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Abstract—Forecasting time series is an emerging topic in
operational research. Existing time series models have lim-
ited prediction accuracy when faced with the characteristics
of nonlinearity and nonstationarity in complex situations
related to energy and finance. To enhance overall prediction
capabilities and improve forecasting accuracy, we propose
a fuzzy interval time series forecasting model on the basis
of network-based multiple time-frequency spaces and the
induced ordered weighted averaging aggregation (IOWA) op-
eration. Specifically, a time series signal is decomposed into
ensemble empirical modes and then reconstructed as various
time-frequency spaces, which are transformed into visibility
graphs. Then, forecasting intervals in different spaces can be
collected after the local random walker link prediction model
is adopted. Furthermore, a rule-based representation value
function inspired by Yager’s golden rule approach is defined,
and an appropriate representation value is calculated. Finally,
after IOWA is used to aggregate the forecasting outcomes in
different time-frequency spaces, the final forecast value can
be obtained from the fuzzy forecasting interval. Considering
that energy issues are of widespread interest in nature and
the social economy, two cases, based on a hydrological
time series from the Biliuhe River in China and two well-
known sets of financial time series data, TAIEX and HSI, are
studied to test the performance of the proposed approach
in comparison with existing models. Our results show that
the proposed approach can achieve better performance than
well-developed models.
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I. INTRODUCTION

Energy plays a critical role in the modern economy
and society. Many studies have focused on the estima-
tion of energy demands, such as [1], [2]. Finance en-
ergy, an emerging subject that is receiving considerable
attention, suggests viewing energy from a finance per-
spective. How to build a model with good performance
[3], [4] and apply it to different applications [5]–[7],
which relates to energy and finance issues, remains an
open issue. Notably, many finance energy problems have
inherent time-related characteristics, such as the periodic
variations in wind speed and annual runoff. Normally,
a time series is constituted by a sequence of related
values ordered by time [8]–[10]. However, many real-
world time series, such as stock indexes [11], [12] and
annual runoff of rivers, have more uncertainty because
of complex social and natural situations [13]. Because
governments, environmentalists, investors, brokers and
dealers all need to analyze the potential attributes in time
series and predict future trends, many useful techniques
and models have been proposed. Meanwhile, to achieve
better performance, an increasing amount of research has
recently begun to focus on improving the accuracy of
forecasting [14].

Time series data can be divided into univariate and
multivariate data. High-dimensional multivariate time
series require the consideration of additional optimiza-
tion algorithms [15], [16] for modeling and forecasting.
However, these algorithms are not considered here since
this paper focuses on univariate time series. There are
many well-developed traditional time series forecasting
methods, such as Box-Jenkins models, ranging from
the autoregressive moving average (ARMA) to autore-
gressive integrated moving average (ARIMA) models
[17], and fuzzy time series models, which are based on
statistics or fuzzy logic and sets. However, the former
requires the adoption of rather idealistic assumptions
for simplicity and lack sufficient capacity to deal with
nonlinear situations, whereas the latter requires cum-
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bersome calculations and involves equations that are
difficult to understand. Due to these limitations, these
methods are not suitable for application to real-world
finance and energy time series. Recently, deep neural
networks, such as long short-term memory (LSTM) net-
works and deep fuzzy neural networks (FNNs), have
begun to be employed to achieve higher accuracy in time
series forecasting [18], [19], but accurate rules still cannot
be extracted due to black-box training processes and
overfitting problems. To enhance the interpretability and
predictability of neural networks, several approaches,
such as intrinsic time-scale decomposition (ITD) [20],
ensemble empirical mode decomposition (EEMD) [21],
and fuzzy theories [22]–[25] have been proposed, which
can perform well in specific forecasting situations. How-
ever, their adaptability to real-world applications is still
restricted due to their poor shifting capability. Deep
learning models also tend to have worse performance
than traditional models due to overfitting issues. To
mitigate these problems, it is necessary to collect a large
amount of training data and use extensive computational
resources; however, this is sometimes difficult to achieve
in realistic situations.

