Observed and simulated SST variability

Taking the available CORE atmospheric forcing

data into account, the model was run for 60 years from

1948 to 2007. The EOF analysis using the 1948–2007

HadISST and ACCESS-O data has been performed for

the North Pacific, tropical Pacific, and South Pacific,

where the leading modes represent the PDO, ENSO,

and SPDO, respectively.

Figure 1 shows the resulting EOF spatial patterns

of SST in each of the three constituent regions. The

simulated SST patterns (Figs. 1d–f) are similar to the

observed SST patterns (Figs. 1a–c), as are the relative

explained variances, a clear demonstration that the

model can adequately capture the spatial features of

those modes. Although the EOF analysis was restricted

to each of these three constituent regions where the

PDO, ENSO, and the SPDO are defined, many studies

show that the PDO and SPDO are characterized by the

Pacific-wide ENSO-like pattern but with stronger ex-

tratropical signatures and meridionally broader tropical

structures on the interannual time scales relative to

ENSO (e.g., Power and Colman 2006; Deser et al. 2010).

The 8-yr Butterworth low-pass-filtered SST indices

from both the observations and simulation are shown in

Fig. 2. The filtered time series are highly correlated [r.
0.83 (.95% significance) in both the observations and

simulation]. Besides, the phase changes of the Pacific

Ocean climate indices (Fig. 2) are consistent with the so-

called climate regime shift of the late 1970s, which is

characterized as the conspicuously rapid transitions

between relatively stable atmospheric and oceanic states

(O’Kane et al. 2014a).

Correlation analyses have been applied for each pair

of the unfilteredmonthly SST indices.We found the SST

TABLE 1. Abbreviations and definitions of the climate indices

referred to in this study.

Abbreviation Definition

GL-PC1 PC1 of near-global SST anomalies (SSTA;

708S–708N)

Niño-3.4 The area-averaged SSTA over the region 58N–58S
and 1708–1208W

TPI Tripole index (Henley et al. 2015), which is

defined as the difference between the average

SSTA over the central equatorial Pacific

(108S–108N, 1708E–908W) and the average

of the SSTA in the northwest (258–458N,

1408E–1458W) and southwest Pacific

(508–158S, 1508E–1608W)

NP-PC1 PC1 of North Pacific SSTA poleward of 208N
(Mantua et al. 1997), which is used to represent

the time evolution of PDO

TP-PC1 PC1 of tropical Pacific (208S–208N) SSTA, which

is used to represent the time evolution of

ENSO

SP-PC1 PC1 of South Pacific SSTA poleward of 208S
(Chen and Wallace 2015), which is used to

represent the time evolution of SPDO

P-PC1 PC1 of entire Pacific SSTA (708S–708N,

1208E–708W)

NPI North Pacific index (Trenberth and Hurrell

1994), which is used to represent the Aleutian

low and defined as the area averaged SLP

anomalies over the region 308–658N,

1608E–1408W
PSA1 Pacific-South American pattern 1 (O’Kane et al.

2017), which is defined as PC2 of Z500

anomalies over the Southern Hemisphere
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SPDO and ENSO indices (e.g., SST TP-PC1) are more

highly correlated relative to the PDO index in both the

observations (r 5 0.70 versus 0.46) and simulation (r 5
0.62 versus 0.43), where all r values are significant at the

95% level. In this study, the tripole index (TPI; Henley

et al. 2015) has been used as ametric (index) for the time

variability of the Pacific-wide IPO. It shows the un-

filtered TPI is essentially identical to the leading PC of

the monthly Pacific basin SSTA (i.e., P-PC1) with cor-

relations of 0.98 in both the observations and simulation.

We have also examined the spectrum for each index

(figures are not shown). However, due to the rela-

tively short record lengths and strong autocorrelations

(Folland et al. 1999; Liu and Di Lorenzo 2018), the

spectra of the PDO and SPDO during 1948–2007 (60

years) in both the HadISST and ACCESS-O are not

significant and difficult to identify as spectral peaks.

Although less reliable prior to the 1950s (Power et al.

2006), the longer length of theHadISST recordmay give

us a better estimate regarding the spectral analysis, and

so on this basis we calculated the SST power spectrum

using the complete 147-yr observational HadISST re-

cord from 1870 to 2016. The spectrum shows that the

PDO has a period of 20–30 years at the 95% significance

level on decadal time scales, and the SPDO has a period

of 13–20 years at the 95% significance level on these

same time scales, which is distinct from the time scales of

ENSO (up to 6 years). Nevertheless, the PDO exhibits

more pronounced decadal signals than the SPDO does

in the SST field.

