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Abstract  28 

Apex predators can limit the abundance and behaviour of mesopredators, thereby reducing 29 

predation on smaller species. We know less about whether native apex predators are effective in 30 

suppressing invasive mesopredators, a major global driver of vertebrate extinctions. We use the 31 

severe disease-induced decline of an apex predator, the Tasmanian devil, to test whether devils limit 32 

abundance of invasive feral cats and in turn protect smaller native prey. Cat abundance was ~58% 33 

higher where devils had declined, which in turn negatively affected a smaller native prey species. 34 

Devils had a stronger limiting effect on cats than on a native mesopredator, suggesting apex 35 

predators may have stronger suppressive effects on evolutionarily naive species than coevolved 36 

species. Our results highlight that apex predators not only regulate native species but can also 37 

confer resistance to the impacts of invasive populations. Apex predators could therefore be a 38 

powerful but underutilised tool to prevent biodiversity loss.  39 

 40 

Introduction 41 

Apex predators play crucial roles in structuring ecosystems, but much of the Earth is now devoid of 42 

large predators (Estes et al. 2011; Ripple et al. 2014). Declines of these species can trigger trophic 43 

cascades, whereby herbivorous prey relax their anti-predator behaviours, increase in abundance, 44 

and overconsume vegetation (Estes et al. 1998; Ripple et al. 2001; Terborgh et al. 2001; Ripple & 45 

Beschta 2007). Apex predator declines can cause mesopredator release, defined as an increase in 46 

the density or change in behaviour of mid-ranked predators (Prugh et al. 2009), which can in turn 47 

lead to increased predation on smaller animals (Crooks & Soulé 1999; Johnson et al. 2007; Ritchie & 48 

Johnson 2009). The top-down effects of predators can be mediated by bottom-up drivers; for 49 

instance, declining lynx (Lynx lynx) densities released red foxes (Vulpes vulpes), but this effect was 50 

most pronounced in productive environments, highlighting the need to simultaneously consider 51 

bottom-up and top-down processes (Elmhagen & Rushton 2007). Predators clearly play integral roles 52 
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in structuring food webs (Estes et al. 2011; Ripple et al. 2014), but we know considerably less about 53 

how apex predators affect invasive mesopredators, and how this in turn affects smaller prey species.  54 

Invasive predator populations – those that have spread from introduced populations and maintain 55 

themselves without human assistance – are a major cause of global biodiversity loss (Simberloff et 56 

al. 2013). Invasive populations have contributed to 58% of bird, mammal and reptile extinctions 57 

(Doherty et al. 2016), and exert a heavy toll on many surviving species (Loss et al. 2013). This is 58 

particularly true in Australia, where feral cats (Felis catus) now occupy the entire continent (Legge et 59 

al. 2017), and together with invasive red foxes (Vulpes vulpes) are a major driver of most of 60 

Australia’s ~34 mammalian extinctions since 1788 (Woinarski et al. 2015; Woinarski et al. 2019). 61 

Apex predators could reduce the harm caused by invasive mesopredators if they limit their 62 

abundance through direct lethal effects or indirect behavioural effects (Ritchie & Johnson 2009). 63 

Despite a solid theoretical grounding, however, there is still debate over whether apex predators can 64 

be a useful tool to protect native biodiversity. For example, it has been repeatedly questioned 65 

whether dingoes (Canis lupus) or Tasmanian devils (Sarcophilus harrisii) limit the abundance of 66 

invasive mesopredators in Australia (Allen et al. 2013; Allen et al. 2015; Fancourt et al. 2015; 67 

Fancourt & Mooney 2016). 68 

The Tasmanian devil (6-14 kg; hereafter ‘devil’) is the apex predator on the large island of Tasmania 69 

(~65,000 km2) following the extinction of the thylacine (Thylacinus cynocephalus) in the mid-20th 70 

century. Recently the devil has suffered severe population declines due to the emergence of a novel, 71 

transmissible cancer, devil facial tumour disease (DFTD). DFTD first arose in north-east Tasmania in 72 

1996 (Hawkins et al. 2006) and now occupies 80% of the devil’s range (Fig 1a)(Lazenby et al. 2018), 73 

causing population declines of 80% on average (Lazenby et al. 2018) and up to 95% (Hollings et al. 74 

2014). Unlike on the mainland of Australia, cats have not caused any confirmed extinctions in 75 

Tasmania. One hypothesis explaining this is that devils have so far limited the harm caused by cats. 76 

The progressive spread of DFTD across Tasmania has established a gradient of time since the arrival 77 
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of DFTD (Fig 1a), and a range of devil densities from very low in north-east Tasmania, where DFTD 78 

has been present for the longest, to high in areas of north-west Tasmania not yet affected by DFTD. 79 

