
1 

 

 

Links between environment and stomatal size through evolutionary time in Proteaceae 

 

Gregory J. Jordan1, Raymond J. Carpenter1,2, Barbara R. Holland3,4, Nicholas J. Beeton1,3,5, 

Michael D. Woodhams3, Timothy J. Brodribb1,4 

1Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, 

Australia 

2School of Biological Sciences, University of Adelaide, Adelaide, SA 7005, Australia 

3Discipline of Mathematics, University of Tasmania, Private Bag 37, Hobart, Tas. 7001, Australia 

4ARC Centre of Excellence for Plant Success, University of Tasmania, Private Bag 55, Hobart, Tas. 

7001, Australia 

5CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia 

Author for correspondence  

Gregory J. Jordan; Tel+61362267237; Email: greg.jordan@utas.edu.au 

Key words: CO2, Cenozoic, fossil, guard cell, plant evolution 

  

mailto:greg.jordan@utas.edu.au


2 

 

Abstract 

The size of plant stomata (adjustable pores that determine uptake of CO2 and loss of water from 

leaves) is considered to be evolutionarily important.  This study uses fossils from the major 

southern hemisphere family Proteaceae to test whether stomatal cell size responded to Cenozoic 

climate change.  We measured the length and abundance of guard cells (the cells forming stomata), 

the area of epidermal pavement cells, stomatal index and maximum stomatal conductance from a 

comprehensive sample of fossil cuticles of Proteaceae, and extracted published estimates of past 

temperature and atmospheric CO2.  We developed a novel test based on stochastic modelling of trait 

evolution to test correlations among traits.  Guard cell length increased, and stomatal density 

decreased significantly with decreasing palaeotemperature.  However, contrary to expectations, 

stomata tended to be smaller and more densely packed at higher atmospheric CO2.  Thus, 

associations between stomatal traits and paleoclimate over the last 70 MY in Proteaceae suggest 

that stomatal size is significantly affected by environmental factors other than atmospheric CO2.  

Guard cell length, pavement cell area, stomatal density, stomatal index covaried in ways consistent 

with coordinated development of leaf tissues. 
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1. Introduction 

The epidermis of plant leaves contains stomata, tiny adjustable pores that regulate diffusive 

conductance, and therefore the loss of water and uptake of CO2 for photosynthesis.  These 

functionally significant structures can be observed directly on many leaf fossils, and provide 

potential proxies for several aspects of past environments [1].  Thus, the size of fossil guard cells 

(the cells that form stomata) has been used to estimate past genome size [1].  The number of 

stomata per unit area (stomatal density), stomatal index (which reflects the ratio of stomata to 

epidermal pavement cells), and models employing stomatal density and stomatal size have been 

used to estimate past levels of atmospheric CO2 [2-4].  Recently, attention has focused on the 

importance of stomatal size in plant evolution [5-9]. 

Along with stomatal density, stomatal size affects maximum stomatal conductance – a major 

determinant of maximum photosynthetic assimilation [10].  Although a large stoma has greater 

conductance than a small one [11], species with large stomata tend to have fewer stomata resulting 

in lower total conductance than those with small stomata, both overall and through the focal group 

of this study, Proteaceae [5, 7, 12, 13].  Contemporary models of stomatal response to atmospheric 

CO2 show that higher CO2 should correspond to lower stomatal conductance [14], and thus favour 

larger stomata [12].  Such a relationship is supported by fossil evidence showing positive 

correlation between stomatal size and atmospheric CO2 over the last 395 million years [9, 12]. 

However, stomatal size may be under strong environmental selection independent of atmospheric 

CO2.  In Proteaceae, an important Southern Hemisphere woody plant family, large guard cells (and 

therefore stomata) are associated with open vegetation and small guard cells and greater stomatal 

density are linked with rainforest (closed forest) [15]. 

Fossils from the Cenozoic (the last 66 million years) provide opportunities to examine the drivers of 

stomatal size through evolutionary time.  Major, and often global, changes in environment through 

this period are likely to have altered the selective regimes operating on stomata.  For example, 
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compared to current day conditions, the Early Eocene ~56 – 47.6 Ma (million years ago), was 

characterised by considerably higher temperatures [16] and atmospheric CO2 [17, 18], much wetter 

climates and greater amounts of forest cover in the study region of this current work, Australasia 

[19].  Fossil Proteaceae leaves provide an exceptional resource for examining the impacts of 

atmospheric change on stomatal characteristics because sediments in southern Australia preserve an 

extraordinary richness of Proteaceae fossils that span critical atmospheric changes in the Cenozoic 

period. A long history of study of Proteaceae cuticles [20] means that they can be confidently 

identified as members of this family, thus providing a sufficient sample size to allow clear insight 

into the impact of evolutionary change over the last 65 million years in this important lineage. 

