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Summary

 Light-induced tuber greening is one of the most important quality defects of potato. Although 

varietal and maturity factors are known to affect greening resistance, physiological 

mechanisms of resistance are poorly understood. We proposed that physiological and 

biochemical factors within the tuber periderm provide resistance and hypothesised that 

resistance is primarily related to suberin content.

 We investigated differences in the tuber periderm between genotypes and tuber maturities that 

varied in greening propensity. We examined suberin and light-induced pigment accumulation, 

and phellem cell development, and studied greening propensity in mutant and chemically-

treated tubers with enhanced suberisation.

 Resistance to greening was strongly linked to increased suberin in the periderm, which varied 

with variety and tuber maturity. Furthermore, greening was reduced in mutant and chemically-

treated tubers with enhanced suberisation. Increases in phellem cell layers and light-induced 

carotenoids and anthocyanins were identified as secondary resistance factors. 

 Our work represents the first physiological mechanism of varietal and tuber maturity resistance 

to greening, expanding the known functionality of suberin and providing for the first time a 

biomarker that will aid producers and breeders in selection and improvement of potato 

varieties for greening resistance.

Keywords: anthocyanins, carotenoids, chlorophyll, phellem, potato, suberin, tuber greening 

resistance
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Introduction

As underground-modified stems, potato tubers are non-photosynthetic tissues that lack 

photosynthetic machinery. However, following light exposure, potatoes can accumulate 

chlorophyll in their peripheral cell layers. These pigments reflect predominantly green light, which 

gives potato tubers a green colour. Greening, which can occur in the field or post-harvest 

(Bamberg et al., 2015; Tanios et al., 2018), is due to the conversion of amyloplasts into 

chloroplasts, which pre-empts chlorophyll formation in the tuber peripheral cell layers (Anstis & 

Northcote, 1973; Zhu et al., 1984; Muraja-Fras et al., 1994). Concurrent with tuber greening, 

although under independent genetic control, is the light-induced accumulation of glycoalkaloids 

that causes a bitter taint in potato tubers (Bamberg et al., 2015; Friedman et al., 1997; Friedman, 

2006; Nema et al., 2008; Ginzberg et al., 2009; Omayio et al., 2016). Glycoalkaloids pose a 

perceived health risk, although accumulation rarely reaches toxic levels and is restricted to the 

outer cell layers of the tuber (Burton, 1974; Smith et al., 1996; Valkonen et al., 1996). Tuber 

greening however, is an important indicator of tuber quality and a major cause of consumer 

rejection and therefore, of economic significance (French-Brooks, 2012). 

Tuber greening is influenced by varietal genetics (Akeley et al., 1962; Brown & Riley, 

1976; Butcher, 1978; Reeves, 1988), tuber physiology (Griffiths et al., 1994), and the environment 

(Tanios et al., 2018). However, the possible mechanisms underlying variations in greening 

susceptibility have not been elucidated and further contemporary mechanistic investigations are 

needed. 

The potato periderm consists of three different multilayered cell types; 1) the phellem 

which comprises 6-12 layers of dead cells with suberised walls; 2) the phellogen, a meristematic 

layer of cells that gives rise to neighbouring phellem and phelloderm cells; and 3) the phelloderm 

which consists of one or few cell layers, that are difficult to distinguish from the cortical 

parenchyma (Reeve et al., 1970; Lulai & Freeman, 2001; Lulai, 2002). The periderm of immature 

tubers has thin phellogen cells making it very fragile and susceptible to wounding. As the 

periderm matures, phellogen cell walls thicken and strengthen (Lulai & Freeman, 2001; Schreiber 

et al., 2005a), and the adjacent phellem cells develop suberin and wax deposits (Schreiber et al., 

2005b), forming a constitutive physical barrier that reduces water loss and confers protection 

against pathogens (Lendzian, 2006). A
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Suberin is a complex layered heteropolymer that consists of a fatty acid-derived domain 

(or aliphatic suberin) cross-linked to a polyaromatic lignin-like domain (or aromatic suberin) 

(Bernards, 2002; Beisson et al., 2012). Upon trans‐esterification, the aliphatic domain releases 

alcohols, ω-hydroxyacids, α,ω-diacids, very-long-chain fatty acids, reticulated with glycerol and 

small amounts of hydroxycinnamic acids, mainly ferulic acid (Schreiber et al., 2005b; Graça, 

2010). The aromatic domain is a lignin-like polymer composed of cross-linked hydroxycinnamic 

acid monomers that are covalently bonded to the aliphatic suberin (Bernards, 2002; Kolattukudy, 

2001; Graça, 2007). Suberin is also associated with waxes, accounting for 4% of the lipids present 

in the periderm (Serra et al., 2010).

Suberin in the tuber periderm is constitutively synthetized and can also be induced by 

wounding, pathogen attack and stresses such as salinity (Schreiber et al., 2005a; Reinhardt & Rost, 

1995; Karahara et al., 2004) and phytotoxins (Thangavel et al., 2016). Suberin plays key roles in 

the adaptation of plants to biotic and abiotic stress, control of water exchange and resistance to 

desiccation (Andersen et al., 2015; Graça, 2015). To our knowledge, the role of suberin in 

resistance to tuber greening has not been previously examined. Grunenfelder et al. (2006) 

suggested a role of periderm thickness in greening resistance, however, no documented evidence 

is available to confirm this. 