Given the correlation and spectrum analyses above, it

is of particular interest to examine the extent to which

the slowly varying decadal component contributes to

the monthly climate modes. Thus, we calculate the po-

tential predictability for each index. Even though the

precise methods on how to derive the decadal compo-

nent vary in the literature, typically potential decadal

predictability has been defined as the ratio of the vari-

ance of the slow-varying decadal component with re-

spect to the variance of total variability (e.g., Kirtman

et al. 2013).

In this study, we apply the fraction between the vari-

ance of 8-yr low-pass-filtered data and the variance of

unfiltered monthly data (e.g., Power and Colman 2006)

as a measure of potential predictability. A higher po-

tential predictability variance fraction (ppvf) indicates a

large proportion of decadal variability with respect

to the total and therefore may be more predictable

FIG. 1. The leading spatial patterns of the monthly SST for (top) the North Pacific, (middle) the tropical Pacific and (bottom) the South

Pacific. (a)–(c) Derived from HadISST during 1948–2007; (d)–(f) derived from ACCESS-O during 1948–2007.
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(Kirtman et al. 2013). Although this is a simplified

measure of potential predictability and the ppvf is not

necessarily indicative of the true decadal predictability

(Liu and Di Lorenzo 2018), it nevertheless serves our

purpose to understand the differences and similarities of

ENSO and the IPO-related variability by giving a uni-

form standard reference. In fact, the ppvf here shows

very similar results with the potential predictability/

predictive skill based on the optimal AR1models, which

will be discussed in section 6.

The ppvf for each observed and simulated SST index

is listed in Table 2. The subtle differences in ppvf values

further suggest the atmosphere-forced model performs

well in simulating the internal variability. It shows that

ENSO (i.e., Niño-3.4 and TP-PC1) has less predictabil-

ity on the interdecadal time scales (Table 2). However,

those indices that encompass the midlatitude regions

(i.e., GL-PC1, P-PC1, and TPI) have relatively large

predictability ranging between 11%and 14% in both the

model and observations.

Of all the indices, those regions that only consider the

midlatitudes (i.e., NP-PC1 and SP-PC1) have the largest

predictability. Especially over the North Pacific, the

ppvf of the PDO (NP-PC1) reaches 18.92% (17.15%)

in the observations (simulation). All the evidence in-

dicates that the surface variability in the midlatitudes

can enhance the decadal variability and potential

predictability.

4. Simulated subsurface temperature variability

a. Vertically averaged temperature

Power and Colman (2006) and Chung et al. (2017)

have previously examined the vertically averaged tem-

perature (VAT), or ocean temperature at a certain

depth, and the ratio of variability that occurs on decadal

time scales. However, they focused on several hot spots

in the South Pacific, for example, the wing index region

(Power and Colman 2006) and Tasman Sea (Chung et al.

2017) and suggested that the subsurface dynamics may

lead to important sources of decadal predictability.

Using singular spectral analysis applied to observa-

tions and CMIP5 model simulations, Monselesan et al.

(2015) showed that, on decadal time scales, the maxi-

mized sea level variances (where sea level anomaly is a

vertically integrated quantity taking account of the in-

tegrated effect of the ocean’s thermosteric and halos-

teric properties through the water column) over the

Pacific basin arise from the midlatitudes, while the

tropical Pacific has less predictability primarily due to

the lack of variability on time scales beyond interannual.

While previous studies of IPO predictability have fo-

cused mostly on surface climate variability, our study

considers the South Pacific-wide SPDO from the surface

to the subsurface, and the role of forcing in generating

the observed low-frequency variability. The stochastic

forcing and generation of SPDO variability has not

previously been considered in this way and currently

remains unclear.

In the present study, we used VAT from 5- to 280-m

depth, encompassing variability within the mixed layer

FIG. 2. The 8-yr Butterworth low-pass-filtered tripole index

(Henley et al. 2015), Niño-3.4 index, PC1 of near-global SSTA

(also known as DEI in Chen and Wallace 2015), PC1 of the North

Pacific SSTA (PDO index), PC1 of the South Pacific SSTA (SPDO

index), PC1 of the tropical Pacific SSTA (ENSO index), and the

PC1 of Pacific basin SSTA derived from (top) HadISST and

(bottom) ACCESS-O. All indices are scaled. The positive and

negative phases of the IPO shaded in red and blue.

TABLE 2. The potential predictability variance fraction (%) of the SST indices and the differences between the observations and

simulation (HadISST minus ACCESS-O).