In this paper, we study whether temporal trends in guard cell length and other relevant epidermal 

cell characteristics in Proteaceae are predicted by environmental change.  We use fossils 

representing 116 site by species combinations to test whether changes in stomatal traits are 

correlated with major trends in environment through the Cenozoic.  To do this we tested the 

correlations of fossil stomata and epidermal pavement cells with estimates of past atmospheric CO2 

and temperature by comparing them with null models based on simulated “fossils” derived from 

simulated trees.  That analysis was necessary because tests of correlations between characters are 

affected by phylogenetic relationships [21]. 

2. Methods 

We analysed all known late Cretaceous to mid Miocene (~70 - 13 Ma) Proteaceae fossil leaf 

specimens with preservation of stomatal morphology [22], representing 116 species by site 

combinations (electronic supplementary material, tables S1and S2).  The specimens came from 

Australia and New Zealand.  The fossils are likely to come from canopy leaves, where stomatal 

resistance is likely to outweigh boundary layer resistance:  Proteaceae do not include specialists of 

closed forest understoreys, and in general, understorey leaves are poorly represented in the fossil 

record [23].  All fossils were placed within the family based on phylogenetically informative 
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characters [20].  Because of homoplasy and the limited number of characters available only some 

fossils could be assigned to groups within the family.  No relevant fossils of late Miocene or 

Pliocene (~13 to 2.59 Ma) age were available and we excluded younger fossils because of the 

extreme variability of climate and atmospheric CO2 during that period.  The age ranges of the fossil 

sites were based on published sources or determined specifically for this project (electronic 

supplementary material, tables S1 and S3). 

We also measured epidermal characters from 109 extant species (electronic supplementary material, 

table S4) representing 69 of the 80 genera of Proteaceae, with multiple species of large genera.  

Replicate specimens (measured for most species) indicated that within-species variation in 

epidermal characteristics was small relative to among-species variation. 

Five epidermal characters (electronic supplementary material, table S5 and figure S1) were 

estimated on both fossils and extant specimens.  Guard cell length, a simple, reliable measure of 

stomatal size on fossils, was measured from all specimens.  Stomatal density, stomatal index [100 x 

number of stomata/(number of epidermal pavement cells + number of stomata)], pavement cell area 

and theoretical maximum stomatal conductance (gs max) were calculated for most species by site 

combinations, based on an average of up to 5 specimens.  Measurements were made from digital 

micrographs of cuticles, using ImageJ version 1.48 (National Institutes of Health, Bethesda, 

Maryland; http://rsbweb.nih.gov/ij/).  gs max was estimated following the equation of Parlange and 

Waggoner [11], assuming that stomatal pore length was 2/3 of guard cell length, stomatal pore 

width was 1/3 of pore length and stomatal pore depth was the same as stomatal pore length.  These 

assumptions are consistent with dimensions observed in extant Proteaceae (G. J. Jordan 

unpublished data). 

(a) Data analysis 

Our 109 extant species could be associated with 71 of the tips in the genus-level dated phylogeny 

employed here [24].  Because our data included multiple species for many tips, for each tip 

http://rsbweb.nih.gov/ij/
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representing multiple species we generated a simulated tree for those species using sim.bd.taxa in 

the library TreeSim version 2.4 [25, 26] in R [27] with a speciation rate of 1 and an extinction rate 

of 0.1, scaled that tree to the length of the branch leading to the tip of interest, and then replaced the 

branch leading to the tip of interest with the simulated tree.  We repeated this 1000 times, and 

present median values for each trait. 

Temporal trends in characteristics measured on fossils were identified using generalised additive 

models with thin-plate smoothing splines, assuming a Gaussian distribution, three knots, and 

implemented using the gam function of the library mgcv [28] in R.  For analysis, guard cell length, 

pavement cell area, stomatal density and maximum stomatal conductance were log transformed.  

Each observation represented a species by site combination, with age attributed to the mid-point of 

the age-range.  Although the fossils may represent a biased sample of the species present in the 

source vegetation and across the broader landscape, we assume that these biases are relatively 

constant through time and therefore should not affect our inferences significantly. 

