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Abstract

The Juan Fernández Ridge (JFRE) is a vulnerable marine ecosystem (VME) located off the

coast of central Chile formed by the Juan Fernández Archipelago and a group of sea-

mounts. This ecosystem has unique biological and oceanographic features, characterized

by: small geographical units, high degree of endemism with a high degree of connectivity

within the system. Two fleets have historically operated in this system: a long term coastal

artisanal fishery associated with the Islands, focused mainly on lobster, and a mainland

based industrial demersal finfish fishery operating on the seamounts which is currently con-

sidered overexploited. The management of these fisheries has been based on a classical

single-species approach to determine output controls (industrial fleet) and a mixed manage-

ment system with formal and informal components (artisanal fleet). There has been growing

interest in increasing the exploitation of fisheries, and modernization of the fishing

fleet already operating in the JFRE. Under this scenario of increased levels of fishing exploi-

tation and the high level of interrelation of species it might be necessary to understand the

impact of these fisheries from a holistic perspective based on a ecosystem-based modeling

approach. To address these challenges we developed an Atlantis end-to-end model was

configured for this ecosystem. The implemented model has a high degree of skill in repre-

senting the observed trends and fluctuations of the JFRE. The model shows that the indus-

trial fishing has a localized impact and the artisanal fisheries have a relatively low impact on

the ecosystem, mainly via the lobster fishery. The model indicates that the depletion of large

sized lobster has leads to an increase in the population of sea urchins. Although this

increase is not sufficient, as yet, to cause substantial flow-on effects to other groups, caution

is advised in case extra pressure leads the ecosystem towards a regime shift.
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Introduction

All human activities in the oceans and along coasts (e.g. tourism, fisheries, shipping, infra-

structure) have some degree of impact on the ecosystems and no location has escaped from the

human footprint [1]. One of the oldest known use of the oceans, fishing, can generate major

disruptions in ecosystems such as decline of fish population abundance [2], changes in the

physical structure of the environment [3], reduction of megafauna and top predators by

bycatch [4, 5] and changes in the nutrient flow by discarding [6]. The likelihood and rate of

recovery of an ecosystem to these disturbances (short-term or chronic) define its vulnerability

[7], which can be related to both structural (physical structure such as coral on submerged

edges and seamounts) and/or biological (e.g. maturation of fish at old ages) aspects of ecosys-

tems. A vulnerable marine ecosystem (VME) is one that is easily disturbed but with a slow pro-

pensity to recover [7].

Seamounts are typical examples of VME, due to features such as small spatial extent, eco-

logical complexity, hosting of vulnerable and endemic species (i.e. deep-sea coral; [7, 8]). How-

ever, the topographical and biophysical characteristics of these ecosystems suggest they can be

more productive compared with the oceans that surround them [9]. Also, these seamounts

have a great biodiversity of organisms: such as deep-sea corals, invertebrates, and fishes, many

of them endemic [9, 10]. In addition, some of these species have great economic value, which

has led to the development of lucrative fisheries surpassing more than 2 million tonnes of

catch globally from these ecosystems since the 1960s [11]. However, many of these fisheries

have not been sustainable and are currently classified as either over-exploited or depleted [11–

14]. Seamounts can be classified as deep or shallow based on whether they approach surface

waters. The type of fishing gear needed to fish a seamount is also typically influenced by its

depth and distance from shore:

• Deep sea seamounts: Do not extend above 100 m sub-surface and are normally remote.

Require more sophisticated ocean-going vessels to reach these seamounts and gears such as

deep sea long lines or trawls are needed to fish them.

• Shallow seamounts: These are seamounts that reach to waters less than 100m sub-surface or

break the surface to form islands (some of these are of sufficient size to support human set-

tlements). These seamounts tend to have coastal fringes (typically with steep shelf profiles)

and can support less sophisticated fishing activities with simpler vessels and fishing gears,

such as shallow trawling.

The impact of fishing on VMEs has widely studied in the past [9, 11–13, 15] and has empha-

sized the negative impact generated by industrial trawl fisheries on such ecosystems [11, 12, 16],

which can be in stark contrast to the low impact of some artisanal fisheries on these ecosystems

[12]. The impact of any fishery on VMEs can be divided into direct and indirect effects [16].

The direct effects of fishing include mortality on target and non-target species (bycatch)

and the physical impacts caused by the gear on benthic organisms and on the seabed [9, 16]. In

its most negative aspects, these direct effects can lead to over-fishing, loss of biodiversity, deg-

radation of suitable habitat [16] and fisheries-induced evolution [17].

The indirect effects of fisheries on ecosystems occur in several ways, which depend on the

type of fishery and its operation [16]. This type of effect includes: i) impacts mediated by bio-

logical interactions between species in the ecosystem (e.g. competition and predation); ii)

effect of discarding and offal on the contribution of nutrients to the ecosystem; and iii) the

effect of ghost fishing (discarded, lost, or abandoned, fishing gear in the marine environment

that continues to fish and trap animals) [16]. These 3 pathways fully influence the complex

interaction networks of the ecosystems. Indeed, these modifications may have a cascade of
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second or third order effects and can reshape ecosystem structure, function and biodiversity

[16]. For example, fishing can generate a change in the local species composition, which modi-

fies the available habitat that in turn affects the species that use that habitat and consequently

their predators [18].

The assessment of ecosystem effects of fishing (direct and indirect) is a difficult task, espe-

cially when there are multiple fisheries -artisanal and industrial- active around the one ecosys-

tem. Determining the best management strategies in such a situation is quite challenging.

Consequently, improved understanding of the relative effects from different forms of fishing is

necessary for effective fisheries management and biodiversity conservation. Such knowledge is

crucial for VMEs, given the uncertainties about their resilience [19].

The Juan Fernández Ridge Ecosystem (JFRE) meets all the criteria to be classified as a VME

[8]. JFRE is an aseismic chain of seamounts and islands located off the coast of central Chile

between 32.81˚ and 33.81˚S, with a total length of approximately 800 km [20]. The JFRE is

constituted by the Juan Fernández Archipelago (JFA) and a group of seamounts that include

Friday and Domingo seamounts at the western edge and the O’Higgins guyot, close to the

Chilean coast [20]. The JFA is located approximately 360 nm off Valparaiso and is formed by

the Robinson Crusoe and Santa Clara Islands subsystem (RC-SC) and the Alejandro Selkirk

Island (AS) located 90 nm to the west of RC-SC (Fig 1).

JFRE has unique biological and oceanographic features, characterized by: i) small and dis-

crete geographical units (islands and seamounts); ii) high degree of marine and terrestrial

endemism [21–25]; and iii) presence of mesoscale and submesoscale oceanographic structures

promoting a high degree of connectivity within and between other systems [26–28]. Because

of their significance for biodiversity the islands were declared a National Park in 1935 and a

Biosphere Reserve by UNESCO in 1977 (www.unesco.org). Also, in 2016 the Chilean govern-

ment declared a multipurpose marine protected area and several marine parks around the

islands and seamounts (Fig 1).

Fig 1. Atlantis JFRE model domain. The red square represents the area of coverage of the hydrodynamic OFES

model subset. The maps in the left represent the characteristics that were considered for the division of the polygons:

The geographic structure of the ridge (Islands and seamounts); Management area (Marine parks and Marine protected

areas with multiple uses; MPA-MU); and areas of influence of fishing activity (Industrial and artisanal fleets).

https://doi.org/10.1371/journal.pone.0212485.g001
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There are only two small human settlements within the JFRE: Rada de la Colonia (AS), a

temporary fishing village, inhabited each year only during the fishing season (October to

May), with about 54 inhabitants including fishers and their families; and Juan Bautista, a town

located in RC-SC. Juan Bautista is the only permanent town in the JFRE, with almost 930

inhabitants, which can grow to exceed a thousand inhabitants in summer, due to tourism and

return of young islanders studying on the mainland.

The fisheries

The local economy of the JFRE is based almost exclusively on the extraction and marketing of

marine resources (specially lobster), although, in recent years there has been an increase in

tourism activity, focused mainly on the pristine landscape and high biodiversity of the area.

Eco-tourism is now the second most important economic activity for this town, with marine

activities being a large component [29].

Two commercial fishing fleets have historically operated in the JFRE: i) a long term coastal

and traditional artisanal fishery associated with the islands, mainly targeting lobsters (Jasus
frontalis; [30, 31]), Juan Fernández (J.F.) morwong (Nemadactylus gayi; [32]) and more

recently golden crab (Chaceon chilensis; [33]); and ii) a mainland based industrial demersal fin-

fish fishery operating on the seamounts, which targeted on two species: orange roughy

(Hoplostethus atlanticus) and alfonsino (Berix splendens), both of these industrial fisheries are

currently considered over-exploited and are closed. A highly migratory pelagic fish fishery also

operates in this system (e.g. swordfish; [34]), but these were not considered given the focus of

the model on demersal and seamounts species.