The goal of this study was to develop a fundamental understanding of the physiological 

factors associated with tuber greening resistance. We assessed the relationship between the 

propensity for tuber greening, amongst a cohort of distinct potato genotypes at differing 

physiological age, and tuber periderm properties (suberin content, number of phellem cell layers 

and pigmentation). We hypothesised that resistance to greening is primarily related to the periderm 

suberin content.

Materials and Methods

Plant material

This study examined greening response within 104 potato clones comprised of 61 different 

varieties. When multiple clones of individual varieties were assessed (designated by numerals 

after the variety name), these had been maintained independently in tissue culture for several A
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decades and could have been subject to somaclonal drift (Dann & Wilson, 2011). Tissue-culture 

plants (two-nodes segments) of all clones were cultured in Murashige and Skoog medium 

supplemented with sucrose (30 g L-1), ascorbic acid (0.04 g L-1), casein hydrolysate (0.5 g L-1), 

and agar (8 g L-1), with a pH of 5.8, and grown at 22 °C with a 16 h photoperiod under cool white 

fluorescent lamps (65 μmol m-2 s-1). Four-week-old plants were transferred to potting mix 

containing sand, peat, and composted pine bark (10:10:80; pH 6.0) premixed with Osmocote 16–

3.5–10 NPK resin-coated fertiliser (Scotts Australia Pty Ltd. Baulkham Hills, Australia), and 

grown under controlled glasshouse conditions, between 18 and 24 °C. Soil was regularly topped 

up to protect growing tubers from light exposure. Each clone was harvested following natural 

senescence. Tubers that formed close to the soil surface were discarded while the rest were stored 

in the dark at room temperature for approximately 30 days to allow post-harvest maturation. 

Light exposure treatment

In each experiment three tubers of each clone were exposed to a fluorescent light source 

(Supporting Information Figure S1) with an intensity of 12 μmol m-2 s-1at the tuber surface for 120 

hours at room temperature. The tubers were arranged in rows and their places within the row were 

repositioned daily, ensuring that the orientation of the tuber remained the same, to avoid any 

possible bias of positioning in relation to variation in light intensity. All selected tubers were of 

similar size and free of visible damage.

Varietal screening for greening resistance

Following light exposure, the increase in chlorophyll and change were assessed using a 

colourimeter and spectrophotometer respectively, as detailed below. 

Colour assessment 

Tuber colour was measured with a colourimeter (Konica Minolta CR-400), standardised against a 

white tile, using L* (lightness), a* (green-red colour axis), and b* (blue-yellow axis) parameters. 

Colour measurements were taken with three technical replicates, from the stem, the middle and the A
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bud end of each tuber, before and after five days light exposure treatment. Colour difference was 

calculated as follows:

ΔE*ab = [(ΔL*)2+(Δa*)2+(Δb*)2]1/2

Where ΔL*, Δa* and Δb* represent the differences in L*, a* and b* values before and after light 

treatments.

Chlorophyll, carotenoid and anthocyanin analysis 

Six periderm disks (1.5 mm thick and 1 cm diameter) were cut using a cork borer from the stem, 

the middle and the bud end of each tuber periderm. The disks were ground to powder in liquid 

nitrogen using a mortar and pestle. Half the samples were extracted with 5 mL of N, N-

dimethylformamide for chlorophyll and carotenoid assessment, while the other half was extracted 

with 12 mL of 1% HCL in methanol for anthocyanin analysis. All samples were stored at 4 °C in 

the dark for 24 hours. After centrifugation for 15 min at 2500 × g, the absorbance was measured 

with a spectrophotometer at 647, 664 and 480 nm for chlorophyll and carotenoid, and at 530 and 

657 nm for anthocyanin. 

Total chlorophyll components (Porra et al., 1989), carotenoid (Wellburn, 1994) and 

anthocyanin concentrations (Mancinelli et al., 1975) were determined before and after light 

treatment using the following equations:

Total chlorophyll = 17.67 (A647) + 7.12 (A664)

Total carotenoids = (1000 A480 – 1.12 Chla – 34.07 Chlb)/245

Total anthocyanins = (A × MW × V × 103)/ (ε × l × W)

The anthocyanin content was determined as cyanidin-3-glucoside equivalent, where A = 

(A530 - 1/3 A 657); MW is 484.83 g/mol (the molecular weight of cyanidin-3-glucoside); V is the 

volume of extraction solution, ε is 26900 L mol-1 cm-1 (the molar extinction coefficient for 

cyanidin-3-glucoside), l is the path length (cm) and W is fresh weight (g). Total pigments show the 

sum of chlorophyll, carotenoid and anthocyanin. All pigment concentrations are expressed in mg 

k-1 fresh weight (FW). 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Maturity effect on greening 

Based on the results of the clone screening trial, 22 varieties with differing greening tendency 

were selected to examine the effect of tuber maturity on chlorophyll concentration. Potato plants 

were grown under controlled glasshouse conditions as before. Three tubers from each variety at 

three different maturity stages were assessed 1) tubers harvested approximately 1 month before 

natural senescence (denoted as immature; I), 2) tubers harvested at senescence and used 

immediately (mature without storage; M-S) and 3) tubers harvested at senescence and stored at 

4 °C for 4 months before testing (mature with storage; M+S). Tubers were subject to light 

exposure following which chlorophyll and ΔE*ab were assessed.

Histological analysis of tuber periderm

The number of phellem cell layers were measured for 14 varieties at two different maturity stages, 

immature (I), and mature with storage (M+S) as previously defined. Three biological replications 

were examined per variety with five measurements per tuber. Tuber periderm samples, taken from 

internode two, were hand-sectioned with a razor blade and stained with 0.1% Toluidine blue, 

which has been shown to clearly differentiate between suberised phellem layers that stained 

orthochromatically in blue and phellogen and phelloderm layers that stained metachromatically in 

violet (Sabba & Lulai, 2005). The number of phellem cell layers were examined using a light 

microscope (Leica DMLB, Type LB 30T; Leica Microsystems). 