(b) Associations between epidermal characteristics and environment 

To identify associations between epidermal characteristics and environment we estimated Pearson 

correlations of fossil epidermal characters with estimators of past global environmental traits – 

trends in deep ocean temperature [29] and two sets of estimates of levels of atmospheric CO2 [17, 

18].  One of the CO2 models (Anagnostou) [18] was derived independently of stomatal traits but 

only spans the Eocene, whereas the other (Beerling and Royer) [17] spans the full Cenozoic, but 

includes information from fossil stomata.  The Anagnostou data were smoothed and interpolated 

using generalised additive model (as described above), whereas the other data were already 

smoothed. 

Standard tests of correlations between fossil traits and environment (i.e. those that ignore temporal 

differences in evolved traits) may not be valid for this problem because phylogenetic relationships 

affect tests of correlations between characters [21].  Thus, Felsenstein [21] highlighted that the non-
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independence of traits linked phylogenetically can result in inflated estimates of significance.  We 

therefore used Monte-Carlo simulations to test whether observed correlations were stronger than 

could be expected by chance.  Thus, we compared the observed correlations with correlations 

between the environmental parameters and trait values of “fossils” simulated on trees comparable to 

that of Proteaceae.  To create the simulated fossils and its corresponding environmental value we 

followed these steps: 

(1) We simulated phylogenetic trees of similar size (1700 tips) as Proteaceae and scaled them to 

have a crown age of similar to that of Proteaceae - 93.2 million years [24].  On each tree we 

simulated a trait under an Ornstein-Uhlenbeck model, which is considered to better describe 

character evolution than Brownian motion [30].  The trees were simulated using birth death 

processes under a range of values of µ/λ (relative extinction rate, or 1/the birth:death ratio).  Extinct 

branches were retained.  We were particularly interested in µ/λ because there is abundant fossil 

evidence indicating high levels of extinction in Proteaceae [31].  Extinction may have large impacts 

on tree shape (trees will have relatively longer deep branches as the extinction rate increases 

relative to the speciation rate [32]).  In turn this can affect tests of correlations.  If the extinction rate 

is large compared to the speciation rate then internal nodes will tend to occur near the tips of the 

tree [33].  The effect of this is to reduce the average distance between tips of the tree (or points on 

the tree at any time point) and therefore to increase the covariance of traits at these tips.  We used 

nine values of µ/λ (relative extinction rate, or 1/the birth:death ratio) ranging from 0.01 to 0.9 and 

the Ornstein-Uhlenbeck parameter α set to a value estimated for extant tip data for the relevant 

parameter (0.0698 for log of guard cell length, 0.3297 for stomatal index, 0.1035 for log of stomatal 

density, 0.0733 for log of pavement cell area and 0.1687 for gs max).  The trait lability parameter θ 

was held constant at 1 because θ is independent of α and should not affect the correlations.  We 

simulated 10,000 trees for each combination of µ/λ and α.  The trees and traits were simulated using 

the fasttree R function developed for this study.  The traits simulated with fasttree were comparable 

to traits simulated using a standard post hoc approach implemented in the rTrait function of 
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TreeSim [26]: for each combination of µ/λ and α employed above (1000 replicates) the mean values 

of OU parameters (as estimated by phylolm [34]) for our traits were within 0.5% of those simulated 

by rTrait (electronic supplementary material, table S6). 

(2) For each true fossil, we created a comparable fossil trait value from each simulated tree.  To do 

this, we identified the value of the simulated trait on each edge of the tree present at the age of the 

true fossil, and randomly selected one of these values.  To allow for uncertainty in age estimates for 

these analyses, the age of each fossil site was permitted to randomly vary within a uniform 

distribution from the minimum to maximum age.  The value of the environmental parameter for that 

fossil was the value of that parameter (see above) at that time.  Thus, if we had Y fossils from time 

X, we selected Y lineages (including extinct lineages) at time X from the tree, with environmental 

parameter scores and trait value for that time. 

Following standard approaches in stochastic modelling [35], p-values under the null hypothesis 

were calculated as the proportion of simulated correlations more extreme than the observed 

correlation. 

We further investigated the relationship between fossil epidermal traits and past environment with 

multiple regression using the stats function lm in R. For each stomatal trait we fitted each 

combination of the three environmental predictors, and used AICc (calculated using the package 

MuMin [36] in R) to determine the relative goodness of fit of the models. To facilitate comparisons, 

we restricted the data to the Eocene, for which complete data was available for all variables. 