The management of these fisheries (industrial and artisanal) has been based on a classical

single-species approach. The two industrial fisheries were managed with an output control sys-

tem that allocated catch shares (quota) to operators. The artisanal fisheries have specific regu-

lations depending on their target species:

1. Lobster fishery: has been managed through a dual management system, based on: formal

rules that include, type “SSS” regulations (Sex, Season and Size; [35]; i.e. legal size, season

closure, no egg-carrying females), a moratorium on entry of new participating boats and

restriction of gear to traps (all other methods are banned); and an informal traditional sea-

tenure system [36].

2. Golden crab fishery: has one formal regulation, it is closed to the entry of new fishermen;

and an informal agreement that controls the minimum landing size, which is not

mandatory.

3. J.F. morwong fishery: has no formal regulation (at present).

Over the last 10-15 years there has been a growing interest in the artisanal fleet in increasing

the exploitation of fisheries, currently considered at very low levels of exploitation and mod-

ernization of the fishing fleet that already operates in the JFRE [32, 37, 38]. However, due to

the vulnerability of the JFRE, the high level of interrelation of species and the potential for

increased exploitation with modernization or new sectors, the following question arises: What

is the effect of the existing fisheries on the functioning and structure of the JFRE?; and What

would be the effect of increased fishing on the ecosystem?

Evaluating ecosystem effects of fishing

End-to-end models. To address this question, a holistic and integrated perspective is

needed. One approach is to integrate the management and assessment of fisheries under an
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ecosystem’s framework. In the last decade, mainly due to technological advances, new

approaches and tools have been developed to explicitly consider the entire exploited marine

ecosystem [39–41]. Multispecies models that focus on the fishery, its target species and their

closest connections in the ecosystem (or their other main drivers) is one valid approach [41].

However, in this case it was judged insufficient given the spatial and temporal processes that

structure the functioning of the ecosystem surrounding the JFRE (e.g. the effect of the eddies

on the productivity, larval connectivity). End-to-end models attempt to incorporate all the

physical and ecological components of the ecosystem (including the human components),

integrating them at different spatial and temporal scales [39]. These tools provide insights into

ecosystem functioning, as well as the impact of human activities [39]. One of the largest end-

to-end modeling platforms operating under a spatial framework is the Atlantis model [39, 42].

This model has been used for nearly two decades and is regularly being modified and applied

to address new questions related to ecosystem functioning, management strategies, climate-

change impacts and monitoring [43]. All these attributes make Atlantis well suited to explore

and understand the impact of fishing activity on the vulnerable JFRE. This study aims to evalu-

ate the impact (direct and indirect) of different fisheries on the Juan Fernández Ridge ecosys-

tem by implementing an End-to-End model for this region.

Materials and methods

Atlantis-model

Atlantis is a modelling framework which includes the main components of the ecosystem and

was developed specifically for use within management strategy evaluations [40]. Therefore, it

includes: i) a representation of each of the major biophysical and human components of the

ecosystem [43]; ii) adaptive management processes (monitoring, assessment and management

decision) [44]; and iii) socioeconomic processes and drivers for the human use and behavior

[43]. Moreover, Atlantis presents a range of alternative model formulations, which can be tai-

lored to the user’s preferences. Hence, Atlantis can be implemented with different levels of

complexity, from a simple model with few interactions to a complicated model with multiple

biological connections and a complex structure of fishing fleets [43]. A detailed description of

the Atlantis model and all its options and equations can be found in the model’s manual [45–

47].

Model structure and parametrization

Areas. Atlantis is a three-dimensional spatially explicit framework which is based on

irregular polygons that account for the spatial structuring of the dominant processes (e.g.

physical, biological and human impact) [43]. Furthermore, the model has a horizontal stratifi-

cation which can incorporate vertical migration or depth-based variation in physical and bio-

logical components. The JFRE model covers an area of approximately 97,166 km2. This area

includes a wide range of habitats, ranging from soft sediments and shallow rocky reefs in the

coastal zone to pelagic habitats in the open ocean, pelagic and deep water habitats in the off-

shore area and seamounts (Fig 1). The division into polygons for the JFRE model was based on

the main hydrodynamic, biological and fishery management components of the area (Fig 1).

Parsing followed four main criteria: i) vertical and horizontal spatial distribution of the species

and functional groups; ii) spatial distribution of nutrients, chlorophyll, or phytoplankton,

based on model and bibliographic information; iii) spatial distribution of fishing fleets that

currently or previously operated in the JFRE (artisanal and industrial); and iv) management

areas, such as marine protected areas (MPAs), marine parks and exclusive artisanal fishery

areas. Each of these polygons can have up to eight depth strata, with divisions at 20, 50, 150,
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250, 400, 650, 1000 and 4300 m. This stratification is based on the vertical distribution of the

functional groups [48–51] and the operation of the fishing fleets [33, 52, 53].

Oceanography. In Atlantis the biophysical sub-model was coupled with outputs from a

three-dimensional hydrodynamic model to provide the main flows (e.g. water, salt, nutrients

and heat) for the ecosystem. The eddy-resolving Ocean General Circulation Model for the

Earth Simulator (OFES) [54, 55] was used to provide the oceanographic driving for the Atlan-

tis-JFRE and configured over the period 1950-2011. OFES is a quasi-global high-resolution

ocean model configured on a horizontal grid of 0.1˚ with 54 vertical levels (Fig 1) and monthly

temporal resolution.

The Adaptation of OFES output to Atlantis requires: i) integrating OFES flows to the

respective depth layers for each face in the available polygons; ii) correction for hyper-diffusion

within polygons (which involves dividing the orthogonal flows between two polygons by the

length of the interaction face between those polygons); and iii) statistical representation of rela-

tive seasonal eddy strength, so that the effect of eddies on productivity and connectivity can be

represented. This last step is particularly important because these oceanographic structures are

known to be abundant and important for productivity and connectivity in JFRE [26, 56, 57],

but the polygonal structure is too coarse to be explicitly eddy resolving (see Other forcing

variables).

Functional groups. This model is configured with 31 functional groups of which 16 are

groups structured by age and 15 are gross biomass pools. In addition, the model includes pools

of carrion, labile and refractory detritus (Table 1). These functional groups are aggregated

groups of species with similar patterns of trophic interaction (diets), life history, and manage-

ment measures. The interaction between these functional groups is mainly based on trophic

relationships which were built based on literature reviews and reinforced with database

searches (e.g. FishBase [58]).

Other forcing variables. The JFRE model is supplied with temporal and spatial informa-

tion from two different external forcings (Fig 2):

• Eddies: Due to the relevance of these physical processes to the JFRE, an analysis of the spatial

distribution, time duration and seasonal variation of the eddies from the OFES model was

done using the methodology described by Parada et al. [59].

• Larval connectivity: A coupled biophysical model for each age-structured functional group

was used to establish the spatial structure of the recruitment and larval connectivity. This

coupled model joins an oceanographic model (OFES model) and an individual-based model

(IBM) using the Ichthyop simulation tool developed by Lett et al. [60]. The information used

for the configuration of the IBM was: i) average date of spawning, based on the date of carry-

ing of spawning eggs. For functional groups with more than one species, the average date of

spawning between the different species was used; ii) area of release, based on the distribution

of the adults or egg bearing females (for spiny lobster); and iii) average duration of the larval

stage for each functional group (more details S11 Fig and S7 Table). The resulting larval dis-

persal matrices were read into Atlantis as a spatial forcing time series which condition box-

to-box larval flow, as well as losses from the system. Further details on its parameterization

and general pattern of results is provided in the supplementary materials.

• Recruitment deviations: For the spiny lobster functional group, a time series of recruitment

deviation was used. This series extends from 1900 to 2015 and was obtained from the catch-

at-length model by Porobic [61] (more details S9 Fig).

• Rainfall: The time series of nutrient contribution to the ecosystem (mainly NO3) was based

on rainfall time series reconstruction around the JFRE islands [62]. The average value of
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nutrients contributed by effluent run-off from the island was extrapolated from literature

[63] (more details S10 Fig).

• Linear mortality: To represent processes outside the scope of the model, a time series of lin-

ear mortality (where a simple mortality rate was imposed on the population with that rate

itself trending linearly through time) was applied on both adult and juvenile of fur seal in the

model. In the absence of more complete information on harvesting of pinnipeds in the

region, this mortality time series was used to recreate the processes of depletion (and near

extinction) experienced by this functional group (and to allow for the correct post-release

dynamics). For the rest of the functional groups, a constant linear natural mortality rate was

Table 1. Biological functional groups in the JFRE model and their main configuration. The initial biomass in metrics tonnes, the classification (A) under fisheries

means active fishery, (S) means secondary fishery or bait fishery, (C) represents currently closed fisheries and (B) was used for species that are bycatch of other fisheries (J.

F. abbreviation stand for Juan Fernández). More detailed descriptions of the functional groups can be found in the supplementary material.