In fact, most realistic time series are characterized by
nonlinearity and nonstationarity, making it difficult for
forecasting models to achieve high accuracy. Further-
more, driven by profits, benefits and other demands,
investors or governments will never cease to pursue
better performing models, especially in the context of en-
ergy or finance. Since many of the existing models listed
above cannot perform well enough in complex, realistic
situations, some researchers have recently investigated
other possible solutions [26]–[30].

Recently, to study the potential of graph theory for
time series analysis, Lacasa et al. [31] proposed the
visibility algorithm, which can transform a time series
into a complex network with well-conserved structural
properties. Using this algorithm, many methods have
been proposed to analyze time series from a network
view [32], [33]. Among them, link prediction methods in
networks [34], [35] are also considered to help construct
the time series forecasting models. Many studies have
begun to focus on this new perspective for time series
forecasting and try to apply it in real energy and finance
problems [36]. Compared to most traditional prediction
models, the network approach requires less or even no
parameters and shows no less performance. All of these
methods show bright prospects for future network-based
time series analysis.

Considering the current limitations imposed by the
mercurial trends observed in time series from real-world
applications and inspired by methods of fuzzy and inter-
val time series analysis [37]–[39], we have explored the
concept of information uncertainty and noted that a di-
rect prediction approach may not be the best choice [40],
[41]. Recent studies have presented various approaches
for addressing different types of uncertainty [42]–[45].
For example, a fuzzy-based model is an efficient means

of addressing linguistic variables and decision making
[46]–[49], and interval values can be used to represent
the properties of uncertain systems [50].

The forecasting model proposed in this study does
not directly generate a deterministic predicted value;
instead, it predicts an interval of values in the initial
stage and then aggregates the outcomes. That is, in
the prediction step, we first attempt to generate fuzzy
predictions characterized by interval values, and we
then apply a series of rules to choose a representative
value to obtain the final prediction result. Furthermore,
considering the achievements of network approaches for
time series forecasting, we also attempt to investigate the
time series from the network perspective to develop a
more reliable forecasting model.

The model proposed in this paper first decomposes a
time series into different intrinsic mode functions (IMFs)
and a residue by means of the EEMD method. Then,
these components are used to reconstruct a group of
time series, which can be seen as representations of
the original time series at different temporal scales or
in different frequency states. After the reconstructed
time series are generated, the visibility algorithm and
the link prediction method can be adopted to produce
interval forecasts for the different reconstructed time
series. The final forecast result will be aggregated using
the induced ordered weighted averaging aggregation
(IOWA) operation [51], where the inducing variable is
dynamically generated from the last forecast result in
different time-frequency spaces. Throughout the whole
process, the predictions are first considered as interval
values, which can more properly represent uncertainty
[52], [53]. Inspired by Yager’s golden-rule-based repre-
sentation values [54], the proposed model attempts to
extract similar representation values according to the
forecast context. The main contributions of our pro-
posed model include 1) reconstructing a time series with
different time-frequency components, 2) transforming
these components into networks and then using link
prediction to analyze them, 3) recovering interval time
series from the analyzed networks, and 4) selecting
representation values according to the forecast context
and aggregating them to generate time series forecasts.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries about the vis-
ibility graph, the link prediction method, the IOWA
operator and the reasoning algorithm with golden rules.
Section III presents the proposed fuzzy interval value
prediction model. In Section IV, application cases in real
time series illustrate the performance of the proposed
model. Section V finally presents a brief summary.

II. PRELIMINARIES

In this section, some preliminaries about the visibility
graph, the link prediction method, IOWA, fuzzy impli-
cation and the reasoning algorithm with golden rules are
introduced sequentially.
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Fig. 1. The visibility algorithm is illustrated as follows. In the figure, if one bar can be seen from the top of another bar, then these two
bars are linked, and the corresponding vertices in the associated visibility graph are also directly linked. For example, there is a visibility
relationship between the two time series data (1, 60) and (3, 40) because there is a single time series data point (2, 30) between them and
30 < (40+ (60− 40)× (3− 2)/(3− 1)). Therefore, there is a direct link between time nodes t1 and t3 in the visibility graph. By contrast, because
there is a time series data point (4, 60) between (3, 40) and (5, 30) and 60 > (30 + (40− 30)× (5− 4)/(5− 3)), the visibility criterion is not
fulfilled for these points, meaning that there is no direct link between t3 and t5 in the visibility graph.