Unlike almost all declines of apex predators (Ripple et al. 2014), devil population declines are not 80 

caused by humans, providing the rare opportunity to study the effects of a predator with little 81 

anthropogenic confounding.  82 

Disease-induced changes in population density, as well as other environmental perturbations, can 83 

provide useful natural experiments that advance our understanding of the processes that shape 84 

ecosystems (Lindström et al. 1994; Holdo et al. 2009). In this study, we treat the disease-induced 85 

decline of the Tasmanian devil as a large-scale natural experiment on the role of this top predator in 86 

structuring the mammal community, especially by limiting the abundance of feral cats and their 87 

impact on prey. We analysed the cascading effects of devil declines as a network of species using 88 

structural equation modelling. We predicted changes in the mammal community based on trophic 89 

cascade theory, mesopredator release hypothesis, and bottom-up drivers, which are reflected in our 90 

a priori structural equation model (described in Box 1 and visualised in Fig 1b). Further, the presence 91 

of similar-sized native (spotted-tail quoll, Dasyurus maculatus; hereafter ‘quoll’) and invasive (feral 92 

cat; hereafter ‘cat’) mesopredators in this community enabled us to test whether an apex predator 93 

has a stronger limiting effect on an invasive mesopredator than on a coevolved mesopredator, 94 

similar to the stronger effects of predators on species of prey that have not coevolved with them 95 

(Salo et al. 2007).  96 

 97 

PLEASE READ BOX 1 NOW 98 

 99 

 100 

 101 
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Materials and methods  102 

i) Study area and camera trapping 103 

DFTD first emerged in north-east Tasmania in ~1996 and has since spread to ~80% of the devil’s 104 

range (Lazenby et al. 2018), establishing a gradient of disease-induced population decline. We 105 

selected 28 independent study sites spanning this gradient, from the long-diseased north-east of 106 

Tasmania where DFTD was present for ~20 years to the disease-free north-west of Tasmania (Fig 1a). 107 

Each study site comprised a 2-km transect of 14 remote cameras (explained below) and was on 108 

average 15 km from the nearest study site. We selected study sites to sample three of Tasmania’s 109 

major vegetation communities: wet eucalypt/rainforest, dry eucalypt forest and coastal vegetation 110 

(TASVEG 3.0 GIS layer). We ensured comparability of sites of the same vegetation type by ensuring 111 

similar average rainfall (dry: 750-1500 mm, wet: 1100-2000 mm; coastal: 650-1200; Bureau of 112 

Meteorology GIS layer) and elevation (dry < 500 m, wet < 800 m, coastal < 100 m). Each vegetation 113 

type was approximately equally represented across the gradient of population decline to ensure that 114 

vegetation type was not confounded with time since DFTD arrival (Fig 1a). All sites were in reserves, 115 

which are the areas of Tasmania where human influence is least (i.e., no hunting or recent logging).  116 

We deployed 14 remote cameras (Reconyx PC-800 infrared) at each study site for at least 39 days, 117 

giving a total of 392 remote cameras and at least 15,288 camera nights (between March and August 118 

2017). Cameras were spaced 100-200 m apart and deployed > 30 m into the forest alongside a 2-km 119 

section of a low-use, unsealed road. We focussed on surveying many sites using a moderate number 120 

of cameras at a relatively fine spatial scale rather than surveying fewer sites in detail. This enabled us 121 

to survey many sites with disease-induced differences in devil abundance and have replication 122 

across the gradient of the natural experiment. Cameras were fastened to a tree ~75 cm above the 123 

ground and were positioned facing animal trails or small clearings. To increase detections, we 124 

suspended a general-purpose olfactory and visual lure from an overhanging branch 2-3 m in front of 125 
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the camera. The lure consisted of a perforated PVC cannister containing dried beef liver, tuna oil, 126 

peanut butter, rolled oats and sardines, with a CD suspended below.  127 

 128 

ii) Statistical analyses 129 

Our analysis took a two-stage approach. We first derived a measure of each species’ abundance that 130 

accounts for imperfect detection, and then fed this information into a piecewise structural equation 131 

model to investigate the community-wide cascading effects of declining devil abundance.   132 

Abundance of cats 133 

We estimated the abundance of cats at each independent study site using a mark-resight model 134 

(McClintock et al. 2009). Mark-resight models estimate abundance when some but not all individuals 135 

are uniquely identifiable (McClintock et al. 2009) and have been used elsewhere in Australia to 136 

estimate the abundance of feral cats (McGregor et al. 2015). To estimate the contribution of 137 

unmarked individuals to the overall population, the model assumes that marked and unmarked 138 

individuals have identical sighting probabilities (McClintock et al. 2009; McClintock 2018).  139 

Most cats with tabby or classic patterns could be confidently identified as individuals. We created 140 

unique encounter histories for each identifiable cat at each site, consisting of the number of times 141 

an individual was encountered during a 39-day camera survey. For example, if an individual was 142 

detected five times during the survey, its capture history was ‘05’. Cats with no unique markings 143 

were labelled as ‘unmarked’. Cats with markings that could not be identified to the individual level in 144 

a particular detection event were labelled as ‘marked unidentified’; this usually occurred because of 145 

a poor or partial photo. Detections of ‘unmarked’ and ‘marked unidentified’ cats were included as 146 

counts for each study site (McClintock 2018). We used a zero-truncated Poisson log-normal mark-147 

resight model, which derives an estimate of abundance by first estimating three parameters: the 148 

intercept for the mean resighting rate (α), the number of unmarked individuals in the population 149 
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during the sampling occasion (U), and individual heterogeneity (σ) (McClintock et al. 2009; 150 