Extraction of suberised tissues

The chemical composition of periderm aliphatic suberin was tested in immature and mature tubers 

for the same 14 varieties of various periderm colour and with different greening susceptibility. The 

analysis was limited to the insoluble aliphatic fraction since it accounts for 96% of the total lipids 

in wild-type periderm (Serra et al., 2009). For clarity in the terminology of this study, we refer to 

suberin as the aliphatic polyester. Periderm discs were peeled from tubers and immersed in a 25 

ml mixture of cellulase (5 g L-1) and pectinase (1 g L-1) in acetate buffer (0.4 g L-1, pH 4) for 5 

days. The solution was changed twice until clear. Sodium azide (0.065 g L-1) was added to prevent 

bacterial growth. The isolated periderm membranes were washed twice in 10-2 M borate buffer A
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(pH 9) for 24 h and then carefully washed with deionised water. Extraction of soluble materials 

from isolated periderm samples were performed in a mixture of 1:1 (v/v) of chloroform:methanol 

for 18 h. The resulting extractive-free suberin-rich membrane samples were washed with water 

and air-dried before depolymerisation. All incubations were carried out at room temperature with 

shaking at 80 rpm. 

Chemical depolymerisation of suberin and GC-MS analysis

Dried suberin enriched samples (50 mg) were treated with 4 mL of 14% (w/w) boron trifluoride in 

methanol overnight at 80 °C. After resuspension with 1 mL H2O, suberin monomers were 

extracted with 1.5 mL 4:1 (v/v) hexane:chloroform. Once the phases had separated, the organic 

phase containing the monomers was transferred to GC vials. Trimethylsilyl (TMS) derivatives 

were prepared after complete solvent evaporation under nitrogen by adding 50 µL chloroform and 

50 µL N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and then incubated overnight at 50 °C. 

After evaporation, 150 µL of an internal standard, tricosanoate (0.1 g L-1 in chloroform), was 

added. Analysis of the composition of the suberin monomers was determined by a Varian CP-

3800 gas chromatograph with CP-8400 autosampler coupled to a Brüker 300-MS triple 

quadrupole mass spectrometer fitted with an Agilent DB-5MS column (30 m × 0.25 mm, with 

0.25 µm phase thickness). GC operating conditions were: injections 1 µL, injector and transfer 

line temperatures 290 °C, split injection (14:1); carrier gas He (linear velocity = 42 cm s-1). The 

oven temperature was programmed from 100 °C to 220 °C at 10 °C /min, from 220 °C to 290 °C 

at 3 °C /min, and held for 15 min, then increased from 290 °C to 320 °C at 10 °C /min, and held 

for 5 min. Full scan mass spectra were acquired over the range (m/z) 40 to 550. Monomers were 

identified by interpretation of their full scan mass spectra and comparison to known mass spectra 

within the National Institute of Standard and Technology (NIST, USA) Mass Spectral Library 

(2017). All monomers were quantified by comparison to the internal standard and expressed in µg 

mg-1 dry weight. Monomers were grouped into different classes for further analysis.
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Relative transcript expression of CYP86A33, a gene associated with aliphatic suberin biosynthesis

Total RNA was isolated from the tuber periderm of the same 14 potato varieties, harvested at 

senescence and stored at 4 °C for 4 months before testing, using the PowerPlant® RNA isolation 

Kit (MOBIO) according to the manufacturer’s instructions. Following DNase treatment (DNase 

Max TM kit, MOBIO), RNA yield was quantified using a Qubit® 2.0 Fluorometer (Life 

Technologies, Mulgrave, VIC, Australia). One microgram of RNA was reverse transcribed using 

the SuperScript™ IV VILO™ Master Mix (ThermoFisher) following manufacturer’s protocol. 

Quantitative real-time PCR was performed using 1 µL of 10-fold-diluted cDNA in a 10 µL total 

volume reaction. The primers sequences for CYP86A33 (Gene ID: PGSC0003DMG400030349) 

and the reference gene EF1α were as follows: F: GGTGGGTAAACCGGACCATC; R: 

GCAACTCGACCGGGTTTTTT and F: ATTGGAAACGGATATGCTCCA; R: 

TCCTTACCTGAACGCCTGTCA, respectively. We note there are two genes within potato 

annotated CYP86A33, but only the cited gene has been demonstrated to have a role in suberin 

biosynthesis. The CYP86A33 gene was sequenced in four potato varieties that represent a range of 

greening propensity (Nicola, Maris Piper, Maranca and Kennebec). No SNP’s were present in the 

primer binding sites or the amplified product within or between varieties that could affect the RT- 

qPCR efficiency (Supporting Information Fig. S2). RT- qPCR were carried out using iTaq 

Universal SYBR Green Supermix (BIO-RAD) in a Rotor Gene 6000 instrument (Qiagen) with a 

thermocycle of 95 °C for 15 mins, followed by 40 cycles of 95 °C for 30 s, 60 °C for 60 s and 

72 °C for 60 s. The mRNA levels were calculated relative to that of the reference gene. 

To determine whether CYP86A33 expression was affected by light treatment, two potato varieties 

Nicola and Kennebec, with low and high greening propensity, respectively, were used after being 

stored for approximately 30 days following natural senescence. Gene expression of CYP86A33 

was compared in tubers kept in the dark and after 168 hours of light treatment, using RT- qPCR, 

as detailed above. 