3. Results 

The range in stomatal morphologies of fossil Proteaceae fell within the range observed among 

living species of that family.  Guard cell length (our proxy for stomatal size) of the fossils varied 

significantly through time, with a small decrease from ~71 Ma (late Cretaceous) to ~55 Ma (earliest 

Eocene), followed by a strong increase until ~30 Ma (Oligocene), then a slight decrease until ~ 15 
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(mid-Miocene) (figure. 1).  The increase between 55 and 30 Ma had high confidence because of 

strong representation of fossils.  The pattern for stomatal density followed an almost mirror image 

of this pattern, except for a stronger excursion during the Miocene (figure 1).  The temporal trend 

for other traits were not significant, although pavement cell area showed similar trends to guard cell 

length, and stomatal index and gs max showed similar trends to stomatal density (figure 1). 

 

Figure 1.  Epidermal characteristics 

observed on fossils. Trends through 

time are shown as thin-plate 

smoothing splines (thick line) ± 1 

standard error (fine lines), as 

estimated using generalised additive 

models. Significance of variation in 

stomatal traits through time is shown: 

*** = p < 0.0001; ** = p < 0.01; ns = 

p > 0.05.  Estimated deep ocean 

temperatures (red) [29] and levels of 

atmospheric CO2 (solid purple for 

estimates of Beerling and Royer [17], 

dashed purple line for those of 

Anagnostou [18]) are overlain.  
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The estimated significance of the correlations between epidermal traits on fossils and environment 

decreased as the ratio of extinction to speciation (µ/λ) increased (electronic supplementary material, 

figure S2), and was always less significant than standard tests not accounting for phylogeny 

(electronic supplementary material table S7).  Under the null hypothesis of no relationship between a 

trait and an environmental variable, simulations with high relative ratios of extinction to speciation 

produced a broader range of correlations. We hypothesise that shorter average distances between 

points on the tree for simulations with high ratios of extinction to speciation [33] increases the 

covariance between the tips, and therefore reduces the effective sample size. This makes it more likely 

to see large correlations by chance alone.  However, tests were consistent qualitatively, with non-

significant tests (p > 0.05) remaining non-significant and significant tests (p < 0.05) remaining 

significant regardless of µ/λ, except that the relationship of log of stomatal density with temperature 

became non-significant at exceptionally high µ/λ (>0.96).  Estimated deep ocean temperature [29] 

showed a highly significant negative correlation (p < 0.01) with log of guard cell length and a 

significant positive correlation with log stomatal density (figure 2), the latter presumably because of 

the well established negative relationship between these epidermal characteristics [5, 7, 12, 13].  Log 

of guard cell length showed a significant (p < 0.05) correlation with atmospheric CO2 as estimated by 

Anagnostou et al., presumably because of the correlation between this measure of atmospheric CO2 

and temperature [18].  Other correlations were not significant, but those of atmospheric CO2 with log 

of guard cell length and log of gs max were negative or close to zero (figure 2). 
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Figure 2.  Epidermal traits for fossils versus estimated deep sea temperature [29], and atmospheric CO2 [17, 

18].  Probabilities are based on tests allowing for evolutionary change (electronic supplementary material, 

figure S2).  The estimated probabilities vary with µ/λ, and the value shown reflects all estimates for the given 

correlation.  Solid lines indicate significant linear regressions (p <0.05), dashed line indicates a marginally 

significant regression (p <0.05 under some modelling parameters), dotted lines indicate non-significant trends. 

 

The multiple regression analysis reinforced these results: the best model for log of guard cell length 

included temperature and atmospheric CO2 as estimated by Beerling and Royer [17], with the latter 

having a positive slope (electronic supplementary material, table S8).  The best model for stomatal 
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density had atmospheric CO2 as estimated by Anagnostou et al. [18] as the best predictor, but this was 

a very weak relationship (R2 = 0.06).  The best models for stomatal index, log of pavement cell area 

and low of theoretical conductance were null models (no predictors). 

The correlations among epidermal traits observed on the fossil Proteaceae (figure 3) were consistent 

with predictions assuming the maintenance of developmental coordination of epidermal cell types 

through time [13], with positive associations between pavement cell area and both guard cell length 

and stomatal index and between stomatal index and stomatal density; and negative associations 

between stomatal density and both pavement cell area and guard cell length.  Among age and pooled 

within age correlations (electronic supplementary material, figure S3) were also consistent with 

developmental coordination. 

 

Figure 3.  Pearson correlations among epidermal traits observed on fossils. Thickness of lines 

represents relative strength of correlations.  Data excluded Cretaceous fossils, but inclusion of all 

data produced very similar results.  Correlations with gs max are not shown because gs max is derived 

from the other traits. 