McClintock 2018).  151 

When estimating the abundance of low-density, elusive carnivores, like feral cats in Tasmania, 152 

Gerber et al. (2014) recommend that information about the detection process be shared across 153 

study sites. For instance, information about the resighting rate of cats can be shared across sites to 154 

inform the abundance of cats at sites with very small populations and consequently few detections. 155 

Information theoretic model selection can then be used to test whether sharing information is 156 

supported by the data (White 2005; Gerber et al. 2014). We constructed 11 biologically plausible 157 

models (Supplementary Table 1), some of which shared information across sites. We modelled α in 158 

response to a combination of three variables: 1) a binary variable for whether DFTD was present at a 159 

study site (which could affect devil abundance, and in turn cat behaviour), 2) the number of devil 160 

detections at a site, 3) years since DFTD outbreak, and 4) vegetation type. We modelled σ as 1) a 161 

constant intercept for all sites, 2) fixed to zero, and 3) individually for each site. We modelled the 162 

intercept for U as 1) constant across all sites, or 2) individually for each site. We excluded models 163 

that did not converge, and selected the best models using information-theoretic model selection 164 

(Burnham & Anderson 2002). Eight models were within 7ΔAICc (Burnham et al. 2011) (see 165 

Supplementary Table 1 for model selection table). We therefore performed model averaging 166 

(Burnham & Anderson 2002) by first deriving estimates of cat abundance from each model, and then 167 

multiplying each estimate by that model’s AICc weight. This produced a model-averaged estimate of 168 

cat abundance at each site. Because sites were not geographically bounded and cats are not thought 169 

to be territorial in Tasmania, the estimated abundance relates to the ‘super population’ of cats 170 

available for detection on the camera array (McClintock 2018), and therefore relates to an area 171 

larger than the 2-km transect. The mark-resight analysis was performed using the ‘RMark’ package 172 

(Laake 2013) in R (R Core Team 2019). 173 

 174 
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Abundance of other species 175 

Because the remaining species in the hypothesised food-web (Fig 1b) were difficult or impossible to 176 

identify to the individual level, we derived detectability-corrected measures of abundance, either 177 

using the N-mixture model (Royle 2004) or the Royle-Nichols model (Royle & Nichols 2003). These 178 

models are extensions of occupancy modelling (MacKenzie et al. 2002) that in addition to modelling 179 

detection probability also model abundance. Both models rely on temporally and spatially replicated 180 

detection histories, which are counts in the case of the N-mixture model (Royle 2004) and presence-181 

absences for the Royle-Nichols model (Royle & Nichols 2003). For the more detectable species (i.e., 182 

devils, wallabies, possums and pademelons), we estimated abundance using the N-mixture model, 183 

and for the species with mostly presence-absence data (i.e., quolls, bandicoots and black rats), we 184 

estimated abundance using the Royle-Nichols model. 185 

To create the detection history, we partitioned each 39-day survey into five periods for each camera 186 

(four 10-day periods and one 9-day period). We recorded the number of independent detections of 187 

a species in each period at each camera. We defined a detection as independent if at least 30 188 

minutes separated the next detection of that species at that study site, as is common in similar 189 

studies (e.g., Brook et al. 2012).  190 

For the species analysed using the N-mixture model, we first tested whether the detection histories 191 

best conformed to the Poisson or zero-inflated Poisson distributions. To do this, we created an 192 

intercept-only N-mixture model for both distributions and then proceeded with the distribution with 193 

the lowest AICc value (e.g., Ficetola et al. 2018). For each species, the winning distribution was the 194 

zero-inflated Poisson distribution. We did not consider the negative binomial distribution because it 195 

can produce biologically unrealistic results (Joseph et al. 2009; Dennis et al. 2015). The Royle-Nichols 196 

model does not require this step.  197 

We then created nine biologically plausible models. The most complex model consisted of detection 198 

probability modelled in response to ‘lure age’ and ‘date’ (both also with quadratic terms to allow for 199 



9 
 

non-linear effects), and abundance modelled in response to ‘study site’. ‘Lure age’ increased from 1 200 

in the first period to 5 in the fifth period. ‘Date’ was set at 1 for the beginning of the first survey and 201 

increased for every day of the study. We modelled detection probability in response to ‘date’ 202 

because cameras were moved between study sites over the course of approximately six months, 203 

which could cause cameras to detect behaviours that differ among seasons and potentially affect 204 

detection probability. We did not expect that date would substantially affect abundance because the 205 

survey was conducted in autumn and winter, which is after the time (most commonly spring) when 206 

juveniles enter the population for most species.  207 

We created all simpler combinations of the most complex model and selected the best-performing 208 

models using AICc (Burnham & Anderson 2002). We assessed whether high-ranking models 209 

contained uninformative parameters, which are often present when comparing nested models, 210 

simply because the inclusion of an uninformative parameter receives a penalty of 2 AIC points 211 