Effect on greening of induced suberisation following treatment with the phytotoxin analogue 

Thaxtomin D

To explore the specific role of suberin in greening without the confounding nature of diverse 

genetic backgrounds, we examined the effect of chemically induced suberisation. Potato tubers of A
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variety Maranca, were treated with synthetically produced thaxtomin D (Molesworth et al., 2010), 

diluted to 3.5 μM in distilled water, which has been shown to induce suberin deposition in the 

potato tuber periderm (Thangavel et al., 2016). Control tubers were treated with water only. 

Tubers were treated every second day for 10 days using a misting spray and stored in the dark at 

room temperature. Tubers were exposed to light as before and suberin and chlorophyll 

concentrations were measured by GC-MS and spectrophotometry respectively. 

Comparison of greening between a highly suberised potato mutant and its parent

The Russet Burbank mutant A380 (Wilson et al., 2010) that had previously been shown to have 

enhanced constitutive and induced suberisation compared to the parental line (Thangavel et al., 

2016) was assessed for resistance to greening. Tubers of the mutant and parent were produced 

from tissue-cultured plantlets, exposed to light and assessed for change in chlorophyll 

concentration and ΔE*ab as previously described.

Statistical analysis

Unless otherwise stated, for each experiment, three biological replications were used per treatment. 

The effect of 1) maturity on Δchlorophyll for each variety, 2) thaxtomin treatment on suberin and 

Δchlorophyll, and 3) variety on CYP8633 relative expression were analysed using one-way 

analysis of variance. The effect of variety and maturity and their interaction on pigments 

accumulation (Δchlorophyll, Δcarotenoid, Δanthocyanin and Δtotal pigment), number of phellem 

cell layers, suberin monomers were examined using two-way analysis of variance. Means were 

separated using Fisher's protected least significant difference (LSD) test (P < 0.05). All statistical 

analyses were carried out using R statistical software version 3.5.

Given that our results showed that light induces the accumulation not just of chlorophyll, 

but also other pigments, we examined the relationship of each of ∆chlorophyll, ∆carotenoid, 

∆anthocyanin, ∆total pigments with phellem layers and suberin. Initially, varieties were classified 

depending on their skin colours in three different groups (white/yellow; russet and red/pink) and 

Pearson correlation analysis was conducted to examine the correlations between different datasets. 

A regression approach was used to assess the influence of suberin, phellem layers and maturity on A
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each of chlorophyll, carotenoids, anthocyanin and total pigments. All models were fitted using the 

‘lm’ function in R statistical software version 4.3. After examination of residuals, only total 

pigments required a square root transformation. To examine whether increases in pigments could 

be best explained by 1) number of phellem layers only; 2) suberin concentration only; or 3) an 

interaction of phellem layers and suberin concentration, we fitted a multiple regression model 

using these terms as predictors with maturity as a categorical factor. Interactions of maturity with 

the continuous effects were also included. Starting with the full model consisting of continuous 

predictors and maturity as well as interactions of maturity with the predictors, the stepAIC 

function in the MASS library (Venables & Ripley, 2002) was used to obtain a simpler model. This 

approach made use of Akaike information criterion (Akaike, 1974) to select the best fitting model 

while minimizing model complexity. Modelling assumptions were checked using quantile-quantile 

plots and residual plots. The outcome was transformed if needed and the model assumptions 

checked again. 

Results

Varietal screening for greening resistance

A significant increase in chlorophyll was noted in all 104 clones, ranging from 0.32 to 4.02 mg kg-

1 FW (Fig. 1A). Similarly, colour difference (ΔE*ab) varied from 2.22 to 17.33 (Fig. 1A). For 

example, Nicola 2 accumulated 0.73 mg kg-1 FW chlorophyll with a periderm colour change of 

5.06 (Fig. 1B), while Kennebec 5 accumulated 4.02 mg kg-1 FW with a colour change of 17.33 

(Fig. 1C). A Pearson correlation analysis showed that chlorophyll increase, and colour change 

were highly positively correlated (r=0.85, p<0.001). Testing of multiple clones of the same variety 

revealed most clustered together showing a similar greening response with minor, but occasionally 

significant, differences between clones (Fig. 1A).

For white and yellow-skinned varieties, greening was clearly visible on the periderm 

surface, however for russet, red, pink and purple skin varieties the greening was less clear due to 

masking by the pigments. A prominent light-induced deep brown discolouration was observed in 

all clones of certain varieties (Wilwash, Pink Eye and Coliban) which interfered with the 

colorimetric assessment of these tubers (Fig. 1D). If we exclude these varieties, a correlation 

coefficient of r=0.93 (p<0.001) was obtained between chlorophyll content and colour change A
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across the studied clones. When varieties were classified into three groups based on their skin 

colour, significantly less change in both chlorophyll content and colour was observed for 

pink/purple/red compared to the white/yellow and Russet varieties, the latter two groups showing 

no statistical difference between them (Fig. 2). 

Greening susceptibility influenced by tuber maturity

Change in chlorophyll concentration was influenced by tuber age, with the highest greening rates 

observed in tubers classified as immature (I), followed by mature without storage (M–S) and then 

mature and stored (M+S) (Table 1). Change in chlorophyll concentration varied depending on 

variety, from 0.73 to 4.59 mg kg-1 FW for (I) tubers, from 0.5 to 4.26 mg kg-1 FW for (M–S) and 

from 0.41 to 4.17 mg kg-1 FW for (M+S) (Table 1). Significantly greater change in chlorophyll 

concentration was found in (I) compared to (M–S) and (M+S) tubers in 15 and 18 out of 22 

varieties, respectively. When (M–S) tubers were compared to (M+S), no significant differences 

were found in 19 varieties out of 22 for change in chlorophyll concentration.