Code Functional Groups Initial Biomass (tonnes) Modeled as Fishery Recruitment Model Seasonal distribution

SPL Spiny lobster 3.1e+03 Age-Structured Artisanal (A) Beverton-Holt Yes

GCR Golden crab 3.3e+02 Age-Structured Artisanal (A) Beverton-Holt No

BRC J.F. morwong 5.0e+03 Age-Structured Artisanal (A; S) Beverton-Holt Yes

ANG Moray eels 6.9e+03 Age-Structured Artisanal (S) Beverton-Holt Yes

VID Yellowtail amberjack 4.4e+03 Age-Structured Artisanal (A) Beverton-Holt No

ALF Alfonsino 3.8e+04 Age-Structured Industrial (C) Beverton-Holt No

ORO Orange roughy 2.5e+04 Age-Structured Industrial (C) Beverton-Holt No

SPF Small pelagic fish 7.7e+03 Age-Structured Artisanal (S) Beverton-Holt Yes

LPF Large pelagic fish 9.3e+03 Age-Structured Artisanal (A; S) Beverton-Holt Yes

SBF Small benthic fish 1.0e+04 Age-Structured Artisanal (S) Beverton-Holt Yes

LBF Large benthic fish 8.7e+03 Age-Structured Artisanal (S) Beverton-Holt Yes

MPF Mesopelagic fish 1.2e+05 Age-Structured - Beverton-Holt No

OTA J.F. fur seal 1.1e+01 Age-Structured - Fixed offspring No

DOL Dolphins 7.4e+02 Age-Structured - Beverton-Holt No

BIR Sea Birds 3.1e+00 Age-Structured - Fixed offspring No

CHO Chondrichthyes 6.8e+02 Age-Structured - Fixed offspring No

OCT J.F. octopus 7.2e+01 Biomass Pool Artisanal (A; B) No

SQD Squid 1.3e+02 Biomass Pool - No

SUR Sea Urchin 5.6e+03 Biomass Pool Bycatch No

MOL Mollusc 1.4e+04 Biomass Pool - No

SCR Other crustacean 1.4e+04 Biomass Pool Bycatch No

COR Deep sea coral 5.9e+04 Biomass Pool Bycatch No

SZO Small Zooplankton 5.2e+05 Biomass Pool - No

MZO Medium Zooplankton 1.2e+06 Biomass Pool - No

LZO Large Zooplankton 6.4e+05 Biomass Pool - No

BFF Deposit feeders 2.0e+04 Biomass Pool Bycatch No

LPH Large phytoplankton 1.6e+06 Biomass Pool - No

SPH Small phytoplankton 1.9e+06 Biomass Pool - No

MA Macroalgae 5.9e+04 Biomass Pool - No

PB Pelagic Bacteria 2.6e+04 Biomass Pool - No

BB Sediment Bacteria 8.0e+03 Biomass Pool - No

DL Labile detritus 8.0e+03 Biomass Pool - No

DR Refractory detritus 8.0e+00 Biomass Pool - No

DC Carrion 8.0e+00 Biomass Pool - No

https://doi.org/10.1371/journal.pone.0212485.t001
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applied (to reflect non-predation mortality sources) with that rate obtained iteratively during

the calibration process (see the section on the calibration process below)

Main biological processes. Atlantis includes several biological and ecological processes

[46] which are tailored to match the system being modelled. The JFRE model incorporated the

following processes:

1. Seasonal Migration: Three functional groups (dolphins, yellowtail amberjack and sea

birds) migrate in and out of the model domain.

2. Spatial distribution and Seasonal variation: Spatial distribution (proportion by area) and

its seasonal variation (if appropriate) were used (Table 1; more details S2–S8 Figs and S3–

S5 Tables).

3. Diel Vertical migration: The pattern of the diurnal vertical migration through the water-

column was used for zooplankton (large, medium and small) and for invertebrates such as

squid and octopus and for fishes with not strict demersal or pelagic distribution.

4. Recruitment and larval connectivity: Recruitments were based primarily as a variant of

the Beverton-Holt model or a fixed number of offspring per reproducing adult (Table 1).

The spatial distribution of the recruitment (larval connectivity) was based on a biophysical

model (as described above; more details S11 Fig and S7 Table).

5. Temperature effect on biological processes: The main processes affected by temperature

in the JFRE model were physiochemical nutrient cycling, physiological rates, reproduction

output, survival and spatial distribution. Details regarding the formulation of these pro-

cesses can be found in the Atlantis manual [46]. The parameterization of these processes for

the Juan Fernandez was based on available literature on the tolerances of species in the sys-

tem (e.g. the range of temperatures they are observed to inhabit) and from metabolic and

ecological studies on similar species from other systems.

Fisheries. The JFRE model included five different fisheries:

Fig 2. The left side includes the main components (biological, physical and economic) and forcings that were

considered for the JFRE model. The flowchart shows that the model runs for 35 years if after this period the model is

dynamically stable it creates a new initial condition at equilibrium. When the model is already dynamically stable, the

calibration process is performed to represent the conditions observed in the ecosystem.

https://doi.org/10.1371/journal.pone.0212485.g002
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1. Three artisanal fisheries, which operate in RC-SC and AS. These fisheries include the Juan

Fernández rock lobster, golden crab and J.F. morwong fisheries. Traps were used as fishing

gear for the two crustacean fisheries, and longlines for the finfish.

In addition, a two stage bait fishery is associated with the crustacean fisheries. The first

stage involves catching small pelagic fish, which serve as bait for the second stage. In the

second stage, the fishery catches moray eels, J.F. morwong and small and large benthic

fishes which are then used as bait in the crustacean fishery [30], (see Table 1 for associated

functional group codes).

2. Two industrial trawling fisheries targeting alfonsino and orange roughy, on seamounts.

For the purposes of this study a fishing mortality rate approach was used. The same rate was

applied in all spatial cells occupied by the fished species and zoned open to fishing, but size

specific selectivity was included via the use of a logistic length-based selectivity curve [47].

These fishing mortality and selectivity parameters were obtained from a number of technical

reports available for fisheries in the region [26, 33, 64–67]. Bycatch from the industrial and

artisanal fisheries was also incorporated in the model as a proportion of the total catch [47].

Bycatch included coral, other crustaceans, molluscs, sea urchins, deposit filter feeders and

octopus for the artisanal fleet; and sharks, coral, other crustaceans and deposit filter feeders for

the industrial fleet [68, 69].

Model calibration and metrics. The calibration of the model aims to reproduce the

observed system trends and the patterns observed in the ecosystem such as catches and abun-

dance of the functional groups. This model calibration was performed in two stages (Fig 2):

1. Bringing the model to equilibrium: The biomasses of the functional groups were taken to a

state of equilibrium avoiding the extinction or overgrowth of any one group. This included

a spin-up simulation of 31 years under a constant fishing pressure with all biomasses

remaining within a factor of 2 of their initial biomasses. Subsequently, the biomass and size

structures at the end of the simulation were used as the initial condition of the model for all

subsequent runs. The hindcast of the model started in 1950.

2. Fine calibration: A refined calibration based on a pattern oriented approach [70] was used

to adjust the outputs of the model to the patterns and time series observed in the ecosystem

(i.e. catches and biomass).

A model skill assessment was carried out to evaluate the performance of the model to reflect

the observed trend and magnitude of the observational data for the JFRE. Model efficiency,

Reliability index and Pearson correlation between the estimated and observed landings was

used to test the model performance as proposed by Olsen et al [71]. Only the catches of spiny

lobster, orange roughy, alfonsino and the abundance of fur seal were used in this assessment as

these were the only time series available.

Scenarios and simulations. A set of scenarios were implemented to assess the direct and

indirect effects of fishing on the JFRE (Tables 2 and 3). These scenarios aim to evaluate:

Table 2. Scenarios used to evaluate the effects of historical fishing activity in the JFRE.

Scenario Fishing mortality Fleet

Unfished No Fishing -

Historical Artisanal Historical level Artisanal

Historical Industrial Historical level Industrial

Historical JFRE Historical level Both

https://doi.org/10.1371/journal.pone.0212485.t002
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1. The historical effect of fishing: To understand the effect of existing fisheries on the function-

ing and structure of the JFRE we simulated scenarios with historical fishing mortality for

the industrial and artisanal fleets (and the combine effects of both). The output of these sce-

narios was compared against a simulated unfished ecosystem (Table 2).

2. The future increase in fishing effort for the artisanal fisheries: As there is no as yet agreed

level of increase proposed for the fisheries of the JFRE, a range of plausible scenarios for the

expansion of the artisanal fishery (given patterns of development elsewhere in Chile) were

trialed. In the first simulation we projected the model 35 years into the future using a con-

stant fishing mortality (at 2016 level). In the subsequent simulations, fishing mortality levels

were increased (above the reference level in 2016) by 50% for crustacean fisheries (spiny

lobster and golden crab; ICRUS50%); or by 50% for both fisheries (IBOTH50%); or by

100% just in the finfish fisheries (IFISH100%; Table 3). We acknowledge that these are fairly

simplistic scenarios, but we were primarily interested in gross effects not nuance, given that

those directly involved in the fishery are yet to define more detailed scenarios. In addition,

the lobster and golden crab fisheries use the same fishing gear, the same type of boats and

in some instances the same boat fishes both resources in a single fishing trip. Thus, includ-

ing a scenario where the changes in these fisheries was matched seemed to be a logical

inclusion.