(Anderson 2007; Leroux 2019). Uninformative parameters can be identified when their addition to a 212 

simpler nested model causes little improvement in the log-likelihood and when confidence intervals 213 

for the parameter estimate span zero (Anderson 2007; Leroux 2019). In such cases, we omitted the 214 

model (Leroux 2019). We predicted abundance and standard errors for each of the 28 study sites, 215 

either from the best model when there was a clear winning model, or a model-averaged prediction 216 

when competing models were within 7ΔAICc (Burnham et al. 2011). We fitted the models using the 217 

‘pcount’ (N-mixture) and ‘occuRN’ (Royle-Nichols) functions within the ‘unmarked’ package (Fiske & 218 

Chandler 2011) in R. 219 

The motivation for the analysis was to compare trends in the abundance of species at sites with 220 

differing abundance of devils, not to estimate the absolute densities of species. We did not attempt 221 

to estimate the area from which animals were available for detection. In such situations when the 222 

sample area is unknown, Royle (2004) states that the derived estimates should still serve as a useful 223 

measure of abundance that accounts for detection probability, which should be sufficient for 224 
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evaluating geographic differences in abundance. We therefore treat the estimates from the N-225 

mixture and Royle-Nichols models as detectability-corrected indices of abundance that enable us to 226 

compare trends in abundance between sites.  227 

 228 

Structural equation modelling 229 

To model the community-wide effects of devil population declines, we used the detectability-230 

corrected measures of abundance, detailed in the previous two sections, as variables in a piecewise 231 

structural equation model (SEM). In contrast to classical SEM, which calculates parameter estimates 232 

globally, piecewise SEM uses individual regressions to calculate local estimates for each pathway in a 233 

hypothesised causal network (Grace et al. 2012; Lefcheck 2016). Because each response variable is 234 

modelled individually, piecewise SEM can accommodate a wide range of distributions and model 235 

types and is therefore useful for ecological datasets, which often violate the assumptions of classical 236 

SEM (Grace et al. 2012; Lefcheck 2016).  237 

We developed an a priori SEM (Fig 1b) based on previous research involving these species and a 238 

combination of trophic cascade theory, mesopredator release hypothesis, and possible bottom-up 239 

drivers. See Box 1 for a detailed justification for the a priori SEM. To construct the SEM, we fitted an 240 

individual regression for each species either using a generalised linear model (GLM) or ordinary least 241 

squares regression (see Supplementary Table 2). Mixed models were not necessary because we 242 

modelled a single abundance estimate for each independent study site, which meant that the 243 

structure of the data was not nested.  244 

For bandicoots, we initially modelled abundance with a GLM, but this performed poorly because 245 

bandicoots showed a negative triangular relationship with the abundance of cats and wallabies. In 246 

such situations, standard regression methods that estimate changes in the mean are not appropriate 247 

because of heterogeneous variance. Instead, quantile regression can be used to model the edges of 248 
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a triangular scatter and the limiting effect of one variable on another (Cade et al. 1999; Cade & Noon 249 

2003; Johnson & VanDerWal 2009). In a SEM context, Grace et al. (2012) recommend using local 250 

approaches that best meet the need of a pathway. Because we aimed to investigate whether cats or 251 

wallabies impose an upper limit on bandicoot abundance, we therefore used quantile regression to 252 

model bandicoot abundance at the 0.99th quantile with bootstrapped standard errors (Feng et al. 253 

2011) using the ‘quantreg’ package (Koenker 2018) in R (R Core Team 2019). The use of quantile 254 

regression implies that some important factors that affect the ecological process have not been 255 

measured (Cade & Noon 2003).  256 

To produce a parsimonious SEM, we used backward stepwise model reduction by sequentially 257 

removing non-significant paths (α = 0.05) until only significant predictors remained (for the same 258 

approach, see Gordon et al. (2017)). We calculated standardised path coefficients using the relevant 259 

range method (Grace & Bollen 2005) and R2  for each species (‘rsq’ package). We did not calculate 260 

standardised coefficients and R2 for quantile regression because it does not have a comparable 261 

interpretation. We assessed overall fit of the SEM using Shipley’s test of d-separation (Shipley 2000, 262 

2009), which tests whether all unconnected variables are conditionally independent, and considered 263 

the final SEM consistent with the data if Fisher’s C had p > 0.05. This test revealed positive wallaby-264 

pademelon and wallaby-possum associations; we did not have a theoretical expectation about these 265 

relationships, so we specified them as partial correlations (i.e. accounting for the effect of 266 

covariates), which assumes the association is driven by an unmeasured underlying process (Lefcheck 267 

2016).  268 

 269 

 270 

 271 

 272 



12 
 

Results   273 

Estimates of abundance 274 

We first derived detectability-corrected estimates of each species’ abundance, which we then fed 275 

into a structural equation model. We present the estimates of abundance in Supplementary Table 3. 276 