A. The visibility graph
The visibility graph [31] can serve as a bridge between

time series and complex networks. Through the visibility
algorithm, the structure of the time series can be con-
served in the graph topology; for example, fractal time
series become scale-free networks. In the visibility graph,
two time series data (ta, ya) and (tb, yb) have a visibility
relationship if there is no more than one time series data
point (tc, yc) between them and that point, if it exists,
satisfies

yc < yb + (ya − yb)
tb − tc

tb − ta
. (1)

An example of the visibility algorithm is presented in
Fig. 1. Note that the visibility graph from the time series
has the following properties:

1) Connected: each node sees at least its nearest neigh-
bors.

2) Undirected: the links in the visibility graph have no
direction.

3) Invariant under affine transformations of the series
data: rescaling and translations of the horizontal and
vertical axes do not influence the visibility criterion.

B. Link prediction based on local random walk
The real world is very complicated because various

factors interact with each other in complicated ways
[55]–[59]. Many mathematical models, such as DEMA-
TEL [60]–[62] and Markov models [63], [64], have been
presented to address this complexity. Among such mod-
els, the complex network is efficient for modeling the

complexity by network analysis [65]. Link prediction
is widely used in complex networks and attempts to
explore the missing link in the network [66]. Most link
prediction methods are based on node similarity. In the
work [67], a method using the local random walk (LRW)
approach is proposed, which measures the similarity be-
tween nodes by describing a walker walking randomly
in a network [68]. Here, the term ”random” implies that
the method assumes that the future state of the walker is
conditional on the current state and independent to the
past, and the similarity between two nodes is defined as
the likelihood of a link between them [67].

In this method, the footstep for a random walker
can be represented by the probability transfer matrix P.
Pxy = axy/kx means that the walker departs from one
node x and arrives at another node y within one time
step in a given network with N nodes. Note that axy = 1
when two nodes have a link and axy = 0 otherwise. kx
is the degree of node x.

Initially, assume an N× 1 vector, where N is the length
of the time series and is also the number of nodes in the
network, with only the x-th element equal to 1 and the
others equal to 0; this vector is denoted by ~πx(0) and
represents a random walker located at node x. After t
time steps, the vector ~πx(t), representing the location
probability for the random walker departing from x, can
be calculated as follows:

~πx(t) = PT~πx(t− 1), (2)

where T is the matrix transpose.
In accordance with the importance of each node in

the graph, we can assign the initial resources for the
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LRW process [69]. For simplicity, here, we set the initial
resources using the degrees of the nodes; then, the node
similarity between x and y at time step t can be defined
as follows:

SLRW
xy (t) =

kx

2|E| × ~πxy(t) +
ky

2|E| × ~πyx(t), (3)

where |E| is the number of edges in the network.
To prevent the difficulty that a sensitive dependence to

parts of a network too far away from target nodes occurs
in all random-walk-based similarity measures [70], the
similarity index based on the superposed random walk
(SRW) is used, as follows [67]:

SSRW
xy (t) =

t

∑
n=1

SLRW
xy (n). (4)

It is clear that SLRW
xy (n) = SLRW

yx (n) and SSRW
xy (t) =

SSRW
yx (t).

C. Ensemble empirical mode decomposition

The original empirical mode decomposition (EMD)
method [71] is an adaptive and efficient approach for
decomposing a time series into different IMFs and a
residue. However, there is a problem called ”mode-
mixing”, which means that any IMF is composed of os-
cillations of dramatically disparate scales in the original
EMD method [21]. To overcome this shortcoming, the
EEMD method is proposed as follows [21].