Note that it is assumed in these scenarios that the industrial fishery remains closed. This

assumption was made as no research has been carried out to evaluate stock conditions, sug-

gesting that there is no clear intention from the Chilean government to reopen these over-

exploited fisheries. Furthermore, the seamounts that sustained a large part of the industrial

fishing effort have been declared as national parks or marine protected areas and thus are

unlikely to re-open to legal fishing. For simplicity in these initial scenario assessments we have

chosen not to include potential illegal fishing activities.

Software. The development and simulation of the JFRE was performed using Atlantis-

trunk 6178 model [72]. This version of Atlantis was compiled in gcc 4.8 [73] under the operat-

ing system Ubuntu 14.04 LTS [74]. For pre and post-processing R software version 3.2.3 was

used [75]. All these programs were executed under GNU Emacs 24.3.1 [76]. All versions of the

parameter files and R codes used during the development of this work were stored in GitHub

[77] and are available in (https://github.com/jporobicg/Atlantis_JFRE_Model). The Atlantis

code can be accessed from the CSIRO SVN repository after registering with the Atlantis user

group (https://research.csiro.au/atlantis/). To simulate the larval connectivity of the age class

groups the Ichthyop simulation tool version 3.3 [78] was used.

Table 3. Scenarios used to evaluate the effects of future fishing activity in the JFRE. C stands for current level of fishing pressure, I is the increase in fishing pressure

and I+ is the cumulative increase of fishing pressure for both types of artisanal fisheries.

[1cm]

Scenario Crustacean Finfish

SPL GCR BRC VID SPF LPF SBF LBF

Business as usual (BAU) C C C C C C C C

ICRUS50% I I I I I I I I

IBOTH50% I I I+ I+ I+ I+ I+ I+

IFISH100% C C C I I I I I

https://doi.org/10.1371/journal.pone.0212485.t003
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Results

Metrics and description

The JFRE Atlantis model had a spin-up period of 31 years, where all the functional groups

reached a dynamic stability. This spin-up duration was based on the time that the orange

roughy population required to reach a stable size structure and a stable dynamic state. On

average, the other functional groups required 10 years (+/-3) to reach this state. The JFRE

Atlantis model (hindcast mode) covered the period from 1950 to 2011 to match the time span

of the oceanographic model. During this period, most of the functional groups remained

within the limits of established dynamic variation (+/-50% of the initial biomass). The model

reproduced a marked intra-annual biomass variability coupled with inter-annual variations

(more details in S12 Fig). The model skill assessment for all the functional groups, using all

available information shows a strong and significant similarity between the simulated and

observed time series of catches and abundances (Fig 3; Table 4). In addition, all the analyzed

time series had model efficiency coefficient values close to 1, which implies a high symmetry

and match between predictions and observations (Table 4). In addition, the reliability index

values show low average values of the deviation factor between the observed values and the

predictions.

The structure of the trophic web simulated by Atlantis shows levels ranging from 1 for pri-

mary producers (e.g. macroalgae) to 5 for top predators (e.g. mammals and sharks; Fig 4).

There is a high concentration of functional groups at trophic levels 2 to 3 characterized by

crustaceans and molluscs and at trophic levels 4 to 5 which is composed by finfish, mammals,

birds and sharks (Fig 4). Based on the number of trophic connections, the main prey of this

ecosystem are plankton groups (zooplankton and phytoplankton) and the mesopelagic fish.

Historical effect of fishing (hindcast)

Most functional groups have a strong similarity between the simulated unfished and fished

ecosystems (see S12 Fig), with the exception of spiny lobster, orange roughy and alfonsino

which show the strongest divergences between those scenarios (Fig 3). There is not a strong

synergy or antagonism between the effect of both fleets (artisanal and industrial). The interac-

tion between them was a small (less than 1%) antagonistic effect, which is observed for yellow-

tail amberjack, octopus and large pelagic fishes (Fig 5).

Artisanal fisheries. The simulations show that the lobster stock has undergone a total bio-

mass depletion of approximately 81% compared to the unfished system (Figs 3 and 5A);

although in terms of abundance the drop is 53% (Fig 5B). Golden crab presents a similar pat-

tern between abundance and biomass, where the proportional difference in simulated biomass

is 4% and observed abundance is less than 1% (Fig 5). Juan Fernández morwong shows a

reduction in almost 11% of its biomass compared to an unfished ecosystem. The overall effect

of artisanal fishing, with the exception of golden crab and spiny lobster, is reflected discreetly

in a few functional groups: a decrease of 4% in the abundance of octopus; less than 3% drop

for yellowtail amberjack; less than 1% decrease for other crustaceans (Fig 5A); and an increase

around 3% in mollusc and sea urchin biomass; Moray eels have a small increase of 2% in bio-

mass, which is not reflected in the abundance (which has a reduction of less than 1%).

In the artisanal fleet, bait catches are focused on a few functional groups divided in two cat-

egories according to the level of fishing impact. First a high impact category composed of the

catches of the functional groups: large pelagic fishes, J.F. morwong, moray eels and yellowtail

amberjack with average annual catches of 84.5 (+/-5.5), 83.8 (+/-3.9), 63.4 (+/-3.2) and 51.3

(+/-2.9) tonnes respectively (Fig 6A). A second category less impacted is composed of small

The impact of fishing on a highly vulnerable ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0212485 February 22, 2019 11 / 32

https://doi.org/10.1371/journal.pone.0212485


pelagic fishes, small benthic fishes and large benthic fishes that present annual historical

catches close to 3 tonnes.

The spiny lobster fishery shows the highest levels of bycatch, mainly composed of octopus

with an annual average of 5.18 (+/-2.7) tonnes and other crustaceans with 1.91 (+/-0.99)

tonnes (Fig 6B). In addition, there is incidental catch of corals, sea urchins and deposit feeders

with average catches of 0.46 (+/-0.24), 0.3 (+/-0.15) and 0.01 (+/-0.003) tonnes annually

respectively (Fig 6B). For the golden crab fishery, other crustaceans are the main bycatch with

an average of 1.08 (+/-0.03) tonnes annually (Fig 6B).

Fig 3. In the left column are presented the time series of the biomass relative to the initial biomass of an unfished

(blue line) and fished (yellow line) ecosystem. The first three rows of the right column represents the time series of

simulated catches in Atlantis (red line) and observed (gray dots). For the Fur seal, the dots represented the observed

abundance and the red line is the estimated abundance from Atlantis.

https://doi.org/10.1371/journal.pone.0212485.g003

Table 4. Metrics used to determine the skill in model assessment. p-values are provided in brackets.

Metrics Alfonsino Orange roughy Spiny lobster Fur seal

Correlation (Spearman) 0.88 (< 2.2e − 16) 0.87 (4e − 4) 0.83 (< 2.2e − 16) 0.95 (< 2.2e − 16)

Reliability index 4.06 6.69 1.52 1.58

Model Efficiency (ME) 0.999 0.999 0.999 1

https://doi.org/10.1371/journal.pone.0212485.t004
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Industrial fisheries. During the fishing period, the population of alfonsino reached its

highest catch after the biomass had been reduced by 50% with respect to its initial unfished

biomass (Fig 3). After this depletion, a rapid recovery of its biomass is observed, reaching 85%

of its biomass by the end of the hindcast simulation compared to an unfished scenario (Fig 3).

In contrast orange roughy drove down the total biomass by almost 30% and the rate of recov-

ery is slower, seeing it reach 83% of its total biomass by the end of the hindcast simulation(Fig

3). Compared with the unfished scenario, on average, the alfonsino biomass and abundance

was reduced by 32% and 20% respectively. For orange roughy this reduction was around 15%

for the total biomass and 4% for the abundance. The general effect of the industrial fishery is

reflected in a few functional groups (Fig 5) with a positive effect on the biomass of mesopelagic

fishes (almost 5%), squids (2%) and Fur seals (1%).

The bycatch in the industrial fleet is mainly composed of sharks, corals and other crusta-

ceans (Fig 6C). This contributes to the predicted reduction of the biomass of sharks (of around

9%) and coral (around 2%; Fig 5a).

In the alfonsino fishery, shark catches reached an average 79.8 (+/-61) tonnes per year,

which corresponds on average to 3.6% of the annual volume of alfonsino catches, corals make

Fig 4. Food web of the Juan Fernández Ridge ecosystem. The code representing the functional groups can be found

in Table 1.

https://doi.org/10.1371/journal.pone.0212485.g004
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up 0.6% with an average of 14 (+/-10.7) tonnes and other crustaceans reached 0.74 (0.8) tonnes

on average which make up 0.03% of the volume of catches of alfonsino (Fig 6C). For the

orange roughy fishery, the coral bycatch reaches 193 (+/-85) tonnes per year, equivalent to

12.73% of the annual catches of this fishery. In the case of sharks these are equivalent to 3.95%

of the orange roughy catches, with an annual average of 60.28 (+/-26.6) tonnes, and other crus-

taceans make up the equivalent of 0.46% of the annual orange roughy catches with an annual

average of 8.43 (+/-8.9) tonnes of bycatch(Fig 6C).

Projections

The comparison of the state in the projected scenarios (from the 1st of January 2016 to January

1st 2051) against the unfished ecosystem scenario are summarized briefly below.