Supplementary Table 1 shows the model selection table for estimating cat abundance, and 277 

supplementary Table 4 shows the model selection table for estimating abundance indices for all 278 

other species.  279 

 280 

Structural equation modelling reveals cascading effects of devil declines  281 

Devil facial tumour disease caused an average decline in devil abundance of 83% at long-diseased 282 

sites (as estimated by the GLM; Fig 3a), which seemingly triggered a reorganisation of the food web. 283 

The SEM (Fig 2) revealed that cat abundance increased with increasing time since disease arrival to a 284 

site (Fig 3b), which in turn had a limiting effect on the abundance of bandicoots (Fig 3c). Cat 285 

abundance was on average 58% higher at sites with DFTD than sites without DFTD (Fig 4a). The 286 

relationship between devil and cat abundance was triangular in shape; where devil abundance was 287 

high, cat abundance was consistently low, and where devils were rare, cats were sometimes highly 288 

abundant but were not always so (Fig 4b). Similarly, the relationship between cat and bandicoot 289 

abundance was negative and triangular in shape: bandicoots were most abundant at sites with lower 290 

cat abundance (Fig 3c). The abundance of two major prey species of devils (but not of cats), the 291 

Bennett’s wallaby and brushtail possum (Jones & Barmuta 1998; Andersen et al. 2017; Ingram 2018), 292 

increased with time since DFTD arrival (Fig 2; Supplementary Figure 1), suggesting these species 293 

have been released from top-down control. See Table 1 for results of the final regressions.  294 

The simultaneous role of top-down and bottom-up drivers in shaping ecosystems (Sinclair et al. 295 

2003; Elmhagen & Rushton 2007; Elmhagen et al. 2010) was evident in the final SEM by the 296 
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presence of top-down and bottom-up pathways. In contrast to the feral cat, the native 297 

mesopredator – the spotted-tailed quoll – showed no change in abundance in response to devil 298 

declines. Instead, quolls were positively associated with the abundance of their primary prey, 299 

pademelon (Fig 2; Supplementary Figure 1; Jones & Barmuta 1998; Andersen et al. 2017). Similarly, 300 

devils were strongly positively associated with wallaby abundance (Fig 2; Supplementary Figure 1), 301 

and the GLM showed that wallaby abundance was highest in coastal vegetation, where the structure 302 

is most open and forage most accessible (abundance was 10.2-fold higher than in wet 303 

forest/rainforest, and 3.3-fold higher than in dry eucalypt forest, as estimated by the GLM; 304 

Supplementary Figure 1). This offers a mechanistic explanation for the apparent preference of devils 305 

for coastal vegetation (Hollings et al. 2016), suggesting they prefer coastal vegetation because of the 306 

higher abundance of wallabies, their largest common prey (Andersen et al. 2017). The final SEM 307 

fitted the data well (Fishers C = 23.02, p = 0.81), suggesting there were no missing paths between 308 

unconnected variables. 309 

 310 

Discussion 311 

The severe disease-induced decline of the Tasmanian devil, an apex predator, seemingly caused a 312 

reorganisation of the food web, including the release of feral cats and a concomitant decline of 313 

native bandicoots. Our findings highlight that apex predators not only have important regulatory 314 

effects on native prey species – in this case, possums and wallabies – but they also confer resistance 315 

to the impacts of invasive populations, which are a major global extinction threat (Doherty et al. 316 

2016).  317 

By estimating the abundance of cats at many sites across the full range of devil densities and disease 318 

outbreak times, we provide evidence that devils limit the abundance of feral cats, helping to clarify a 319 

previous debate. In a remote-camera study, Fancourt et al. (2015) claimed that devils do not limit 320 

cats. That study, however, used an inappropriate design by only surveying sites where DFTD had 321 
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been present for > 5 years, therefore including no sites with high devil densities. Our finding adds to 322 

those from two other studies, one using longitudinal spotlight surveys and one using hair traps 323 

(Hollings et al. 2014; Hollings et al. 2016), that both show an increase in cat detections following 324 

devil declines. We show that although devils never eliminate cats, they do limit their abundance, and 325 

this seemingly facilitates the persistence of bandicoots.  326 

Other research shows that devil declines have resulted in the behavioural release of quolls. For 327 

instance, where devils are rare, quolls consume more carrion (Cunningham et al. 2018) and increase 328 

their activity during the period of the day preferred by devils (Cunningham et al. 2019c). Despite this 329 

behavioural release, no study has found evidence for increased abundance of quolls following devil 330 

declines (Hollings et al. 2014; Troy 2014; Hollings et al. 2016), and our study further supports those 331 

findings.  332 

The divergent responses of the two mesopredators – the invasive cat and the native quoll – raises 333 

the question of whether native apex predators could, in general, have a stronger suppressive 334 

influence on invasive mesopredators than on coevolved mesopredators. This could arise because 335 

evolutionary naivete may leave an invasive mesopredator without beneficial behaviours or 336 

morphologies (Sih et al. 2010), similar to the way that invasive predators have stronger effects on 337 

evolutionarily naïve prey than on coevolved prey (Salo et al. 2007). Although this hypothesis applied 338 

to effects of apex predators on mesopredators is speculative and requires testing in other systems, 339 

there is some support for it from other studies. For instance, Crooks and Soulé (1999) showed that 340 

the presence of a native apex predator, the coyote (Canis latrans), had a stronger negative effect on 341 

introduced mesopredators (feral cat and Virginia opossum Didelphis virginiana) than on native 342 

mesopredators (grey fox Urocyon cinereoargenteus, racoon Procyon lotor, and striped skunk 343 