4. Discussion 

The systematic changes in guard cell length (and hence stomatal size) through the latest Cretaceous, 

Paleogene and early Neogene (~70–15 Ma) in Proteaceae are best explained by adaptation to habitat 

change, as previously argued [15].  Guard cell lengths of fossils in this family are predicted by past 

global temperatures, but the associations between atmospheric CO2 and stomatal traits showed trends 

opposite to those predicted based on conservation of photosynthetic CO2 inside the leaf [37]. 
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We do not believe that these signals are biased by preservation processes.  Although shrinkage of 

cuticles during fossilisation may affect the size of fossil stomata, such shrinkage is likely to result 

from changes in chemical composition and should affect both pavement and guard cells more-or-less 

equally.  However, pavement cell area shows patterns that are weaker than and different from those 

for guard cells (figure 1).  Furthermore, systematic temporal trends in the degree of shrinkage appear 

unlikely because the requirement for rapid preservation of these organically-preserved fossils means 

that most diagenetic processes likely operated on the leaves soon after deposition. 

Changes in atmospheric CO2 may well have affected guard cell length, stomatal density, stomatal 

index or maximum stomatal conductance (gs max) as suggested by broad scale studies showing an 

association between fossil guard cell size and estimated past CO2 [5, 12].  However, our results show 

unexpected relationships between the epidermal traits and estimated trends in palaeo-CO2 [17, 18] 

implying that other environmental factors affect stomatal traits.  This is supported by evidence that gs 

max is affected by growth form and vegetation structure across species [38].  With regard to our results, 

standard models for estimating atmospheric CO2 from stomata (as summarised in [1]) predict CO2 to 

be positively associated with guard cell length and negatively associated with stomatal index, stomatal 

density and gs max, but our data shows correlations that are either opposite to expectations or near zero 

(figures 1 & 2).  The only hint of an expected relationship with palaeo CO2 was that the best multiple 

regression model for log of guard cell length included a positive slope for the Beerling and Royer 

model [17]) (electronic supplementary material, table S8).  None of the best models for more direct 

potential predictors of palaeo CO2 (stomatal index, stomatal density or gs max) showed the expected 

relationships. 

We propose that, given the strong link between vegetation type and stomatal size in extant Proteaceae 

[15], the strong association between fossil guard cell length and palaeotemperature (figure 1) may 

result from the association of higher global temperatures with wetter climates and more closed forest 

through time.  Fossil evidence shows that in our study area, relatively open vegetation in the late 

Cretaceous [39] was replaced by widespread rainforest in the warm, and very wet Early Eocene, 
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which was then progressively replaced with open vegetation as climates became cooler, drier and 

more fire prone [40-42].  Similar associations amongst environmental drivers can be observed today, 

with closed forest being closely linked to warm and wet climates [43, 44].  The functional basis of the 

link between stomatal size and forest structure is poorly understood, but could be underpinned by 

differences in environmental productivity, with open vegetation species being found in low nutrient or 

cold environments in Proteaceae, and closed forest species in more productive environments [15].  

Thus smaller, more numerous stomata may reflect shifts to more productive species, as has been 

observed at long evolutionary timescales [45] 

5. Conclusions 

Patterns of cell sizes and abundance in the fossils suggest that coordinated development of leaf tissues 

observed in extant Proteaceae [13] is maintained through evolutionary time.  Our results provide fossil 

evidence to strengthen inferences from extant species [2, 15] that habitat changes associated with 

climate are major drivers of changes in stomatal size (and other aspects of the epidermis) in 

Proteaceae.  This has significant implications for stomatal proxies for past CO2.   The stomatal proxies 

for CO2 mostly consider variation within species through time and the evidence presented here largely 

reflects variation among species.  Although, these species-specific proxies assume that there has been 

no change in the relationship between CO2 levels and the relevant stomatal traits, often over tens of 

millions of years [2], differences in the CO2/stomata relationship can be observed amongst closely 

related species, implying that evolution and/or aspects of environment other than CO2 can affect this 

relationship [2].  The assumption may be particularly problematic for some widely-used palaeo CO2 

proxies, such as the proxy based on Ginkgo biloba, which uses extant populations that represent only 

a tiny proportion of the past range of once widespread species and clades [2].  The results presented 

here highlight the importance of adaptive evolutionary changes in stomata over an evolutionary 

timescale.  Further refinement of proxies should therefore consider the impact of other environmental 

effects on stomatal characteristics.  
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The new approach for testing correlations of fossils with environmental traits developed here adds to 

the paleoenvironmental toolbox, particularly since we show that failing to allow for evolution 

increases the rate of false positives in tests of correlations involving fossils, especially in clades with 

high levels of extinction (electronic supplementary material, table S7 and figure S2). 
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