Assume that one original separately observed time
series is y(t)(t = 1, 2, . . . , m). In EEMD, noise is intro-
duced for every separate observation, and thus, the i-th
”artificial” observation will be

yi(t) = y(t) + wi(t), (5)

where wi(t) is regarded as the random noise that may
be encountered in the measurement process. When there
is only one observation, the multiple-observation ensem-
bles can be mimicked by not arbitrary but rather varying
realizations of added white noise, wi(t) [21].

The basic procedure of EEMD is developed as follows
[21]:
(1) add white noise to the observed time series.
(2) decompose the time series with white noise into

IMFs.
(3) repeat steps (1) and (2) with different white noise

series each time.
(4) obtain the final means of the corresponding IMFs and

a residue.
The works [21], [71] illustrate that the IMFs must have

the following properties or conditions:
1) The number of extrema and the number of zero-

crossings must either be equal or differ by at most
one through the whole size of an IMF.

2) The mean value of the upper envelope, which is
defined by local maxima, and the envelope, which is
defined by the local minima, is zero at any location.

According to the above definition, after a sifting pro-
cess, any observed time series y(t)(t = 1, 2, . . . , m) can
be decomposed to the following forms:

y(t) =
n

∑
i=1

ci(t) + rn(t), (6)

where rn(t) is the residue after m IMFs are extracted.
The sifting process is presented as follows:
(1) Identify all local maxima and minima for the ob-

served time series y(t);
(2) Form upper emax(t) and lower emin(t) envelopes by

connecting all these local maxima and minima with
cubic spline interpolation, and calculate the mean
value, denoted by e(t), between these two envelopes
as follows:

e(t) = (emax(t) + emin(t)) /2.

(3) Extract e(t) from the time series and obtain the first
component h(t) by taking the difference of y(t) and
e(t) as follows:

h(t) = y(t)− e(t).

(4) Check whether h(t) satisfies the two conditions of
IMF. If so, the first IMF, denoted by c1(t), equals h(t).
If not, y(t) should be replaced by h(t) and the above
steps repeated until a h(t) satisfies the two conditions
of IMF. Then, the first residue r1(t) can be obtained
as follows:

r1(t) = y(t)− c1(t).

(5) Treat the residue as the new time series being sub-
jected to the same sifting process shown above for
the next IMF and residue as follows:

r2(t) = r1(t)− c2(t),

r3(t) = r2(t)− c3(t),

· · · ,

rn(t) = rn−1(t)− cn(t).

(6) Finally, when the residue rn(t) becomes a monotonic
function or the iteration number n has met our con-
ditions, the whole sifting procedure can be stopped
[72].

D. The induced ordered weighted averaging aggregation op-
erator

The ordered weighted averaging aggregation (OWA)
and IOWA operations have both found widespread ap-
plication [73]–[75] following their introduction by Yager
[51], [76], [77]. They are both mappings, Fw : Rn → R,
and characterized by associated weighting vector ~W. The
main difference between OWA and IOWA is that the
IOWA operator reorders the aggregated value ai with
inducing variables.

In IOWA, the values waiting for aggregation are rep-
resented by tuple forms such as 〈vi, ai〉, where vi is the
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inducing variable. The entire aggregation process can be
defined as follows:

FIOWA (〈v1, a1〉 , . . . , 〈vi, ai〉) = ~WT~B, (7)

where ~W and ~B are column vectors. ~B consists of the
argument values ai ordered by the inducing variables vi
in descending order.

Assuming that there are n number values and that
using α represents the degree to which this aggregation
likes an or operation, the maximal entropy approach [78]
can obtain the weights as follows:

1) If n = 2, then w1 = α and w2 = 1− α.
2) If α = 0 or α = 1, then w = (0, 0, · · · , 1)T or w =

(1, 0, · · · , 0)T , respectively.
3) If n ≥ 3 and 0 < α < 1, then

w1 [(n− 1)α + 1− nw1]
n

= ((n− 1)α)n−1 [((n− 1)α− n)w1 + 1] ,

wn =
((n− 1)α− n)w1 + 1
(n− 1)α + 1− nw1

,

wj =
n−1
√

wn−j
1 wj−1

n .