GL-PC1 Niño-3.4 TPI NP-PC1 TP-PC1 SP-PC1 P-PC1

HadISST 11.64 6.47 13.69 18.92 7.94 14.76 11.20

ACCESS-O 11.63 5.02 11.48 17.15 7.80 14.65 10.71

Difference 0.01 1.45 2.21 1.77 0.14 0.11 0.49
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and thermocline for most regions. The VAT modes and

indices have been constructed using the same regions

defined for the SST-based variability. Figure 3 (left)

shows the spatial patterns of the simulated VAT vari-

ability from each of the three constituent regions of the

IPO, explaining 21.67% (PDO), 36.12% (ENSO), and

27.76% (SPDO) of the corresponding total variance.

The spatial features of each resemble much of the rel-

ative SST counterpart (Fig. 1).

The monthly VAT time series of the PDO, ENSO,

and SPDO have also been compared with the SST in-

dices (Fig. 3 right) indicating that due primarily to the

direct interaction with the atmosphere, SST has a larger

degree of higher-frequency variability. In addition, the

SST ENSO and VAT ENSO are highly correlated (r 5
0.94). The high-frequency fluctuations superposed on

the slowly varying interdecadal variability are effec-

tively smoothed in the VAT field over the midlatitudes

(i.e., VAT NP-PC1 and VAT SP-PC1 in Fig. 3). It is

within our expectation that the subsurface dynamics in

the midlatitudes can significantly slow down and smooth

the local surface variability and further enhance the

decadal variability and predictability, which is key for us

to understand the source and mechanisms for the PDO

and SPDO, and decadal predictability.

The past El Niño and La Niña events are also marked

in Fig. 3. We can see the largest amplitude El Niño (La

Niña) events tend to be more frequent during periods

when the PDO and SPDO are, respectively, in a positive

(negative) phase. Some argue that the PDO and SPDO

are partially forced by ENSO (e.g., Newman et al. 2003

and the references therein). It is well recognized that the

PDO and SPDO provide ENSO a background state,

which can influence the frequency of El Niño and La

Niña events over certain decades. In this respect, the

predictability of the phases of the PDO and SPDO can

give an indication of the relative frequency of occur-

rence and intensity of ENSO events within a given

PDO–SPDO phase or background state.

Although the spatiotemporal features of ENSO and

the Pacific decadal modes remain similar for both the

surface and subsurface (Figs. 1, 3), we aim here to dis-

tinguish the potential predictability of the SPDO from the

fast ENSO variability and in contrast to the ENSO–PDO

relationship. Table 3 shows the correlations between the

simulated VAT indices and the corresponding 8-yr low-

pass-filtered SST time series (as shown in Fig. 2). Here,

the low-pass-filtered SST time series is used as the refer-

ence for comparison with the VAT indices, including the

extent to which the unfiltered VAT index is slow and

smooth. Of all the indices, the unfiltered VAT SPDO and

VAT PDO are the most highly correlated with the cor-

responding low-pass-filtered SST indices, where r 5 0.71

with the SPDO and r 5 0.67 with the PDO.

FIG. 3. (left) The leading spatial patterns of the monthly VAT for (a) the North Pacific, (b) the tropical Pacific, and (c) the South Pacific

from theACCESS-O. (right) Comparison of the leading SST PCs (black curve for theACCESS-O and gray curve for HadISST) andVAT

PCs (red curve) for the North Pacific, tropical Pacific, and South Pacific. All the PCs are scaled. The units are arbitrary. Vertical dashed

lines indicate the significant El Niño (red) and La Niña (blue) events. Significant El Niño years: 1958, 1966, 1973, 1978, 1980, 1983, 1987,

1988, 1992, 1995, 1997–98, and 2003. Significant La Niña years: 1950–51, 1956, 1962, 1971, 1974, 1976, 1989, and 1999–2000 (available at

https://www.esrl.noaa.gov/psd/enso/past_events.html). The positive and negative phases of the slow IPO variability are shaded in red

and blue.
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Compared with the ppvf of the SST indices (Table 2),

the ppvf of the VAT indices (Table 3) is greater, espe-

cially for the SPDO (14.65% versus 47.81%) and PDO

(17.15% versus 40.01%). Even though the mechanisms

by which these Pacific decadal variations shift phase

remains unknown, the VAT SPDO and VAT PDO do

give us some cause for optimism that they are potentially

useful indicators of when climate regime phase changes

may occur.