Business as usual (BAU). The BAU scenario shows similar results as the hindcast model

for the artisanal fisheries (Figs 5 and 7). With a marked reduction of 87% and 63% of spiny

lobster biomass and abundance respectively. In addition, there is a reduction of 10% of golden

crab, 16% of J.F. morwong and 5% of octopus biomass. Moray eels, sea urchin and molluscs all

increase by approximately 2%.

Fig 5. Relative change in biomass (A) and abundance (B) for the scenarios with only artisanal, industrial and the

historical fisheries (industrial + artisanal). An unfished ecosystem is the base case for comparisons. Note that the y-axes

is the ratio of change against the starting conditions—so a -0.5 result indicates a 50% decrease and a 0.5 result indicates

a 50% increase -.

https://doi.org/10.1371/journal.pone.0212485.g005
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Increase fishing mortality of crustaceans (spiny lobster and golden crab). In the projec-

tions, the increase in fishing mortality by 50% in the crustacean fishery shows a decrease of

approximately 92% in biomass and 69% in abundance for spiny lobster for the last 5 years of

simulation (Fig 7). For golden crab the decrease in biomass and abundance reaches 15% and

2% respectively (Fig 7). In finfish, the most evident effect is the decrease in J.F. morwong bio-

mass of approximately 15% and 11% reduction in abundance compared to an unfished sce-

nario (Fig 7). In addition there is an increase of around 1.8% in biomass of moray eels.

Compared to the BAU scenario there is a decrease of 29% of biomass and 13% of the abun-

dance of spiny lobster (Fig 7). In golden crab, this reduction was almost 5% for biomass and

less than 1% in abundance. For finfish, compared with the BAU projection, the biomass and

abundance of J.F. morwong decreased by 7% and 6% respectively (Fig 7). For all other func-

tional groups there is almost no change (i.e. less than 1%) with respect to the BAU scenario.

In terms of catches these increased by approximately 50% for all finfish and moray eels and

by almost 40% for golden crab compared to the BAU projection (Fig 8). In the case of lobster,

the total catch is reduced by around 15% compared to a BAU projection.

Increase fishing effort for finfish and crustacean artisanal fisheries. The results of this

projection are similar to the scenario for the increase in crustacean fishing mortality, although

there is a slight decrease in abundance and biomass for some functional groups such as J.F.

morwong and octopus. Compared with the BAU scenario, the most important changes are the

drop in biomass and abundance of spiny lobster, golden crab and J.F. morwong (Fig 7). For

catches, they increase around 65% for finfish, 50% for moray eels, almost 40% for golden crab,

when compared to the BAU projection. In contrast, for lobsters there is a greater than 15%

reduction in final catch levels compared to a BAU projection.

Increase fishing effort in finfish artisanal fisheries. The effects of this scenario of

increased fishing mortality in finfish fisheries are only reflected in a few functional groups.

Fig 6. Summary of the catch distribution for the total bait caught from artisanal fisheries (A)), the total artisanal

bycatch (B)) and the industrial bycatch (C)). The upper and lower limits of boxes represent the 25th and the 75th

percentile and the middle line the 50th percentile of the data distribution. The whiskers represent the range of the

catches.

https://doi.org/10.1371/journal.pone.0212485.g006
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Octopus biomass declined by 7% and J.F. morwong declined by 18% (representing an 14%

reduction in abundance). In addition, there was a small observed increase in the abundance

and biomass of moray eels (around 2%). Catches increased around 20% for finfish and 95% for

Octopus compared to the BAU projection. For the moray eels there is a reduction of 3% and

there are almost no changes for spiny lobster and golden crab catches when compared to a

BAU projection.

Despite a complete closure of the industrial fisheries in these projections, there was an 8%

change in biomass (6% in abundance) for orange roughy and an increase of 2% for squid (Fig

7). Post 2024, there is no difference in projected biomass for alfonsino between a fished and

unfished scenario.

Discussion

The Juan Fernández ecosystem is a vulnerable marine ecosystem that has being impacted by

industrial and artisanal fishing. Assessing the degree of impact of these fisheries on the ecosys-

tem is vital as a source of information for fisheries management. It provides an indication of

the need for management measures aimed at ensuring the sustainability of resources and the

ecosystem [16, 79]. To face this challenge, an ecosystem model for JFRE was implemented

Fig 7. Relative change in biomass (A) and abundance (B) for the business as usual (BAU), a 50% increase in fishing

effort of crustaceans (ICRUS50%), 50% increase in fishing effort for crustaceans and finfish (IBoth50%) and 100%

increase in fishing effort for finfish (IFish100%). An unfished ecosystem is the base case for comparisons. Note that the

y-axes is the ratio of change against the starting conditions—so a -0.5 result indicates a 50% decrease and a 0.5 result

indicates a 50% increase -.

https://doi.org/10.1371/journal.pone.0212485.g007
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using the Atlantis ecosystem framework. The implemented model can efficiently represent the

responses and fluctuations of the ecosystem. It shows a high degree of synchronization

between the observed and estimated catch and abundance, reproducing the main temporal

trends and variations. Thus, under the current configuration and calibration, this model effi-

ciently represents the JFRE biological and harvesting dynamics, which makes it a good tool to

address questions about the ecosystem status, and dynamics.

Trophic interactions

The functioning of JFRE, like other seamount ecosystems, is highly dependent on local pri-

mary production [80]. The major component of the food web is centered on phytoplankton,

zooplankton and mesopelagic fishes, similar in structure to other deep-sea ecosystems [81].

In addition, there is a difference in the trophic structure between species that inhabit differ-

ent depths. This apparent change in diet is mainly determined by the type of prey accessed

by functional groups living at different depths in seamounts [9]. For example, deep water

species such as orange roughy have a diet different from those associated to shallower waters

such as Juan Fernández morwong (Fig 4). Moreover, it is likely that the same functional

group will have differences in their diets depending on the depth of the seamount they

inhabit [9], this is something that was not analyzed in detail in this model due to a lack of suf-

ficient observational data. Such an analysis would however be useful as part of future work

so as to increase understanding of how the potential existence of alternative trophic pathways

may (or may not) influence the outcome of development and management scenarios in the

modelled area.

Fig 8. Relative change in catch for the last 20 years of projection for 50% increase in fishing effort of crustaceans

(ICRUS50%), a 50% increase in fishing effort for crustaceans and finfish (IBoth50%) and 100% increase in fishing

effort for finfish (IFish100%). The catches from a business as usual scenario is the base case for comparisons. Note

that the y-axes is the ratio of change against the starting conditions—so a -0.5 result indicates a 50% decrease and a 0.5

result indicates a 50% increase -.

https://doi.org/10.1371/journal.pone.0212485.g008
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Artisanal fisheries

In the model, the lobster fishery has a strong impact on the spiny lobster population, reducing

the biomass by 80%. Even with this large removal, only 50% of the abundance is extracted

from the ecosystem. Two mechanisms can explain or contribute to this outcome:

1. The fishery is removing only the largest lobsters, leaving the smallest and most numerous

ages in the ecosystem which can be observed in the age class size distribution [67].

2. There is an increase in survival of smaller lobster due to the reduction of intraspecific

competition for shelter [82] or more available food due to the removal of large-sized

lobsters.

Even though there is a strong total biomass reduction in the spiny lobster stock, this fishery

does not show any sign of collapsing in the future. An important factor in explaining the sus-

tainability of the fishery is the minimum legal size of lobster extraction [83], which is sup-

ported by this analysis. The minimum landing size of the fishery is 115 mm which is much

higher than the average size of first maturity of 81.1 mm [84]. In this species, the average

growth increment per year can vary between 3 to 6 mm [83] which allows the population to

have between 5 to 11 reproductive events between first maturity and recruitment to the har-

vestable component of the population [84].

Ecosystem. Aside from the sharp decline in lobster biomass, the artisanal fishery has an

small overall impact on the ecosystem. One reason for this is because, beyond the direct

removal of the lobsters, the amount of biomass removed as bycatch or bait by the fishery is

very small compared to the total estimated available biomass for the potentially affected func-

tional groups.

In terms of predation, the decrease in lobster biomass did not have a strong impact on the

ecosystem. The spiny lobster is an opportunist and generalist group with a wide spectrum of

prey [85, 86], this means that the impact on the prey was not centered only on one item type,

which means that the effect of a reduction in lobster biomass is dampened by dispersion over

many groups. Species such as sea urchins and molluscs are the most influenced by the abun-

dance and biomass decrease of lobsters (Fig 5). In terms of how a decline in spiny lobster bio-

mass influences its predators, the model again suggests it does not have a major impact.

According to the simulations this is because the lobster does not represent the main item of

any species, and most of its predators are species that can feed on other functional groups. The

species that feed on lobster (e.g., large benthic fish, moray eels, octopus and sharks) can focus

their effort on capturing other functional groups that are more available when the abundance

of lobster is low.