E. Reasoning algorithm and golden rules
Uncertainty reasoning is a key issue in artificial intel-

ligence. Many reasoning methods have been proposed.
For example, based on evidence theory [79]–[82], ev-
idential reasoning is widely used in decision making
[83]–[85]. Compared with evidential reasoning, fuzzy
set theory is used more extensively due to the relative
simplicity of the corresponding reasoning process [59],
[86]–[88]. To use a mathematical tool for modeling fuzzy
systems in time series forecasting contexts, a reasoning
algorithm based on fuzzy implication [89] is adopted.
First, the format of fuzzy implication R is suggested as
follows:

R: If (x1 is A1, · · · , xk is Ak), then y = g(x1, · · · , xk),
where xk is the inferred value, g(·) is the function
implying the value of y under the premise, xk is the
premise, and Ak represents a fuzzy subspace where the
implication R can be applied for reasoning and is often
a fuzzy set with a linear membership function.

Then, assume that there are n fuzzy implications Ri

(i = 1, · · · , n). For each implication Ri:
1) There are k premises

(
xi

1, · · · , xi
k
)

and fuzzy sets(
Ai

1, · · · , Ai
k
)

and yi = gi (x0
1, · · · , x0

k
)
.

2) Let
∣∣y = yi

∣∣ represent the true value of the proposi-
tion y = yi, which can be calculated as follows:∣∣∣y = yi

∣∣∣ = |x0
1 is Ai

1 and · · · and x0
k is Ai

k| ∧ |Ri|

=
(

Ai
1(x0

1) ∧ · · · ∧ Ai
k(x0

k)
)
∧
∣∣∣Ri
∣∣∣ .

(8)
For simplicity, assume that

∣∣Ri
∣∣ = 1.

After normalization, the final y inferred from fuzzy
implications is as follows:

y =
∑ |y = yi| × yi

∑ |y = yi| . (9)

This is also called the Takagi-Sugeno approach [89].
Based on this approach, Yager et al. [54] proposed a

golden-rule-based interval representation value for the
unit interval. Assuming that there is an interval value
of unit interval [a, b], the representation value can be
obtained by applying the function Rep as follows:

Rep(x) = m +
1
2

r−mr, (10)

where m = (a + b)/2 and r = b− a. The corresponding
golden rules are shown as follows [54]:
• If the mean is large and the range is small, then

Rep(x) = 1;
• If the mean is large and the range is large, then

Rep(x) = 0.5;
• If the mean is small and the range is large, then

Rep(x) = 0.5;
• If the mean is small and the range is small, then

Rep(x) = 0.

III. THE PROPOSED INTERVAL FORECASTING MODEL

In this section, a new forecasting model is proposed.
In general, a time series is first decomposed and re-
constructed into multiple time-frequency spaces. Then,
predictions for all subspaces are needed, and these re-
sults will be aggregated by the IOWA operator to make
the eventual prediction. In this process, the prediction
step is always divided into two parts. The first part is
to generate a preliminary fuzzy interval value forecast,
and the second is to select a representation value in
this interval. Note that in this process, the upper and
lower bounds of the interval value are real numbers;
therefore, we need to extend the implementation of the
golden-rule-based Takagi-Sugeno approach to include
real numbers as well.

Note that the original golden rule method in the work
[54] is not suitable for time series forecasting contexts,
and to resolve this problem, we generalize the original
golden rule method to select a proper ’golden represen-
tation value’ from the forecasting interval.

A. Decomposition and reconstruction
The first step of the proposed method is to

perform some time series pretreatments. This step
mainly contains the decomposition and reconstruc-
tion parts. Assume that there is a time series Y =
{(t1, y1) , (t2, y2) , . . . , (tN , yN)}. According to Equation
(6), it can be decomposed into different IMFs and a
residue X = {c1, c2, · · · , cn; rn}. Let X(n + 1) = rn;
then, by reversing the order of X, a new sequence X′

is obtained that satisfies

X′(j) ≡ X(i),

where i + j = n + 2. Therefore, the reconstructed time
series in different time-frequency spaces, denoted by Xi,
can be obtained as follows:

Xi =
i

∑
j=1

X′(j). (11)
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Y = {(t1, y1) , (t2, y2) , · · · , (tN, yN)}