Figure 4 shows propagating Rossby waves in the VAT

across the North Pacific (meridionally averaged over

258–408N) and South Pacific (meridionally averaged

over 258–408S). Particularly evident is that the Rossby

waves seem to be motionless east of 1808 longitude over
the South Pacific in the vicinity of the Kermadec Ridge

(see the topography in Fig. 4d). VAT in this region

clearly exhibits significant decadal signals whose varia-

tions are consistent with the IPO phase (Fig. 4c).

Previous studies have explored the source of decadal

variability over this region (i.e., the green box in Fig. 4b)

as being caused by baroclinic instabilities (Qiu andChen

2004; O’Kane et al. 2014b). By applying instability the-

ory, O’Kane et al. (2014b) examined the propagation of

baroclinic disturbances across the South Pacific (refer to

their Figs. 10–14). They found near-stationary patterns

eastward of 1808 longitude (refer to Figs. 10 and 11 in

O’Kane et al. 2014b), with the amplitude of the baro-

clinic disturbances increasing west of about 1508W (see

Fig. 13 in O’Kane et al. 2014b). Their results are con-

sistent with those found here in Fig. 4. By comparing the

propagation of planetary Rossby waves and unstable

baroclinic disturbances, O’Kane et al. (2014b) showed

that the latter better match the complexity apparent in

observed altimetric signals in the Pacific than the for-

mer, primarily due to their multiscale nature, which are

characterized by three distinct phase speeds—one at

planetary Rossby wave speeds, one significantly slower

corresponding to propagating unstable baroclinic dis-

turbances, and one that is trapped by topography (their

Fig. 14).

In the present study, we show that the near-stationary

patterns occurring in the western subtropical South

Pacific (the green box in Fig. 4b) correspond to an en-

hancement of the signal of interdecadal variability over

the western subtropical South Pacific. The subsurface

processes driving the standing wave patterns in the

subtropical southwest Pacific described by O’Kane et al.

(2014b) are now clarified via analysis of the propagation

of the VAT and directly linked to the phase changes of

the large-scale climate variability IPO. The significant

persisting unfiltered decadal signals identified in our

research provide a potential focus for understanding the

predictability of interdecadal variability.

b. Vertical temperature structure

To explore spatial and temporal features of ENSO and

IPO-related variability in the vertical, we also examined

the vertical structure of the simulated ocean temperature

(which we call OT; from the surface to 600-m depth)

latitude by latitude. [Note that this contrasts with the

VAT presentation (averaged in the vertical), which pro-

vides horizontal map snapshots of the vertically averaged

temperatures.] For this purpose, the EOF analysis is

performed for each latitude across the Pacific. For con-

venience, we display only meridional averages over the

North Pacific (258–508N), tropical Pacific (208S–208N),

and South Pacific (258–508S), respectively. Figure 5 shows
the leading vertical EOF patterns for the North, tropical,

and South Pacific, which explain 26.55%, 56.74%, and

22.10% of the corresponding variance, respectively.

The vertical OT pattern over the tropical Pacific

(Fig. 5b) is strongest along the slope of the thermocline,

with deeper negative anomalies on the western side of

the basin and shallower positive anomalies on the east-

ern side. The OT PC1 for the tropical Pacific is highly

correlated with the SST ENSO and VAT ENSO

(Fig. 5e). The similar temporal variability in SST, VAT,

and OT indicates that annual/interannual ENSO vari-

ability dominates both the surface and subsurface Pacific

over the tropical regions.

The vertical pattern over the South Pacific (Fig. 5c)

coincides well with the bottom topography (Fig. 4d).

Largest loadings are seen eastward of the Kermadec

Ridge (roughly along 1808), which are well explained by

the stationary Rossby wave pattern. The energy seems

to be blocked and amplified along the east edge of the

Kermadec Ridge (e.g., Fig. 2 in Maharaj et al. 2005) and

extends to a depth of around 400m. This signal is sub-

stantially different to the corresponding region in the

North Pacific (Fig. 5a), where the largest loadings are

TABLE 3. The correlations between the simulated VAT indices and the corresponding low-pass-filtered SST indices (as shown in Fig. 2)

and the potential predictability variance fraction (%) of the VAT indices. The values in the parentheses are the critical values that are

significant at 95% significance level.

GL-PC1 TPI NP-PC1 TP-PC1 SP-PC1 P-PC1

r value 0.54 (0.42) 0.51 (0.42) 0.67 (0.52) 0.40 (0.30) 0.71 (0.56) 0.50 (0.37)

ppvf (%) 24.05 22.32 40.01 12.65 47.81 19.03
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concentrated in the shallower ocean (down to around

200-m depth). Meanwhile, the OT-PCs over the North

Pacific and South Pacific (Figs. 5d,f) correlate strongly

with the corresponding VAT indices and remain signifi-

cant interdecadal features.