Light exposure increased carotenoid and anthocyanin concentration

Light induced the synthesis not just of chlorophyll but also of carotenoids and anthocyanins in 

tubers. While all 14 studied varieties showed an increase in carotenoids, the increase in 

anthocyanins were noted in red-skinned varieties only (Table 2). The increase in both carotenoids 

and anthocyanins significantly varied between variety (p<0.0001; Supporting Information Table 

S1) and tuber maturity with a higher accumulation in immature (I) compared to mature tubers 

(M+S) (p<0.0001; Supporting Information Table S2) and a significant interaction between 

varieties and their maturity stage (p<0.0001; Table 2). 

The number of phellem layers and suberin concentration in tuber periderm influenced by variety 

and maturity stage

The average number of phellem cell layers ranged from 4.33 to 9.00 for immature Kennebec and 

Ruby Lou, respectively and from 5.50 to 12.33 for mature King Edward and Ruby Lou, A
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respectively (Table 2). The number of phellem layers was significantly influenced by variety 

(p<0.0001; Supporting Information Table S1). Immature tubers had a significantly lower number 

of phellem cell layers than mature ones (p<0.001; Supporting Information Table S2), with a 

significant interaction was found between variety and tuber maturity (P<0.001; Table 2). 

The depolymerisation of tuber aliphatic suberin yielded four major classes consisting of 

alcohols, α,ω-diacids, ω-hydroxyacids, and long-chain fatty acids. The ω-hydroxyacids accounted 

for the highest proportion of the polymer while there were very low levels of dihydroxy acids and 

ferulic acid (Table 2). For immature tubers (I), total aliphatic suberin concentration ranged from 

304.81 ± 21.44 µg mg-1 for Maris Piper to 187.72 ± 17.33 µg mg-1 for Kennebec (Table 2). For 

mature tubers (M+S), it varied from a maximum of 389.46 ± 39.53 µg mg-1 for Maris Piper to a 

minimum of 242.87 ± 4.2 µg mg-1 for Red Ruby (Table 2). Significant differences were found 

between varieties for all classes of suberin compounds (Supporting Information Table S1). 

Suberin concentration was significantly higher in mature than immature tubers (Supporting 

Information Table S2). A significant interaction was found between varieties and their maturity 

stage for α,ω-diacids (p<0.0001), ω-hydroxyacids (p<0.05), dihydroxy acids (p<0.05) and total 

suberin (p<0.0001), but not for alcohols (p=0.84), fatty acids (p=0.31) and ferulic acid (p=0.3) 

(Table 2).

The relationship between the number of phellem layers, suberin and pigments concentration

For each colour group, positive correlations were found between the different pigments, as well as 

between the number of phellem layers and suberin concentration, while negative correlations were 

found between the different pigments and phellem layers and suberin concentration (Fig. 3). None 

of the fitted regression models included a significant effect for the interaction of maturity with the 

continuous predictors, although it was retained in some cases as an additive effect. The final fitted 

model for chlorophyll decline showed total suberin as the best predictor (p<0.001) followed by 

phellem cell layers (p=0.003) (Fig. 4A; Supporting Information Table S3). At any specific suberin 

level, mature tubers have higher chlorophyll than immature tubers (Fig. 4A; Supporting 

Information Table S3). Carotenoid similarly declined with increasing suberin (p<0.001) and 

phellem cell layers (p<0.001) while maturity was not a significant predictor (Figure 4B; 

Supporting Information Table S3). Anthocyanin also decreased with increasing suberin (p<0.001), A
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which was the only significant predictor (Fig. 4C; Supporting Information Table S3). Total 

pigments were also found to decline with increasing suberin (p<0.001) with mature tubers having 

higher pigments that immature tubers (Fig. 4D; Supporting Information Table S3).

Enhanced suberisation limits chlorophyll accumulation

Suberin concentration of tubers treated with thaxtomin D were significantly increased by 24% 

compared to the untreated control (Supporting Information Table S4A). Conversely, chlorophyll 

concentration of the treated tubers significantly decreased by 16% compared to the untreated 

control. Similarly, following light exposure, tubers of the Russet Burbank mutant A380 with an 

enhanced suberisation phenotype, accumulated 32% less chlorophyll than the parent variety 

(Supporting Information Table S4B).

CYP86A33 expression pattern varied between varieties and correlates with suberin amount

CYP86A33, important for aliphatic suberin biosynthesis, mRNA levels significantly varied 

between the 14 varieties with a 5.8-fold change between the lowest expression in Kennebec, and 

Maris Piper, with the highest expression. The expression pattern for the different varieties showed 

a positive correlation with the total amount of aliphatic suberin (r=0.95; p<0.001; Fig. 5). 

CYP86A33 expression levels in tubers, prior to and after light exposure, were similar for both 

Nicola and Kennebec (Supporting Information Fig. S3).

Discussion 

Our study provides new and substantive evidence that varietal and tuber maturity resistance to 

greening is strongly associated with higher suberin deposition in the tuber periderm, while the 

number of phellem cell layers and varietal periderm colour were identified as secondary resistance 

mechanisms.