Obtain multiple time-frequency spaces

IMF1 IMF2 ... IMFn Residue

X1 X2
... Xn Xn+1

Transform into visibility graphs

G1 G2 ... Gn Gn+1

Link prediction

Î1 Î2
... În În+1

Select representation value Rep( Î)

Aggregate with IOWA

Calculate the final prediction result: yN+1 = Rep( ÎN+1)

A: DECOMPOSITION AND RECONSTRUCTION

B:TRANSFORMATION AND LINK PREDICTION

C:INTERVAL FORECASTING AND VALUE SELECTION

D: AGGREGATION AND FINAL PREDICTION

Figure 1: The whole process of the proposed method

1

Fig. 2. The forecasting process of the proposed model

By gradually adding oscillations with different ampli-
tudes and frequencies, it is clear that the original time
series Y can be reconstructed in n + 1 time-frequency
spaces and Xn+1 = Y.

B. Transformation and link prediction

For each reconstructed time series Xi(i = 1, 2, · · · , n +
1), there is a corresponding visibility graph Gi according
to Equation (1). The link prediction method is then used
to explore the most potential link between the future
node and existing nodes in the current graph Gi. Because
the future node does not exist, and inspired by past
forecasting models such as exponential smoothing (ES),
which express the idea that the current time is more
important, let the most recent time node represent the
next future node in the link prediction process [22].

Based on the LRW link prediction method, the transfer
matrix Pi for each graph is first obtained. According
to Equation (4), the similarity between the last node N
and the nodes in the preceding (N − 1) nodes can be
calculated, and then, the similarity vector Simi for each
graph Gi is formed as follows:

Simi =
[
Si,1N , Si,2N , . . . , Si,MN , . . . , Si,(N−1)N

]
.

Let Si,MN = max(Simi), that is, node M is the most
similar node to N in Gi, and the corresponding time node
in different time-frequency spaces is (tM, yi

M). According
to previous studies, the initial forecast value obtained by
transforming a network into a time series satisfies [22],
[90].

yi
Ini =

yi
M − yi

N
tM − tN

(tN+1 − tM) + yi
M. (12)
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C. Interval Forecasting and Value Selection

Because Equation (12) is not a strict inversion of the
visibility graph, it may lack a sufficient theoretical foun-
dation. Here, we consider the preliminary prediction as
intervals rather than exact values. This fuzzy method can
intuitively help the forecast value reach the future real
value. Thus, let Î = [κ+, κ−] denote the prediction inter-
val. To forecast the value at tN+1, these two boundaries
can be obtained as follows:{

κ+i,N+1 = max({yi
Ini, yi

N}), i = 1, 2, · · · , n + 1,

κ−i,N+1 = min({yi
Ini, yi

N}), i = 1, 2, · · · , n + 1.
(13)

Inspired by Yager’s golden-rule-based representation
values for the membership grades, the proposed model
attempts to select a reasonable representation value for
Î, denoted by Rep( Î), in accordance with the following
rules:
• If the forecast interval becomes smaller and the

accuracy (error) becomes higher (smaller), then
Rep( Î) = κ+.

• If the forecast interval becomes larger and the accu-
racy (error) becomes higher (smaller), then Rep( Î) =
(κ+ + κ−)/2 = κ.

• If the forecast interval becomes smaller and the ac-
curacy (error) becomes lower (larger), then Rep( Î) =
(κ+ + κ−)/2 = κ.

• If the forecast interval becomes larger and the accu-
racy (error) becomes lower (larger), then Rep( Î) =
κ−.

Let δ denote the interval change rate, and let σ denote
the forecasting or estimated accuracy. Using the Takagi-
Sugeno approach, this fuzzy system can be modeled as
follows:

Rep( Î) =
κ+δ−σ+ + κδ+σ+ + κδ−σ− + κ−δ+σ−

δ−σ+ + δ+σ+ + δ−σ− + δ+σ−
, (14)

where δ+ (δ−) represents the linguistic expression
”the forecast interval becomes larger (smaller)”, i.e.,
Ai

1(interval) = δ+(δ−), and σ+ ( σ−) represents ”the
accuracy becomes higher (lower)”, i.e., Ai

2(accuracy) =
σ+(σ−). Note that since we generalize the Takagi-
Sugeno approach to the domain of real numbers, the min
operation ∧ in Equation (8) becomes a multiplication
operation, and the true values of the fuzzy implications
in these four golden rules should also be equal to 1.