5. Sectoral correlation analysis

From the earlier discussion, we might expect the IPO-

related variability and predictability to primarily arise

from subsurface dynamics in the midlatitudes in both

hemispheres. Ocean dynamics are the major processes

that maintain and enhance the interdecadal variability

and predictability. Motivated by exploring the observed

interdecadal variability and understanding the mecha-

nisms by which this variability arises, a number of

hot spots and climate indices have been introduced,

for example, the wing index (Power and Colman

2006), the Kuroshio Extension index (KOE; Qiu 2003;

Frankignoul et al. 2011), the spiciness index over the

FIG. 4. Hovmöller plot (time vs longitude) showing the propagation of monthly vertically averaged temperature (top 280m) averaged

over (a) the North Pacific (258–408N) and (b) South Pacific (258–408S). The 1808 longitude is marked as the reference longitude. The green

box shows the region that exhibits prominent decadal variability. (c) The simulated 8-yr Butterworth low-pass-filtered SST indices (as

shown in Fig. 2). The horizontal dotted lines represent the two most recent IPO phase transitions. (d) The model topography (m). The

Kermadec Ridge (208–408S, 1808) has been labeled on the map.
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subtropical South Pacific (O’Kane et al. 2014a), the TPI

(Henley et al. 2015; 2017), and the regions 2, 6, and 7

identified in the study by Chung et al. (2017).

To comprehensively characterize interdecadal vari-

ability in the Pacific, we define here a scaled box of di-

mensions 308 in longitude and 108 in latitude, which is

sequentially shifted every 58 in latitude and 308 in lon-

gitude over 458S–458N, 1508E–908W. Then, we area

average each box to construct the area-averaged SST

and VAT index (time series). As shown in Fig. 6, we

calculate the correlations between each box index and

the NP-PC1, TP-PC1, and SP-PC1 for SST and VAT,

respectively. The values have been labeled in the cor-

responding regions and different colors represent dif-

ferent variability-dominated regions (Fig. 6).

In SST (Fig. 6a), the PDO signal dominates the North

Pacific, including the KOE region, central and northeast

Pacific regions, which coincidewell with other PDO-related

indices [e.g., KOE index (cf. Fig. 1 in Frankignoul et al.

2011), andTPI (Henley et al. 2015; region 1 in their Fig. 1)].

Interestingly, we can also see the near-symmetric patterns

over themidlatitude South Pacific (blue colored in Fig. 6a)

similar to the North Pacific (green colored in Fig. 6a). It

shows that the Tasman Sea and central South Pacific (east

FIG. 5. Longitude–depth section of EOF1 of meridionally averaged ocean temperatures over the (a) North

Pacific (258–508N), (b) tropical Pacific (208S–208N), and (c) South Pacific (258–508S). They explain 26.55%, 56.74%,

and 22.10% of the variance, respectively. The 1808 longitude is marked as the reference longitude. (d)–(f) The

corresponding PC1 (black curves) of the ocean temperatures. For comparison, the leading SST PCs (red curve) and

VAT PCs (blue curve) for the North Pacific, tropical Pacific, and South Pacific are also shown in (d)–(f).
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of the Kermadec Ridge) exhibit strong SPDO signatures,

which are consistent with Chung et al. (2017; their region 6

for the Tasman Sea) andHenley et al. (2015; their region 3

for the South Pacific). Besides, the surface SPDO signals

are broadly overlapped with the ENSO variability in the

tropical region, indicating the SST SPDO is more strongly

coupled with ENSO relative to the SST PDO.

Compared with the SST correlation map (Fig. 6a),

similar patterns can also be found in VAT over the

midlatitudes (Fig. 6b). However, we can see that the

VAT SPDO (blue colored in Fig. 6b) is decoupled with

the tropical variability (red colored in Fig. 6b) and

confines its signature to the midlatitudes, indicating

that a prominent reddening process takes place in the

upper South Pacific. It is evident that the trapped mode

documented by O’Kane et al. (2014b) at the Kermadec

Ridge gives rise to, or enhances, the interdecadal signal

over the region eastward of 1808 longitude. The VAT

PDO (green colored in Fig. 6b) resembles its SST coun-

terpart and dominates the midlatitude North Pacific, a

region characterized by significant interdecadal variability

in both the surface and subsurface.