Given the strong depletion of the large sized spiny lobster due to fishing, a more marked

growth of the populations of urchin was expected. The adult lobster has been reported as a key

species controlling the abundance of sea urchin populations elsewhere [87]. Empirical obser-

vations in other systems indicates that top-down control of sea urchins by spiny lobster stops

the overgrazing effect of the urchins on macroalgae. This mechanism decreases the probability

of the creation of barrens of sea urchins avoiding extreme changes in the structure of the eco-

system [87]. Within the modelled system, although there is an increase in the biomass of sea

urchins (3%; Fig 6), it is more moderate than expected, based on observations from other eco-

systems [87, 88]. In JFRE, unlike other ecosystems, moray eels are also one of the main preda-

tors of sea urchin, controlling its abundance. Therefore, in the absence of spiny lobster that

trophic role is being carried out by the moray eels and may be an ecosystem stabilizer (more

details S13 and S14 Figs). The strength of this relationship remains to be verified in the real

system, but if it is the case, then a greater decrease in eel abundance and biomass could result
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in major ecosystem change due to increased sea urchin populations and overgrazing of the

macro-algal habitat as seen elsewhere [87, 88].

Another direct means in which fisheries can influence the JFRE is via the bait fishery. There

is a two stage bait fishery associated with the capture of crustacean (lobster and golden crab)

[89]. In the first stage capturing pelagic species that are used to catch larger species, which are

later used as baits in the crab and lobster fisheries. In the model, this bait fishery is mainly asso-

ciated with 4 functional groups: i) Large pelagic fishes, and which make up the first-order

baits; ii) J.F. morwong; iii) the moray eels; and vi) yellowtail amberjack. These last three make

up the baits used in the traps.

Despite the non-trivial levels of catches in the bait-fishery, the model does not report a

depletion of the biomass in these functional groups due to the high total biomass levels for

these groups. This means that the total bait catch levels are a small proportion of the total bio-

mass for each of these abundant functional groups. The J.F. morwong is the only functional

group that shows a biomass reduction, which is mainly explained by: 1) lower overall biomass

in comparison to the other functional groups (partly because it is a single species whereas the

other groups are composites of several species); 2) the depletion effect corresponds to the

cumulative effect of both the bait fishery and the small direct fishery for J.F morwong.

In the case of the moray eel, the stability in the biomass masks a change in abundance.

The model indicates that there are fewer but larger eels (i.e. less abundance but a slight

increase in biomass). This increase in the biomass of moray eels likely results from the com-

bined effect of:

1. An increase in prey biomass, due to the reduction of the predation effect of lobster there is

an increase in the availability of several prey that are also part of the diet of moray eels (i.e.

sea urchin, other crustaceans and mollusc). This increase in prey results in a larger food

supply and therefore an increase in individual body mass, generating larger moray eels.

2. Reduction in intraspecific competition. The slight reduction in the moray eels abundance

due to the bait fishery, reduces the intraspecific competition for food, increasing the effec-

tive availability of prey for moray eels.

The baits used for the spiny lobster and golden crab fisheries are composed of species of

high trophic level (e.g. large pelagic fishes and yellowtail amberjack) that generally would not

be part of the diet of these species or at least not in those quantities (Fig 5; [67]). This change

in diet may have a seasonal impact increasing the trophic level of these functional groups, but

under the current configuration of the model this is not being analyzed. This change in diet

(i.e. amount and type of nutrients) would influence the survival and growth of lobster, most

likely via a food subsidy [90, 91] but also with higher energy content prey becoming more

available.

The small overall footprint of the bait fishery also masks spatio-temporal heterogeneity.

The high level of spatial aggregation of fishing effort in a small area means there is still signifi-

cant potential for a larger effect in that area [38, 90]. This is not implicitly represented in the

model given its current configuration (uniform fishing mortality) and is something that should

be added in future updates.

Other ways in which fisheries may potentially affect the JFRE is via bycatch. The levels of

bycatch reported by the model are similar to those previously estimated for the artisanal fisher-

ies of the archipelago [67]. While both the modelled crustacean fisheries have similar fishing

gear (traps), there is a marked difference in the total amount of bycatch (Fig 7). This difference

is mainly due to the bathymetric distribution of the species. The lobster fishery operates from

3 to 200 meters [89] and the golden crab fishery from approximately 300 to 600 meters [33].
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This marked bathymetric division is reflected in the bycatch composition of each fishery,

which is characterized by species associated with the respective bathymetric ranges [67].

Interestingly in both cases the amount of bycatch is not sufficient to cause significant or

widespread effects; the bycatch of the artisanal fleet in the JFRE appears to affect very few func-

tional groups and does not have an important overall impact on the ecosystem at its current

levels.

We should, however, be cautious about this model-based bycatch finding. This is especially

relevant for coral bycatch, which is composed of coral species that can live for hundreds of years

and whose growth is extremely slow [92, 93]. The representation of these groups in the model

was fairly rudimentary and is unlikely to have captured the true delays involved in this slow

growth and maturity. In addition, the model does not differentiate between the two types of

coral (deep and shallow), which could further mask the ecological effect of this removal. A more

detailed analysis of this effect needs to model both corals separately. Therefore, the removal of

corals could have a larger and longer term impact than what is reported by the model.

Industrial fisheries

The fisheries. The two functional groups (i.e. orange roughy and alfonsino) captured by

the industrial fleet have different population responses to the effect of fishing. Alfonsino

showed a decrease in biomass and total abundance, whereas for orange roughy the total catch

was just a small part of the total biomass of the population. In 2006, the orange roughy fishery

was closed, arguing a population depletion based on the sharp fall in catches [94]. The model

results suggest, that this reduction in catches is likely to be related to other factors affecting

resource availability and not directly due to low biomass levels. What is observed in the model

has been reported previously [65] and several hypotheses (apart from overfishing) have been

proposed to explain low availability of orange roughy:

• Alteration of the reproductive behavior which leads to transitory problems in resources

availability. The fishing effort on orange roughy was concentrated between May and August,

but centered at spawning period (June-July) [95]. This direct and continuous impact of fish-

ing (during consecutive fishing seasons) on the reproductive stock may have generated a

change in the reproductive behavior of the species, which is reflected in an apparent decrease

in abundance.

• Strong inter-annual availability. It has been reported that orange roughy presents strong

interannual variations in its recruitment (or spawning success) [96]. This would generate

strong interannual changes in the vulnerable biomass which would be reflected in a strong

variation in catches. This hypothesis is not supported by the model, although interannual

variation is observed in the recruitment, there are no strong variation in the biomass of older

groups. However, caution needs to be shown since the reduced complexity of the larval pro-

cesses and may underestimate true inter-annual variability.

• Changes and reduction of the suitable habitat for orange roughy as a result of the impact of

fishing gear used by the industrial fleet. This alteration of the orange roughy habitat could

then induce changes in the spatial distribution of the species. The seamounts impacted by

fishing became less productive and therefore are avoided by orange roughy [97]. This pro-

cess would leads to a localized stock depletion at scales below that being resolved in the

model.

Although the model reports that the orange roughy resource is healthy and that the losses

in the catches may have originated from other processes, without new information and the
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analysis of observations that are informative around the real world veracity of the alternative

explanations, the hypothesis of overfishing must be maintained under the precautionary

approach [65].

In terms of stock recovery, even though both fisheries were closed for several years (2006

for orange roughy and 2012 for alfonsino) their estimated biomass and abundance has not

fully recovered. The recovery of alfonsino has been faster than orange roughy, reaching almost

85% of the unfished biomass by the end of 2016. The model projections, indicate that a full

recovery of the alfonsino biomass will be achieved after 12 years of fishery closure. These val-

ues are similar to those proposed by other modeling exercises in which the estimated recovery

period was found to be 13 years post the fishery being closed [66]. In orange roughy, the recov-

ery of biomass has been at a much slower rate compared to alfonsino. The model suggests that

the fishery is not likely to recover before 44 years of closure reaching about 92% recovery. This

estimate is similar to the result by other modeling approaches [65] where stability is observed

around 90% of the spawning biomass with respect to the virgin biomass. This slow rate of

recovery of orange roughy is due to its life history characteristics (slow growing and late

maturing).

The ecosystem. The industrial fleet has an overall low impact on the ecosystem and it is

highly localized and concentrated on a few species (functional groups). Beyond the direct

impact on the target species, the reduction of the abundance of alfonsino and orange roughy

saw an increase in the biomass of mesopelagic fish. This functional group is an important com-

ponent of the diet of orange roughy, constituting almost 50% of their diet [98], and alfonsino

—where mesopelagic are the second most important prey item [99]. Therefore, a decrease in

the abundance and biomass of these two species is rapidly reflected in mesopelagic fish bio-

mass. In addition, this increase in biomass in the mesopelagic fishes has a direct effect on the

biomass of fur seals which are the group’s main predator [100]. The model suggest that the

exploitation of orange roughy and alfonsino has a positive effect on the recovery of the fur seal

population. This means that there is the potential that as these fish stocks recover, there may

be a negative impact on the fur seal populations. This outcome may result in either: 1) prey

switching by the fur seals and potentially increased interactions with other fisheries; or 2) a

decline in the population which may lead to conservation concerns or tourism impacts.