Several lines of evidence are reported to support the main finding, that suberin deposition 

in tuber periderm improves resistance to greening. Firstly, this study clearly showed that increased 

suberin content in tuber periderm was strongly associated with reduced greening propensity, A
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demonstrated by a strong negative correlation between suberin content and chlorophyll across 

different varieties (Figs. 3 and 4). The amount and composition of suberin of the varieties 

investigated here fall within the range described in previous studies (Schreiber et al., 2005; Yang 

& Bernards, 2006). Further to this, the transcript profiles of CYP86A33, a strong candidate gene 

for suberin biosynthesis, in potato tubers (Serra et al., 2009) and other plants (Li et al., 2007; Soler 

et al., 2007; Höfer et al., 2008), which appeared to be independent of light, were consistent with 

the suberin amount found in the tested varieties, implying a difference in suberin biosynthesis 

between varieties, and suggesting that the decrease in suberin in some varieties may be due to the 

downregulation of suberin biosynthesis. Secondly, regardless of variety, physiologically mature 

tubers had higher suberin concentration than immature ones, which was consistent with a 

reduction in chlorophyll concentration in more mature tubers, as previously suggested (Griffiths et 

al., 1994), but also previously challenged (Buck & Akeley, 1967). Thirdly, the specific role of 

periderm suberin in reducing greening without the confounding nature of a diverse genetic 

background between different varieties, was confirmed from the observed reduction in chlorophyll 

concentration in tubers with enhanced suberisation from chemical induction (Supporting 

Information Table S4A) and a potato mutant with enhanced periderm suberisation (Supporting 

Information Table S4B). Taken together, our results provide the first evidence of a physiological 

mechanism for resistance to tuber greening, indicating a central role of periderm suberisation.

A secondary resistance mechanism to greening was associated with increased number of 

phellem cell layers. This was demonstrated by a negative correlation between chlorophyll and the 

number of phellem cell layers, suggesting that a thin periderm provides less protection against 

pigment accumulation than a thicker one. A previous study found that after 10–15 days from 

harvest, the periderm continues to differentiate and the phellem becomes more tightly attached to 

the tuber via the connecting radial phellogen cell walls (Lulai & Freeman, 2001), giving rise to the 

multilayered mature periderm, which has been shown to protect tubers against biotic and abiotic 

stresses including pathogen attack, dehydration, wounding (Graça, 2015) and as shown in this 

study, to greening. 

Varietal skin colour was also an important determinant of greening susceptibility, which 

we propose is a complementary mechanism of resistance to tuber greening. Based on tuber skin 

colour, varieties with red, purple and pink hue accumulated less chlorophyll than the white, yellow 

and russet skinned varieties, as previously observed (Reeves, 1988). This could be explained by A
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the presence of anthocyanin pigments in the periderm of these varieties, which can act as light 

attenuators, absorbing high-energy blue-green quanta, potentially competing with chlorophyll 

(Chalker-Scott, 1999) and limiting its accumulation in underlying cells.

In conclusion, the suberin barrier plays a central role in the adaptation of plants to 

terrestrial life, particularly by improving resistance to biotic and abiotic stress such as controlling 

water, solutes and gases movement and imparting resistance to many pathogens (Graça, 2015, 

Pollard & Beisson, 2008). In this work, multiple lines of evidence indicate a new function for 

suberin, conferring resistance to potato tuber greening. Therefore, breeding and agronomic 

approaches that increase suberin deposition in tubers could be valuable in improving resistance to 

greening, increasing product shelf life and reducing food waste. 
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Figure Legends

Fig. 1. Response of potato clones to 120 hours of light exposure. (A) Change in chlorophyll 

concentration and colour (∆E*ab) within 104 potato clones, data represents the mean ± SE. The r 

value is the Pearson’s correlation coefficients, showing the correlation between ∆Chlorophyll 

concentration and ∆E*ab data. Potato varieties (B) Nicola, (C) Kennebec and (D) Coliban before 

and after light exposure. ΔE*ab = [(ΔL*)2+(Δa*)2+(Δb*)2]1/2.

Fig. 2. Change in chlorophyll concentration and colour (∆E*ab) for potato tubers of three 

periderm colour classes after 120 hours of light exposure. The three different classes represent the 

means ± SE of 18, 66 and 16 clones for pink/purple/red, white/yellow and Russet, respectively. 

Capital and small different letters indicate significant differences between groups by Fisher's 

protected least significant difference (LSD) test for ∆Chlorophyll and ∆E*ab, respectively. ΔE*ab 

= [(ΔL*)2+(Δa*)2+(Δb*)2]1/2.

Fig. 3. Correlation matrix for change in chlorophyll, carotenoid, anthocyanin, and total pigments, 

total suberin and number of phellem layers in white/yellow (A), russet (B) and red/pink (C) potato 

varieties. The Pearson correlation coefficient between a pair of variables is presented by a 

corresponding colour as indicated in the colour key. 