The obvious temporal correlations between the PDO,

SPDO, and low-frequency ENSO variability (e.g.,

Fig. 2) have led to a general understanding that the PDO

and SPDO are regarded as ‘‘ENSO-like’’ variations or

FIG. 6. Correlation maps between the area-averaged box (each has dimensions 308 in

longitude and 108 in latitude) index and PC time series of the PDO, ENSO, and SPDO for

(a) SST and (b) VAT. Correlation values have been labeled in the corresponding regions and

different colors represent different variability-dominated regions (green is for the PDO, red

is for ENSO, and blue is for the SPDO). Significance tests take account of serial correlation

according to Davis (1976). The VAT SPDO has the highest critical value of correlation (jrcj5
0.6 at the 95% significance level) due to the strong persistence. For the convenience of dis-

play, the correlations whose absolute values are larger than jrcj5 0.6 are shown. The different

colored triangles and trapezoids indicate the regions are overlapped by two indices. For

example, the red and blue trapezoids in the rightmost column indicate ENSO and the SPDO

overlap between 108 and 208S. The background patterns are the leading EOF for SST in

(a) and VAT in (b), which explain 15.94% and 17.04%, respectively, of the corresponding

variances.
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more broadly the background state to ENSO. To com-

pare their lead–lag relationships, we calculate cross

correlations for different time series pairs of variability

(summarized in Fig. 7). Broadly, we can see that the

tropical variability leads the midlatitude variability, the

surface leads the subsurface, and the South Pacific leads

the North Pacific (Fig. 7).

As shown in Fig. 7, the SST SPDO is strongly correlated

with ENSO (r5 0.62 with 0 lag in Fig. 7b). The SST PDO

also exhibits ties with variability in the tropical Pacific,

where we see changes in tropical Pacific SSTs leading

SSTs over the North Pacific by 3 months (r 5 0.48 in

Fig. 7a). Meanwhile, the subsurface PDO and SPDO are

highly correlated to their relative surface counterpart (r5
0.71 and 0.68, respectively) but with more interdecadal

signature (also see in our Fig. 3). The surface variability in

the tropical Pacific is dominated by interannual time

scales located in the subsurface, which contributes to the

high correlation between SST ENSO and VAT ENSO

(r5 0.94 with 0 lag in Fig. 7f). Primarily due to the tighter

relationship betweenENSO and the SPDO relative to the

relationship of ENSO–PDO, we find that the variability

over the South Pacific tends to lead variations in theNorth

Pacific (r 5 0.40 with a 5-month lead at the surface, and

r 5 0.54 with a 6-month lead in the subsurface).

The schematic in Fig. 7 illustrates the meridional cross

section of the thermocline (e.g., approximated as the

148C isotherm) with deep thermal layers in the mid-

latitudes of the Pacific relative to that in the tropical

Pacific. The structure of the thermocline across the Pa-

cific Ocean is consistent with the distribution of the

Pacific decadal variability.

FIG. 7. (a)–(i) Cross correlations between different pairs of surface and subsurface indices of the PDO, ENSO, and SPDO. The green

dashed line indicates the critical value at the 95% significance level, and each critical value has been labeled on the right. The schematic in

themiddle represents themeridional (zonal mean) cross section of the thermocline (e.g., approximated as the 148C isotherm) as a function

of depth and latitude.
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6. Stochastically forced PDO and SPDO variability

Studies on IPO-related decadal climate variability

have developed along two major lines [see the review

paper by Liu (2012)]. One line assumes the IPO-related

variability is self-exciting, while the other adopts the

stochastic theory and considers the IPO to be forced by

stochastic/atmospheric variability.

We adopt the latter and suppose the ocean is not a

self-sustaining system, but rather the atmospheric forc-

ing gives rise to fluctuations in the ocean. Thus, we fol-

low the AR1 null hypothesis approach undertaken in

previous studies (Frankignoul and Hasselmann 1977;

Newman et al. 2003, 2016; Power and Colman 2006; Di

Lorenzo and Ohman 2013), but here applied to oceanic

changes separately over the South Pacific and North

Pacific, to assess the contributions from each hemi-

sphere. The AR1 model can be written as

dF(t)

dt
5 f (t)2

F(t2Dt)

t
sur

, (1)

whereF(t) is the surface ocean state and is forced by the

atmospheric noise f(t). Here tsur is the surface ocean

memory time scale and reflects the damping scale due to

surface oceanic processes. The different damping scales

tsur have been tested (ranging from 1 to 36 months) in

the present AR1 model. The correlation skill of the

integrated PDO (SPDO) for different values of the

damping scale has been compared in Fig. 8a. According

to the correlation skill, the optimal damping time scales

for the North Pacific and South Pacific are tsur 5 7 and

6 months, respectively.