The main negative effect of the industrial fisheries on the ecosystem is on corals and shark

(Fig 6). Even though the reduction of biomass due to bycatch is very small compared with

their total biomass, the impact is highly localized. These bycatch species are sessile or with low

mobility (benthic sharks) so the real effect of bycatch is below the scale of the model cells.

Therefore, it would be difficult to capture in full detail the effects given the current geographi-

cal structure of the model. Due to the small spatial extent of the trawling footprint of these fish-

eries, the level of depletion and loss of species richness is highly localized and represents a

small amount compared to the total biomass of these species [68]. To more thoroughly evalu-

ate this localized effect of industrial bycatch, it is necessary to reconfigure the spatial structure

of the model. For example, the current polygons could be subdivided using the areas where the

fishing effort was more intense [68] or use a telescoping spatial approach [101]. A change like

this in the spatial resolution of the model would have two important effects:

1. It would help determine the extent of any habitat depletion and loss of species richness at

the local level, especially in the areas highly impacted by fishing.

2. It would facilitate an analysis of the magnitude of heterogeneity in ecosystem outcomes

and the tracking of any localized shifts in bycatch levels and potential declines in affected

species. For example, a local depletion of bycatch species, as the fishery develops and the

richness and abundance of species decreases, could lead to a drop in the levels of bycatch
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[68, 102]. Such a mechanism would be important to understand as lowering bycatch levels

are often interpreted as the positive outcome of fishery management actions (which in

some cases they are, but it is important to distinguish the true underlying cause before

using the index as a performance measure).

Projections

The future (controlled) increase in fishing appears to be a viable option for all artisanal fisher-

ies in this system, except for the lobster fishery where an increase is detrimental to the lobster

population and its catches. For example, a 50% increase in fishing mortality for crustaceans

over the current value sees the total removal of lobster dropping below the BAU scenario (Fig

8). This reduction can be linked to:

1. The current depletion of the oldest age classes of the population. The current size structure

of the population in based on ages below the minimum landing size. This means, that even

when there is an increase in fishing mortality, the overall increase in catch will not be signif-

icant. This finding is not in conflict with real world observations, where the size structure of

the catches are centered on the minimum landing size with few individuals in the larger

sizes [67]. Actually, it has been proposed that this is a “recruitment fishery”, where the

catches are based on what recruits to the minimum legal size of the fishery each year [89].

2. The extra reduction in larger sizes results from the increase in fishing mortality which fur-

ther diminishes the reproductive potential of the lobster. This reduction of reproductive

potential will have a direct impact on the total population recruitment and therefore the

future number of lobsters that will enter the fishery. This relationship between reproduc-

tion, biological recruitment and fisheries production has been previously demonstrated for

other lobster species [103].

While scenarios explicitly exploring spatial dynamics in the system were not considered

here, based on the spatial dynamics of the JFRE artisanal fisheries [38], it is likely that an

increase in fishing effort and decrease in catch will have negative effects on fisheries manage-

ment. The historical tenure of discrete fishing spots for each boat (owned by a fisher or fam-

ily) has been part of the traditional management system and has been identified as the main

controller of fishing effort [38, 67]. Therefore, if the fishing effort is increased (more boats or

more fishing capacity), the need for increased fishing grounds will increase the probability of

spatial overlap of the territorial footprint of different fisher’s fishing areas. This increase in

the probability of overlapping fishing sites increases the risk of conflict, which could endan-

ger the traditional cooperative management of this fishery. Considering all of the above,

increasing the fishing effort in spiny lobster, does not seem the most appropriate approach,

especially as it leads to:

1. a reduction in overall catch compared to the BAU scenario (Fig 8) and, given the increased

effort assumed by the scenario, the reduced catch results in lower CPUE resulting in lower

financial returns to the fisher and impacts on the local economy and community;

2. a potential increase in the risk of conflict between fishers, due to the spatial structure of the

fishing fleet and the traditional spatial ownership of fishing areas;

3. a significant increase in the amount of bait used which is ultimately lost as waste or as food

for other organisms (e.g., smaller lobsters, fish, other crustaceans)—as there is fewer crusta-

ceans to catch even with the higher bait use—and therefore it would be better to use the fish

in a more appropriate way (e.g. sell them at the market).
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In the case of the golden crab fishery, this increase in fishing mortality enhances the catches

and does not have a very strong impact on the biomass of this group. This means that the

stock and the ecosystem could potentially support an increase in fishing mortality of golden

crab with minimal apparent risk of having a major impact. Other assessments of this resource

estimate that it is an underdeveloped fishery and there have been suggestions of further devel-

opment of the fishery, as an alternative to the lobster fishery [64].

In the modelled artisanal finfish fishery, despite a 100% increase in the current fishing mor-

tality rate the total reduction of biomass and the catches are lower than the increase of 50%

fishing mortality for the crustacean fishery (Figs 7 and 8). This is because the main source of

fishing mortality for finfish is associated with the crustacean fishery’s bait fishery [67]. Beyond

the bait fishery other fishing pressure is minimal for finfish and therefore the total increase in

fishing mortality imposed on finfish by the crustacean’s bait fishery is higher than the incre-

ment in the artisanal finfish fishery alone.

In terms of the impact of industrial fisheries, even though the fishery has been closed for

several years, the biomass of orange roughy and coral are still below the unfished scenario at

the end of the model run. This is because both functional groups continue to recover from the

impact of fishing. This slow recovery was expected especially due to the slow growth of these

functional groups, which makes it difficult to quickly return to levels of virgin biomass. Coral

are species of very low resilience and ability to recover from this type of disturbance [92, 93].

Future needs

JFRE is a remote vulnerable marine ecosystem far from the Chilean coast. This geographical

distance has made the scientific research in this system scanty and irregular over time. The dis-

tance from the coast of Chile increases the costs and logistical constraints of any scientific

research. Despite this, many research initiatives have been developed over several years but the

majority have focused on fishing related scientific research. In the last few years this has gradu-

ally changed and new research including other aspects of the ecosystem has been developed.

While, this is an improvement, more research is needed to achieve a solid understanding of

the system and it’s sustainable management.

The development of this ecosystem model has answered several of the questions concerning

the dynamics of the JFRE, but it has also posed many challenges for the future. If we seek to

improve the understanding of the functioning of the ecosystem through a modeling tool such

as Atlantis, there are many aspects that would benefit from further refinement, updates or

additions (Table 5). While there are many areas of modeling that can be improved, there are

priorities especially from the point of view of resource risk management, monetary cost and

logistic capacity (Table 5).

The collection of time series of different ecosystem components and other relevant indica-

tors is also an important need. Having time series allows for an understanding of the temporal

variations and trends of different aspects of the ecosystem (e.g., recruitment, abundance, tem-

perature, nutrients, pH). The availability of time series in JFRE are scarce and only consist of

some specific efforts related to specific fished resource species (i.e. Spiny lobster, golden crab)

or several endanger species (e.g. Pink-footed shearwaters, fur seals). Although these time series

are essential, it is necessary to reinforce them with others that describe other aspects of the eco-

system. Due to the human and institutional effort and the associated costs, these would likely

need to be carried out on different time scales (months to years; Table 5). The exact form of

such an effort would depend on the dynamics of each variable, the source of the data and the

costs of obtaining the data. For example, algal biomass can be obtained at fine spatial and tem-

poral scales from satellite imagery but requires a cost of obtaining the imagery and processing
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the data. Similarly, water temperate data can be obtain from sensors. In contrast, ecological

components such as urchin numbers or macroalgal cover require trained personnel (e.g.

divers) to undertake transects on an annual basis (Table 5).

Conclusion

The JFRE Atlantis model has proven to be beneficial for describing the status of the JFRE com-

mercial and artisanal fisheries. Also, providing insights into the impact on the ecosystem that

would be expected to result from changes in fishing pressure (i.e. Artisanal fishery). Industrial

fishing is located on the deep seamounts and restricted to larger trawler vessels based out of

mainland Chile. Due to concerns about the level of depletion and the rate of recovery, these

fisheries have been closed since 2006 for orange roughy and 2012 for alfonsino. This industrial

fishing has a fairly localized impact on both target species and bycatch. In the case of alfonsino,

it has an important direct effect with a high depletion of the biomass of this species. For the

orange roughy stock, no significant depletion of the total biomass was observed. An explana-

tion of this is that the observed drop in catches is due to other factors associated with availabil-

ity such as alteration of reproductive behavior, reduction of available habitat or strong inter-

annual variation of recruitment. Despite this low estimated reduction in total biomass, the

recovery towards historical population sizes has been slow due to their life characteristics such

as extremely slow growth. As for bycatch, both industrial fisheries present a high level of

bycatch and this is associated with sessile or low mobility species such as coral and benthic

sharks. Seamount fisheries are characterized by fine resolution intensive fishing activities.

While the JFRE model provides valuable general insights, improvements in the spatial resolu-

tion of the model to focus on this particular feature would improve the precision of the

Table 5. Information and model components that are needed for a future update or to use the model with data assimilation. These components are divided by: Prior-

ity, that means how urgent they are; Type, which include new model components to configure in the Atlantis framework (socio-economic components) and data which

can be composed of single data or time series; Periodicity, correspond the ideal maximum time lag needed for the information; and Spatial if the information that is

needed should be at the spatial level. Note that information at the level of the species should primary include key species from the ecosystem such as Spiny lobster, J.F. mor-

wong, sea urchins.