Fig. 4. Associations between change in tuber pigments, phellem cell layers and periderm suberin 

content in potato tubers. Observed data and fitted model for chlorophyll (A), carotenoid (B), 

anthocyanin (C) and total pigments (D). Fitted lines are shown for selected values of phellem 

layers in (A) and (B). Red and blue dots refer to immature and mature tubers, respectively. The 

significant regressions shown are described by the following equations: (A) Chlorophyll = 8.30 − 

0.133 · Phellem Layers − 0.0197 · Total Suberin + (0 if Maturity=I; 0.777 if Maturity=M), (B) 

Carotenoid = 1.98 − 0.069 · Phellem Layers − 0.003 · Total Suberin, (C) Anthocyanin = 

4.73−0.011 · Total Suberin, (D) Total pigments = 4.15 − 0.009 · Total Suberin + (0 if Maturity=I; 

0.196 if Maturity=M), with I and M referring to immature and mature, respectively.A
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Fig. 5. Differential expression of suberin biosynthesis gene CYP86A33 and relationship to suberin 

content within select potato varieties. (A) Expression profile of CYP86A33 gene for 14 potato 

varieties. Gene transcription was monitored using quantitative RT-PCR and the expression levels 

were determined relative to the reference gene EF1α. Mean values of three biological replicates 

are shown. Different letters indicate that means are significantly different at P<0.05 using Fisher's 

protected least significant difference (LSD) test. (B) Relationship between CYP86A33 relative 

expression and total suberin. R value represent Pearson correlation coefficient.

Supporting Information

Fig. S1. Spectra of the fluorescent light source used in this study to induce greening of potato 

tubers.

Fig. S2. CYP86A33 gene sequences in four potato varieties and the reference genome.

Fig. S3. Expression levels of suberin biosynthesis gene CYP86A33 pre- and post- light treatment 

of potato tubers.

Table S1. Change in pigments, phellem cell layers and suberin components after light exposure in 

potato varieties. 

Table S2. Change in pigments, phellem cell layers and suberin components after light exposure in 

immature and mature potatoes. 

Table S3. Regression models for influence of tuber suberin, phellem layers and maturity on potato 

tuber pigment. 
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Table S4. Change in chlorophyll concentrations and colour after light exposure in potato tubers 

with enhanced suberization.
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1 Table 1. Change in chlorophyll concentrations after 120 hours of light exposure in potato 

2 tubers assessed at three different maturities.

∆Chlorophyll (mg kg-1 FW)
Variety

I M – S M + S LSD P

Atlantic 3 3.69 a 3.24 b 3.15 b 0.34 0.01

Bintje 3 2.57 1.95 1.93 - ns

Coliban 2 2.17 1.87 1.82 - ns

Desiree 1 2.05 a 1.51 b 1.42 b 0.35 0.009

Kennebec 5 4.59 a 4.26 ab 4.17 b 0.33 0.04

King Edward 2 3.37 a 2.67 b 2.55 b 0.31 < 0.001

Kipfler 2 4.05 a 3.43 b 3.38 b 0.47 0.02

Maranca 3.51 3.29 3.05 - ns

Maris Piper 1.29 a 0.98 b 0.86 b 0.29 0.03

Nampa 4.35 a 3.85 b 3.76 b 0.43 0.03

Nicola 2 1.03 a 0.89 ab 0.74 b 0.22 0.05

Pink eye 2 3.44 a 2.78 b 2.53 b 0.51 0.01

Pontiac 1.36 a 0.83 b 0.81 b 0.45 0.04

Ranger Russet 2 0.96 a 0.58 b 0.38 c 0.11 <0.001

Red Ruby 3.24 a 2.97 b 2.89 b 0.21 0.01

Ruby Lou 0.73 a 0.50 ab 0.41 b 0.24 0.03

Russet Burbank 4 3.14 a 2.71 b 2.45 c 0.28 <0.001

Russet Nugget 2.29 a 1.92 b 1.91 b 0.20 0.005

Shepody 1 3.38 a 2.58 b 2.47 b 0.18 <0.001

Southern Cross 1 2.29 a 1.83 b 1.64 b 0.33 0.007

Sunrise 4.24 4.01 3.97 - ns

Toolangi Delight 1.84 a 1.52 b 1.10 c 0.31 0.002

Mean 2.64a 2.20b 2.10b 0.39 0.015

3 (I) immature tubers harvested approximately 1 month before natural senescence, (M-S) mature 

4 tubers harvested at senescence without storage and (M+S) mature tubers harvested at senescence 

5 and stored at 4 °C for 4 months. Data represents the mean of three replicates; different letters 

6 indicate that means across rows for each variety are significantly different at P<0.05 using Fisher's 

7 protected least significant difference (LSD) test; ns indicates non-significant difference.
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8 Table 2. Change in pigment, number of phellem cell layers and suberin monomers concentration after 120 hours of light exposure in potato 

9 tubers tested at two different maturities.

∆Pigments

Phellem 

layers 

(No.)

Suberin constituents

Variety Tuber 

maturity

Carotenoid 

(mg kg-1 

FW)

Anthocyanin 

(mg kg-1 

FW)

Total 

(mg kg-1 

FW)

Alcohols 

(µg mg-1)

α,ω-diacids 

(µg mg-1)

ω-hydroxy 

acids 

(µg mg-1)

Fatty 

acids 

(µg mg-1)

Dihydroxy 

acids 

(µg mg-1)

Ferulic 

acid 

(µg mg-1)

Others 

(µg mg-1)

Aliphatic 

Suberin 

(µg mg-1)

I 0.57 fg 0.00 f 4.26 def 7.00 gh 19.66 118.20 efghi 43.74 lm 44.41 0.13 ijk 0.19 5.06 fghij 231.37 k
Atlantic 3

M+S 0.44 ghi 0.00 f 3.59 hi 7.00 gh 29.32 105.64 ijklm 57.14 ghij 65.69 0.31 bcdef 0.19 4.81 ghij 263.09 ij

I 0.74 de 1.68 c 4.47 de 8.67 cdef 21.21 113.72 ghij 53.4 jkl 44.56 0.08 jk 0.32 5.09 fghij 238.36 jk
Desiree 1