By using the Aleutian low (AL) variability (Fig. 9a)

and PSA1 variability (Fig. 9c) as the forcing terms in

Eq. (1), respectively, we reconstruct the AR1 PDO in-

dex and AR1 SPDO index (Figs. 9b,d). The correlation

coefficient between the AR1 PDO and ACCESS-O

PDO is r 5 0.64.

In the present study, we are particularly interested in

understanding the potential relationship between the

PSA1 pattern variability and the SPDO (Fig. 9d),

which would amount to new understanding of the role

of the South Pacific variability in decadal scale changes.

Importantly, we find that with the PSA1 forcing, the

reconstructed AR1 surface SPDO is indeed highly

correlated with the ACCESS-O SPDO (r 5 0.76), a

result that suggests an even tighter relationship be-

tween the PSA1 and SPDO than between the AL

and PDO.

All the evidence indicates that the North Pacific and

South Pacific surface oceans act to redden the atmo-

spheric noise significantly. The AR1-based integration

filters the high-frequency component of the atmospheric

forcing and produces a signal that is characterized by

stronger low-frequency variability.

As discussed earlier, the subsurface variability (e.g.,

VAT) also acts to low-pass filter the surface variabil-

ity (here, SST). Following Di Lorenzo and Ohman

(2013), we next apply a double-integration AR1 hy-

pothesis to explain the subsurface variability, repre-

sented as

dC(t)

dt
5F(t)2

C(t2Dt)

t
sub

, (2)

FIG. 8. Correlation skill of integrated PDO (black curve) and SPDO (red curve) for different values of the damping

time scales (a) tsur and (b) tsub. Vertical dotted lines indicate the optimal damping time scales.
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whereC(t) is the subsurface ocean state and is forced by

the surface ocean state F(t) in Eq. (1). Here tsub is the

subsurface ocean memory time scale. Here, the first in-

tegration is from the atmosphere to the surface ocean,

while the second integration is from the surface ocean to

the subsurface ocean. The different subsurface damp-

ing scales tsub have been tested (ranging from 1 to

120 months) in the second integrated AR1 model. The

optimal subsurface damping time scales for the North

Pacific and South Pacific are tsub 5 12 and 15 months,

respectively (Fig. 8b).

Figure 10 shows an example of using Eq. (2) to integrate

the PDO and SPDOwith optimal damping time scales for

the North Pacific and South Pacific, respectively. We can

see that when tsub . tsur, the double integration of the

atmospheric white noise leads to anAR1-based time series

with prolonged and smooth low-frequency variations

(Fig. 10, red curves), which exhibit much stronger and

significant correlations of r 5 0.89 (.95% significance)

and 0.88 (.95% significance) for theVATPDOandVAT

SPDO, respectively (black curves in Fig. 10).

Taking the standard AR1 and double integrated AR1

hypotheses together, our results suggest that the VAT

PDO and VAT SPDO can be considered as the red-

dened response to the corresponding surface variability

or cumulative integrated response to the white-noise

atmospheric variability.

Figure 11 shows the normalized mean-square pre-

diction errors of the PDO and SPDO from the doubly

integrated AR1 models with optimal damping scales

of 7 and 6 months for the SST PDO and SST SPDO,

and 12 and 15 months for the VAT PDO and VAT

SPDO with lead times of up to 48 months. We can see

that the predictive skill of the PDO and the SPDO are

significantly increased when taking account of the

vertically averaged temperatures (subsurface) rela-

tive to only the sea surface temperatures. We find that

of all the indices, the VAT SPDO has the largest

predictability (lead times), and the SST SPDO also

has a relatively larger predictability compared with

the SST PDO at leads of up to 8 months. Using a

typical mean-squared prediction error of 0.5 here as a

FIG. 9. The AR1 model for the monthly (b) SST PDO index and (d) SST SPDO index. The

black curve is for the ACCESS simulation, the red curve is for the AR1 model, and the blue

dashed curve indicates the ocean damping process without atmospheric forcing. The

(a) atmospheric Aleutian low index and (b) Pacific–South American pattern 1 index. For

convenience, all the time series are scaled in the figures.
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reference of useful predictions, we find that the sub-

surface SPDO (VAT SPDO) exhibits significant skill

at lead times of up to 11 months, providing potentially

predictive skill up to 2 months in advance of the

VAT PDO.