Variable/Model Priority Type Periodicity Spatial Comments

Diet High Data seasonal Yes Reinforces knowledge about trophic relationships between functional groups.

Abundance High Data 3 years Yes Supports calibration, setting of initial conditions and model skill assessment.

Temperature High Data 1 month Yes Essential for evaluating effects on populations and for including future scenarios of climate

change.

Socio-economic High New

component

- No Pivotal for understanding the drivers of behavior and for translating management actions and

outcomes through to consequences on the fishing community.

Primary

production

High Data seasonal Yes Crucial in an ecosystem such as JFRE for understanding the supporting drivers of the system and

for exploring cascade effects across functional groups.

Nutrients Medium Data seasonal Yes Important for understanding the spatial and temporal variation of these variables, especially for

understanding how production has changed in the past and may change into the future.

pH Medium Data seasonal Yes Important for exploring the implications of ocean acidification.

Larval

connectivity

Medium Data 1 year Yes In an ecosystem like JFRE, the spatial connectivity can have a strong effect on the abundance and

spatial distribution of functional groups (so understanding its past, current and future patterns is

important).

Larval settlement Medium Data seasonal Yes The larval settlement information can help to calibrate the temporal changes in abundance and

help to understand the connectivity.

Fisheries

Management

Medium New

component

- - This is fundamental to exploring new management alternatives suitable for this ecosystem, for

reproducing past patterns of consequences and exploring the efficacy of current and proposed

options and any associated challenges.

Tourism

information

Medium New

component

- - Tourism is of growing economic importance on the islands and including its activities could have

important effects on the JFRE ecosystem.

https://doi.org/10.1371/journal.pone.0212485.t005
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estimates. Greater temporal detail would also be beneficial but this is difficult when the fishery

is only operating for a short time. However, if it does reopen in some of the seamounts that are

not protected, then the collection of monitoring data that can be used by the model to provide

timely information on ecosystem effects should be considered.

Within the JFRE there is a long-term traditional coastal artisanal tightly-knit fishing com-

munity that mainly targets spiny lobsters, J.F. Morwong and recently golden crab. This arti-

sanal fishing has a low impact on the ecosystem and is mainly concentrated in the crustaceans

fishery. The lobster fishery represents the greatest artisanal fishing effort and has the greatest

impact on the ecosystem. This fishery has generated a significant depletion of the large sized

lobster stock with a substantial reduction in the total population biomass. Given the current

state of the population, it is not advisable to increase fishing effort. An increase would have a

negative effect on catches and financial returns from the fishery. In addition, this increase in

fishing effort (irrespective of what it does to catches) may pose a significant problem for the

traditional fisheries management of this fishery, breaking down socially enforced management

structures. In terms of the ecosystem, the model indicates that a decrease in the abundance of

large lobsters has generated an increase in the population of sea urchins. Although this

increase does not yet seem to be sizeable, it is still advisable to be careful not to lead the ecosys-

tem towards a regime shift. In addition, it was found that a moderate increase in the fishing

effort focused on other species of finfish and crustaceans will not have a significant impact on

the ecosystem. Moreover, this change could have a positive socio-economic impact as a result

of productive diversification.

This ecosystem model can be used strategically for the management of the JFRE fisheries.

Since this is the first ecosystem modeling approach for JFRE, it is advisable to perform some

updates especially aimed at reducing uncertainty associated with the input information. Updat-

ing information on the trophic relationships among the key species that make up the ecosystem

is most urgent. In addition, it is necessary to have time series (monitoring) of the abundance of

these key species. While there are some aspects that can be improved, added or updated, this

model provides a new and more comprehensive approach for analyzing the current and future

status of the JFRE. The JFRE Atlantis model is a comprehensive tool that can provide insights,

for example, about the sustainability of the ecosystem under different levels of fishing pressure

under a climate change scenario, or to establish which are the main drivers of the ecosystem

productivity. In other words, this model is a tool that can help the fisheries managers responsi-

ble of this vulnerable marine ecosystem understand its dynamics and its core interactions.
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S10 Fig. Time series of rainfall used for forcing the nutrients in Atlantis JFRE. The 90th per-

centile represents the extreme rainfall events.

(PNG)

S11 Fig. Level of connectivity grouped by year and by species for all JFRE.

(PNG)

S12 Fig. Time series of the biomass relative to the initial biomass for unfished (yellow) and

fished (brown) ecosystems.

(PNG)

S13 Fig. Time series of the proporcion of sea urching in the realized diet of moray eels.

(PNG)

S14 Fig. Relative effect of moray eels predation on the population of sea urchin. The black

dots represent the relative biomass of sea urchin under the predation effect of moray eels. The

dotted grey line represents the relative biomass of sea urchin without the predator effect of

moray eels. Both time series are relative to the initial biomass of sea urchin.

(PNG)
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ejo de su pesquerı́a. University of Concepción; 2016.

84. Ernst B, Orensanz JM, Porobic J, Román C, Chamorro J, Manrı́quez P. Monitoreo de la pesquerı́a de

crustaceos en el archipiélago Juan Fernández, año 2011. Final Report Subpesca 4728-49-LE11. Uni-

versidad de Concepción; 2012.

85. Guest MA, Frusher SD, Nichols PD, Johnson CR, Wheatley KE. Trophic effects of fishing southern

rock lobster Jasus edwardsii shown by combined fatty acid and stable isotope analyses. Marine Ecol-

ogy Progress Series. 2009; 388:169–184. https://doi.org/10.3354/meps08096
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98. Labbé JF, Arana P. Alimentación de orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyi-

dae), en el archipiélago de Juan Fernández, Chile. Revista de Biologia Marina y Oceanografia. 2001;

36(1):75–82.

99. Horn PL, Forman J, Dunn MR. Feeding habits of alfonsino Beryx splendens. Journal of Fish Biology.

2010; 76(10):2382–2400. https://doi.org/10.1111/j.1095-8649.2010.02630.x PMID: 20557598

100. Francis J, Boness D, Ochoa-Acuña H. A protracted foraging and attendance cycle in female Juan Fer-

nández fur seals. Marine Mammal Science. 1998; 14(July):552–574. https://doi.org/10.1111/j.1748-

7692.1998.tb00742.x

101. Johnson P, Fulton E, Smith D, Jenkins G, Barret N. Capture Inshore To Slope Dynamics in Marine

Ecosystem Modeling. Natural resource modeling. 2011; 24(3):335–364. https://doi.org/10.1111/j.

1939-7445.2011.00094.x

102. Anderson O, Clark M. Analysis of bycatch in the fishery for orange roughy, Hoplostethus atlanticus, on

the South Tasman Rise. Marine and Freshwater Research. 2003; 54(5):643–652. https://doi.org/10.

1071/MF02163

103. Linnane A, McGarvey R, Gardner C, Walker T, Matthews J, Green B, et al. Large-scale patterns in

puerulus settlement and links to fishery recruitment in the southern rock lobster (Jasus edwardsii),

across south-eastern Australia. ICES Journal of Marine Science. 2014; 71(3):528–536. https://doi.org/

10.1093/icesjms/fst176

104. Rivara P. Estudio de la biologı́a reproductiva de Nemadactylus gayi (Kner 1865), en el Archipiélago

Juan Fernandez. University of Concepción; 2013.

105. Guerrero A, Arana P. Size structure and sexual maturity of the golden crab (Chaceon chilensis)

exploited off Robinson Crusoe Island, Chile. Latin American Journal of Aquatic Research. 2009; 37

(3):347–360. https://doi.org/10.3856/vol37-issue3-fulltext-6

106. Niklitschek E, Cornejo J, Hernández E, Toledo P, Herranz C, Merino R, et al. Informe Final: Evalua-

ción hidroacustica del alfonsino y orange roughy, año 2006. Universidad Austral; 2007.

The impact of fishing on a highly vulnerable ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0212485 February 22, 2019 32 / 32

https://doi.org/10.1080/00288330909509992
https://doi.org/10.3354/meps08248
https://doi.org/10.1016/j.biocon.2016.05.030
http://www.subpesca.cl
https://doi.org/10.1080/00288330.1990.9516406
https://doi.org/10.1371/journal.pone.0026704
https://doi.org/10.1371/journal.pone.0026704
https://doi.org/10.1111/j.1095-8649.2010.02630.x
http://www.ncbi.nlm.nih.gov/pubmed/20557598
https://doi.org/10.1111/j.1748-7692.1998.tb00742.x
https://doi.org/10.1111/j.1748-7692.1998.tb00742.x
https://doi.org/10.1111/j.1939-7445.2011.00094.x
https://doi.org/10.1111/j.1939-7445.2011.00094.x
https://doi.org/10.1071/MF02163
https://doi.org/10.1071/MF02163
https://doi.org/10.1093/icesjms/fst176
https://doi.org/10.1093/icesjms/fst176
https://doi.org/10.3856/vol37-issue3-fulltext-6
https://doi.org/10.1371/journal.pone.0212485