Mephitis mephitis). Similarly, Iberian lynx (Lynx pardinus) had a stronger negative effect on 344 

introduced mesopredators (Egyptian mongoose Herpestes ichneumon and common genets Genetta 345 

genetta) than on native mesopredators (red foxes and European badgers Meles meles) (Palomares 346 
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et al. 1996). In theory, the weaker effect of apex predators on coevolved mesopredators could arise 347 

because eco-morphological divergence over evolutionary time-scales gives rise to niche partitioning 348 

(Jones 2003), leading to behaviours that reduce encounter rates and facilitate coexistence (Schoener 349 

1974; Linnell & Strand 2000). Others have shown that apex predators can confer resistance to the 350 

effects of invasive populations (Ritchie & Johnson 2009; Wallach et al. 2010; Letnic et al. 2011; 351 

Ritchie et al. 2012; Gordon et al. 2015; Derham et al. 2018). We extend this to suggest that native 352 

apex predators could potentially have even stronger effects on introduced than coevolved 353 

mesopredators.  354 

The greater abundance of possums in long-diseased areas agrees with other research that shows 355 

declining devil abundance has released possums from top-down control. For example, possums 356 

relaxed their risk-sensitive foraging behaviours following devil population declines (Hollings et al. 357 

2015), and reinstated these behaviours following the introduction of devils to the previously devil-358 

free Maria Island (Cunningham et al. 2019a). Wallabies also responded to the introduction of devils 359 

to Maria Island by increasing activity at periods of the day when devils are inactive (Cunningham et 360 

al. 2019c). Because possums are typically arboreal but often forage on the ground, the trends we 361 

show here could reflect changes in abundance or increased ground-based activity by possums in 362 

response to a relaxed landscape of fear (Hollings et al. 2015; Cunningham et al. 2019a) 363 

Disease outbreaks and other environmental perturbations provide valuable natural experiments that 364 

can improve our understanding of how ecosystems function (Holdo et al. 2009). This is particularly 365 

so when perturbations are independent of human effects, like DFTD, because these cases reduce 366 

anthropogenic confounding. This is significant because many other studies of the effects of large-367 

carnivore declines have been conducted on cases where carnivores have declined because of human 368 

effects (Ripple et al. 2014), which are also likely to affect many other species. These anthropogenic 369 

effects could mask or confound the relationships between carnivore decline and changes in other 370 

species, and so far, has been one of the major challenges in disentangling mesopredator release 371 
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from land-use change (Prugh et al. 2009). Disease-induced natural experiments have helped shape 372 

our understanding of broad-scale processes that would otherwise be unfeasible or unethical to 373 

manipulate. For instance, the eradication of rinderpest in the Serengeti caused an irruption of 374 

wildebeest, which in turn suppressed fire and facilitated tree regeneration (Holdo et al. 2009). 375 

Similarly, a mange outbreak in Scandinavian red foxes (Vulpes vulpes) led to severe population 376 

declines, revealing predation by foxes as a crucial process regulating the abundance of several prey 377 

species (Lindström et al. 1994). Of course, natural experiments are not true manipulative 378 

experiments. Most notably for our study, the results need to be interpreted in the context of the 379 

east-west correlative design; at a regional scale, the west of Tasmania tends to be wetter, but 380 

importantly our site selection controlled for rainfall, vegetation type, and elevation.  381 

A growing body of research highlights the importance of apex predators in protecting small prey 382 

species (Crooks & Soulé 1999; Prugh et al. 2009), yet this potential is rarely harnessed to reduce the 383 

harm caused by invasive predators (Derham et al. 2018). In Australia, the global hotspot of small-384 

mammal extinctions (Woinarski et al. 2015), there is compelling evidence that dingoes sometimes 385 

benefit small mammals by suppressing mesopredators and by promoting vegetation cover through 386 

the suppression of large herbivores (Johnson et al. 2007; Johnson & VanDerWal 2009; Letnic et al. 387 

2009; Wallach et al. 2010; Brook et al. 2012; Colman et al. 2014). Despite these benefits, dingoes are 388 

lethally controlled across much of the continent. The Australian Government plans to kill 2 million 389 

feral cats by 2020 in a “war on cats”, but this has a weak scientific basis because this target is not 390 

linked to conservation outcomes (Doherty et al. 2019), is difficult to achieve at broad scales, and 391 

does not attempt to harness the potential for apex predators to indirectly protect smaller wildlife 392 

(i.e., by relaxing lethal control of apex predators; Cunningham et al. 2019b). In areas of the 393 