7. Summary and discussion

From the perspective of the time scale of SST pre-

dictability, atmospheric variability can be considered

chaotic and/or stochastic. From weather prediction, we

know that the synoptic atmosphere varies rapidly and

cannot be predicted beyond 7–10 days (Lorenz 1963),

and is thus unpredictable on the much longer dynami-

cal time scales of the ocean (Di Lorenzo and Ohman

2013). It follows that predictability of the ocean–

atmosphere climate system on interannual to multi-

decadal time scales resides primarily in the ocean dy-

namics. Even though the ocean processes strongly

redden the surface variability, especially over the

midlatitudes, the surface variability is still influenced

directly by stochastic atmosphere noise. Unpredictable

high-frequency noise superimposed on the low-frequency

variability (Fig. 3) increases the uncertainty and makes it

difficult to predict the surface SST variability on inter-

decadal time scales.

To avoid the influence of unpredictable noise and

obtain the slow interdecadal variability, a large

number of studies apply low-pass time filtering to

their data. Technically, low-pass time filtering can

minimize the effects of subscale variability. However,

the filtered variability is not necessarily predictable to

FIG. 10. Double integrated AR1 model for the (a) VAT PDO index, and (b) VAT SPDO

index. The black curve is for theACCESS simulation, the red curve is for the double integrated

AR1 model, and the blue dashed curve indicates the ocean damping process without ocean

surface variability forcing. All time series are scaled.

FIG. 11. Mean-square prediction errors from the optimal AR1 models, normalized by the

corresponding variances. The horizontal line indicates the reference prediction error of 0.5.

The vertical lines indicate the corresponding lead time. Each lead time under the prediction

error of 0.5 has been labeled.
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any extent (see e.g., Power and Colman 2006) and the

physical meaning of the filtered variability is reduced

relative to the retained variance as a fraction of

the total.

For example, we know that ENSO variability is

irregular (and can be deemed to be random) on inter-

decadal time scales. While time filtering of observed

ENSO variability reveals interdecadal fluctuations

(Fig. 2), care must be taken in interpreting these sig-

nals as these fluctuations explain very little of the total

tropical Pacific variability (see Fig. 2 in Monselesan

et al. 2015).

At the same time, we explored the subsurface vari-

ability of the ocean to understand the sources of inter-

decadal variability and mechanisms. The subsurface

variability over the midlatitudes in both hemispheres

(i.e., VAT NP-PC1 and VAT SP-PC1 in Fig. 3) can be

viewed simplistically as a low-frequency approximation

to the corresponding observed SST variability. Never-

theless, the unfiltered subsurface variability arising from

internal ocean dynamics and atmospheric forcing pro-

vides the dynamic mechanism to significantly maintain

and enhance interdecadal variability and predictability

in the midlatitudes.

Using an AR1 null hypothesis, we have demon-

strated that the time variability of the PSA1 pattern is a

critically important atmospheric driver of decadal cli-

mate variability in the South Pacific. This was identified

in the surface SPDO, in a manner analogous to pre-

vious studies of the relationship between the Aleutian

low and PDO in the North Pacific—albeit that the re-

lationship in the South Pacific appears to be even

stronger. That is, oceanic subsurface processes con-

tribute mainly to the decadal variability over the mid-

latitudes in both the North Pacific and South Pacific

Oceans and act significantly to redden the surface

variability, especially over the South Pacific where the

surface variability appears to be more tightly coupled

to the tropics. We found that the topographically

trapped nonlinear baroclinic Rossby wave in the

western subtropical South Pacific in the vicinity of the

Kermadec Ridge acts to low-pass filter and enhance

the decadal signature of the IPO more prominently

than anywhere else in the Pacific basin. This suggests

that long-term monitoring of climatic variations and

their response and sensitivity to changes in anthropo-

genic forcing may be effectively targeted at a few well-

chosen locations such as those described here.

Finally, we show that potential predictability in

terms of both the ratio between total and slow variance

and in terms of the doubly integrated AR1 models

identifies the upper South Pacific Ocean tempera-

ture variability as an important source of predictable

low-frequency variability at lead times longer than for

the PDO. Further, our results make explicit the dif-

ferent atmospheric and oceanic processes that de-

termine potential predictability in each of the North,

tropical, and South Pacific Ocean sectors associated

with the IPO. The significantly different atmosphere,

ocean dynamics (in particular heat and thermocline

variability), and geometry (topography and bathyme-

try) in each of these regions brings into question the

utility of viewing the IPO as a distinct climate mode of

variability.
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