M+S 0.56 fgh 1.26 d 3.23 ij 9.53 bcd 32.32 124.09 efgh 66.17 efghi 52.17 0.17 ghijk 0.70 5.60 efghi 281.21 ghi

I 1.39 a 0.00 f 5.98 b 4.33 j 14.09 91.75 m 37.36 m 39.8 0.17 ghijk 0.25 4.35 ij 187.75 m
Kennebec 5

M+S 1.03 c 0.00 f 5.2 c 6.37 hi 29.1 98.82 klm 52.33 jkl 57.8 0.31 bcdef 0.34 4.12 j 242.80 jk

I 0.86 d 0.00 f 4.23 efg 6.33 hi 19.35 112.74 ghijk 44.83 klm 47.09 0.17 ghij 0.27 6.62 de 231.06 kKing

Edward 2 M+S 0.57 fg 0.00 f 3.23 ij 5.50 ij 33.07 116.44 efghi 71.31 cdef 56.51 0.37 bc 0.41 6.85 cde 284.93 fghi

I 1.1 bc 0.00 f 4.61 d 5.33 ij 20.88 100.65 jklm 43.69 lm 46.16 0.06 k 0.27 5.71 efgh 217.40 kl

Maranca
M+S 0.83 d 0.00 f 3.88 gh 7.33 fgh 33.82 107.74 ijkl 68.84 defg 59.96 0.25 defgh 0.33 7.12 cd 278.04 hi

I 0.32 ijk 0.00 f 1.60 lm 8.50 def 26.35 149.56 bc 68.89 defg 52.28 0.16 hijk 0.26 7.04 cd 304.53 efg

Maris Piper
M+S 0.24 kl 0.00 f 1.10 n 9.50 bcd 38.65 160.36 b 97.43 a 78.77 0.27 cdefg 0.4 9.83 a 385.70 a

I 0.64 ef 0.00 f 1.67 l 8.00 efg 29.19 139.48 cd 67.60 efgh 65.16 0.16 ghijk 0.3 6.05 defgh 307.92 ef

Nicola 2
M+S 0.41 hi 0.00 f 1.15 n 10.00 bc 40.93 148.75 bc 90.91 ab 77.42 0.48 a 0.32 9.65 a 368.45 ab

Pontiac I 0.26 jk 1.70 c 3.31 ij 6.50 hi 21.06 108.61 ijkl 55.42 ijkl 52.02 0.23 efghi 0.27 4.15 j 241.74 jk
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M+S 0.2 kl 1.28 d 2.28 k 8.93 bcde 28.28 150.80bc 78.01 cde 71.4 0.36 bcd 0.37 5.9 defgh 335.09 cd

I 1.19 b 0.00 f 2.14 k 6.50 hi 17.82 130.33 de 58.92 ghij 63.26 0.27 cdefg 0.35 6.17 def 277.10 hiRanger 

Russet 2 M+S 0.09 lm 0.00 f 0.47 o 9.01 bcde 32.89 153.42bc 80.37 bcd 86.7 0.32 bcdef 0.44 6.1 defg 360.23 abc

I 0.74 de 3.23 a 7.21 b 5.50 ij 18.58 97.73 lm 37.70 m 45.93 0.10 jk 0.31 3.97 j 204.3 lm
Red Ruby

M+S 0.55 fgh 2.43 b 5.87 b 10.37 b 30.05 97.23 lm 56.53 hijk 52.73 0.36 bc 0.31 4.15 j 241.35 jk

I 0.05 m 1.71 c 2.49 k 9.00 bcde 23.22 192.63 a 37.19 m 52.13 0.33 bcde 0.34 8.11 bc 313.95 de

Ruby Lou
M+S 0.05 m 0.71 e 1.25 mn 12.33 a 35.12 153.65 b 80.92 bc 72.78 0.39 ab 0.39 8.8 ab 352.04 bc

I 1.07 bc 0.00 f 4.21 efg 7.33 fgh 14.84 114.61 fghij 53.21 jkl 50.92 0.22 fghi 0.23 4.27 j 238.30 jkRusset 

Burbank 4 M+S 0.8 d 0.00 f 3.25 ij 7.33 fgh 29.96 118.68 efghi 60.89 fghij 60.16 0.37 bc 0.39 4.73 hij 275.16 i

I 0.74 de 0.00 f 3.03 j - - - - - - -Russet 

Nugget M+S 0.56 fgh 0.00 f 2.47 k 7.00 gh 23.02 125.04 efg 58.96 ghij 75.05 0.33 bcde 0.37 4.12 j 286.88 fghi

I 0.63 ef 0.00 f 4.01 fg 8.00 efg 18.34 110.82 hijkl 56.70 hijk 43.28 0.09 jk 0.24 6.41 de 235.86 k
Shepody 1

M+S 0.41 ij 0.00 f 2.98 j 8.75 cdef 35.33 128.32 def 71.80cdef 60.74 0.40 ab 0.46 6.16 def 303.19 efgh

LSD  0.14 0.19 0.36 1.44 6.79 14.11 11.99 11.77 0.11 0.19 1.32 26.42

P  <0.001 <0.001 <0.001 <0.001 0.8 <0.001 0.02 0.31 0.01 0.29 <0.001 <0.001

10 (I) immature tubers harvested approximately 1 month before natural senescence and (M+S) mature tubers harvested at senescence and stored at 4 °C 

11 for 4 months. – indicates not tested. Others refer to unidentified compounds. Data represents the mean of three replicates; different letters indicate that 

12 means within columns are significantly different at P<0.05 using Fisher's protected least significant difference (LSD) test. 
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