Australian mainland where restoring dingo populations remains socially unacceptable, it is worth 394 

exploring whether devils could fill the void, given they were present on the mainland until 395 

approximately 3200 years ago (White et al. 2018) and the synergistic causes of their extinction 396 

(climate, dingoes and human intensification) are sufficiently understood (Brown 2006; Brüniche-397 
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Olsen et al. 2014; Prowse et al. 2014; Brüniche–Olsen et al. 2018). This could begin with a carefully 398 

controlled experimental reintroduction of devils to a bounded landscape to assess whether they can 399 

perform key top-down functions in ecosystems on mainland Australia, as modelling suggests (Hunter 400 

et al. 2015). 401 

Following the extinction of the larger thylacine (~20-30 kg), the Tasmanian devil has ascended to the 402 

role of Tasmania’s apex predator. Our findings provide rare evidence of a trophic cascade caused by 403 

changes in the abundance of a marsupial predator, and we suggest the trophic effects of the 404 

thylacine, at approximately twice the mass of the devil, may have been even stronger. The 405 

conservation implications of our findings therefore need to be interpreted in the context of shifting 406 

baselines. The term ‘apex predator’ is context-specific, referring to species at the top of food webs 407 

with no significant predators themselves (Prugh et al. 2009; Ritchie & Johnson 2009). In ecological 408 

communities where the largest apex predators have been extirpated, top-down control of invasive 409 

predators may still be effective if the remaining predators are sufficiently large (the general rule is at 410 

least twice as large; Donadio & Buskirk 2006; Ritchie & Johnson 2009). Humans typically have less 411 

conflict with medium-sized native carnivores than large carnivores. This suggests our findings have 412 

management implications for areas where large carnivores will never be tolerated and where harm 413 

is caused by invasive mesopredators. We speculatively suggest that the effects of larger native 414 

predators may be stronger on evolutionarily naive mesopredators than on coevolved 415 

mesopredators, and we encourage more work in other systems to test if this is a general 416 

phenomenon. Overall, our results should reinforce the importance of apex predators in promoting 417 

the inherent strengths that enable resilient ecosystems (Wallach et al. 2010), and inspire a more 418 

self-sustaining, ecosystem-based approach to managing the harm caused by invasive predators. 419 
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 660 

Figure 1. (a) Devil facial tumour disease was first discovered in 1996 in the north-east of Tasmania, 661 

Australia’s island state (red box). DFTD has since spread across ~80% of the devil’s range, causing 662 

rapid and severe devil population declines. The dashed lines represent the estimated disease front 663 

from 2000 to 2015. (b) We hypothesised that devil population declines could trigger a re-structuring 664 

of the food web, represented by the a priori SEM. Blue lines denote predicted positive relationships, 665 

red lines represent predicted negative relationships, and grey lines represent the bottom-up 666 

influence of three different vegetation types (dry eucalypt, wet eucalypt/rainforest, coastal). The 667 

arrows show the hypothesised direction of the relationship; for example, an arrow from ‘years 668 

diseased’ to ‘devil’ shows that years diseased negatively influences devil abundance.  669 

  670 
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 671 

 672 

Figure 2. Final parsimonious structural equation model showing that devil population declines have 673 

triggered a re-structuring of the food web. The lines represent significant pathways at α = 0.05, with 674 

blue denoting a positive relationship and red a negative relationship. Grey lines refer to vegetation 675 

type, which is a three-level categorical variable (dry eucalypt, wet eucalypt/rainforest, coastal). 676 

Double-headed arrows denote the partial correlation for an association that we did not assign a 677 

direction to, analogous to correlated errors. Line width is scaled according to the size of the 678 

coefficient, which we standardized using the relevant range method. “QR” denotes paths modelled 679 

by quantile regression; these paths do not have standardised coefficients or R2 because the 680 

interpretation is not comparable. *p < 0.05, **p < 0.01, *** p < 0.001. Raw coefficients are in Table 681 

1.  682 
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  683 

Figure 3: Three key pathways from the structural equation model, revealing that devil population 684 

declines were associated with increased abundance of an invasive mesopredator, the feral cat, 685 

which in turn had a negative effect on a medium-sized prey species, the southern brown bandicoot. 686 

Circles denote measures of abundance (± s.e.) at sites with coastal vegetation, triangles denote dry 687 

eucalypt, and squares wet eucalypt/rainforest. (a) For Tasmanian devils, we estimated a 688 

detectability-corrected index of abundance using the N-mixture model, and modelled this in the SEM 689 

using a GLM, shown by the grey line (± 95% CI). (b) We estimated feral cat abundance using a mark-690 

resight model, and modelled this pathway in the SEM with ordinary least squares regression, shown 691 

by the grey line (± 95% CI). (c) For bandicoots, we estimated a detectability-corrected index of 692 

abundance using the Royle-Nichols model, and the grey line shows the SEM pathway, which was 693 

modelled by quantile regression at the 0.99th quantile.   694 
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 702 

 703 

Figure 4: These graphs are additional visualisations showing how cat abundance relates to devil 704 

facial tumour disease region and devil abundance. (a) We used a mark-resight model to estimate the 705 

abundance of feral cats at each study site, shown by the coloured points (± 95% CI). The p-value 706 

relates to an ordinary least squares regression of cat abundance (square root transformed) in 707 

response to DFTD status, and the black dots (± 95% CI) show the back-transformed estimate of mean 708 

cat abundance from this regression. (b) To assess whether devils impose an upper limit on cat 709 

abundance, we additionally modelled cat abundance in response to the detectability-corrected index 710 

of devil abundance at the 0.99th quantile. The circles denote sites with coastal vegetation, the 711 

triangles denote dry eucalypt, and squares denote wet eucalypt/rainforest. 712 

 713 

  714 
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Table 1: results of the final regression models that comprised the piecewise structural equation 715 

model. ‘OLS’ refers to ordinary least squares regression and ‘GLM’ refers to a generalised linear 716 

model.   717 

  

Coefficient  
(std. error) p-value  

Tasmanian devil; GLM     

 (Intercept) 1.451 (0.174) <0.0001 *** 

 yearsDFTD -0.09 (0.02) 0.0001 *** 

 Wallaby 0.089 (0.02) 0.0002 *** 

Spotted-tailed quoll; OLS    

 (Intercept) 0.51 (0.478) 0.295  

 pademelon 0.169 (0.047) 0.0012 ** 

Feral cat; OLS    

 (Intercept) 2.056 (0.139) <0.0001 *** 

 yearsDFTD 0.026 (0.008) 0.0301 * 

Bennett’s wallaby; GLM     

 (Intercept) 1.708 (0.307) <0.0001 *** 

 HabitatDry -1.197 (0.358) 0.0027 ** 

 HabitatWet -2.322 (0.534) 0.0002 *** 

 yearsDFTD 0.051 (0.021) 0.02 * 

Tasmanian pademelon; OLS    

 No significant paths    

Brushtail possum; OLS    

 (Intercept) 1.526 (0.372) 0.0004 *** 

 yearsDFTD 0.058 (0.023) 0.0169 * 

 HabitatDry -0.626 (0.444) 0.171  

 HabitatWet -0.941 (0.408) 0.03 * 

Southern brown bandicoot, 0.99th quantile   

 (Intercept) 2.299 (0.137) <0.0001 *** 

 cats -0.124 (0.033) 0.001 ** 

 wallaby -0.055 (0.02) 0.013 * 
Black rat; OLS   

 No significant paths    

 718 
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 720 
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Box 1. The mammal community and a priori predictions for the cascading effects of devil 

population declines. 

We predicted shifts in the mammal community based on the mesopredator release hypothesis 

and trophic cascade theory (defined in the Introduction), while also assessing the bottom-up 

influence of different vegetation types, which reflect environmental productivity (resulting from 

the effect of elevation on rainfall and temperature). We predicted that DFTD would cause 

substantial declines in devil activity (Lazenby et al. 2018), resulting in mesopredator release of one 

or both of the native spotted-tailed quoll (1.8 - 6 kg) and the invasive feral cat (2-5 kg). Because 

invasive predators have caused a disproportionately high rate of small mammal extinctions in 

Australia (Burbidge & McKenzie 1989), we hypothesised that release of cats would in turn cause 

the decline of smaller native mammals in their preferred prey size-range (i.e., rabbit-sized or 

smaller; Doherty et al. 2015). The southern brown bandicoot (Isoodon obesulus, ~1 kg) is a good 

example of these species and has suffered population declines on the Australian mainland 

(Burbidge 2016), where it is classified as endangered (Brown & Main 2010). We did not include an 

a priori relationship between cats and quolls because the directionality of this relationship is 

unclear; however, the test of SEM fit assesses whether a relationship should be present among 

unconnected variables (see Methods). We hypothesised that increasing time since local DFTD 

outbreak, and therefore increasing time since the onset of devil population declines, would result 

in more pronounced release of both mesopredators and the primary prey of devils. 

The vegetation types (dry eucalypt, wet eucalypt/rainforest or coastal) differ in structure and 

availability of resources, which we predicted would affect the abundance of prey species, and that 

higher prey abundance would lead to higher predator abundance. Devils and quolls have high 

dietary overlap, both feeding mainly on Bennett’s wallaby (Macropus rufogriseus, hereafter 

‘wallaby’) and Tasmanian pademelon (Thylogale billardierii, hereafter ‘pademelon’)(Andersen et 

al. 2017). Conversely, cats prey mostly on smaller animals of rabbit size or less (Doherty et al. 

2015). We therefore predicted that devils and quolls would respond positively to wallaby and 

pademelon abundance, and that cats would respond positively to the abundance of smaller 

mammals. Concerningly, of the small mammals detected in this study, only 5% were native 

species, while the invasive black rat (Rattus rattus) comprised 81% of detections. Because of 

limited sample size, we restricted our a priori SEM to include only black rats, and hypothesised 

that cats would respond positively to black rats.  
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