To further obtain the quantitative degree of semantic
”forecast accuracy” and the ”forecast interval”, let ‖ Î‖ =
κ+− κ−, and assume that yN−1 is the real observed value
for the last forecast time and that ŷN−1 is the last forecast
result. Then, the interval change rate δ and the estimated
accuracy σ at time N can be calculated as follows:

δ =
‖ ÎN‖
‖ ÎN−1‖

, (15)

σ = max({τ − |ŷN−1 − yN−1|
yN−1

, τ}), (16)

where τ and τ control the semantics of ”a higher or
lower accuracy degree”. Moreover, τ can be called the
error tolerability parameter, and τ should be an infinites-
imal value. Higher tolerability means more uncertainty
in the forecasting process. Theoretically, τ can be any
value, but for a realistic forecasting task, it is suggested
that the range of τ should be [0.5, 1.5], and in this paper,
τ = 1 is adopted.

Note that in the original reasoning algorithm, A is a
fuzzy set with a linear membership function. However,
in the proposed model, A is not subject to these condi-
tions, and it is decided by the last prediction result ac-
cording to δ+ = max({δ, 1/δ}), δ− = min({δ, 1/δ}) and
σ+ = max({σ, 1/σ}) and σ− = min({σ, 1/σ}). Thus, the
golden rule representation value for the forecast interval
can be rewritten as follows:

Rep( Î) =
κ+δσ + κ(1/δ)σ + κδ(1/σ) + κ−(1/δ)(1/σ)

δσ + (1/δ)σ + δ(1/σ) + (1/δ)(1/σ)

=
κ(δ2 + σ2) + κ+δ2σ2 + κ−

(δ2 + 1)(σ2 + 1)
.

(17)
The initial values for δ and σ are 1. Therefore, for the
first prediction result,

Rep( Î) =
2κ + κ+ + κ−

4
= κ.

Overall, the golden rule representative value is based
on the Takagi-Sugeno (T-S) approach, which uses four
rules (e.g., fuzzy implications) to control the represen-
tative value. For comparison, we use two variables
as premises, as done in Yager’s study [91] (the terms
”mean” and ”range” are used in Yager’s study; the
terms ”forecast error” and ”interval” are used in our
study), and the inferred consequence (y) can be obtained
from the interval values’ upper and lower bounds. How-
ever, since both the upper and lower bounds of the
interval forecast are real numbers, the proposed model
further improves the golden-rule-based representation
value method of the T-S approach to adapt it to the time
series context.

D. Aggregation and final prediction
After the forecasting results are obtained from ev-

ery time-frequency time series, the IOWA method
is adopted to aggregate the results to perform the
final forecasting. Assume that a time series Y =
{(t1, y1) , (t2, y2) , . . . , (tN , yN)} has been decomposed
and reconstructed to n+1 time-frequency spaces Xi(i =
1, 2, · · · , n + 1). At each time node tN , after n+1 in-
terval predictions from multiple time-frequency spaces
are made, the representation values for each of
them are also selected. Then, assume that they are
Rep( Î1,N+1), Rep( Î2,N+1), · · · , Rep( În+1,N+1). Using the
IOWA operator, the final forecasting interval satisfies{

κ+N+1 = max({RIOWA, yN}),
κ−N+1 = min({RIOWA, yN}),

(18)
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where i = 1, 2, · · · , n + 1, and RIOWA is the aggregated
result using the IOWA method as follows:

RIOWA = FIOWA
(〈

v1, Rep( Î1,N+1)
〉

, . . . ,
〈
vi, Rep( Îi,N+1)

〉)
.

(19)
where the inducing variables vi can be obtained as
follows:

vi =
1

∑N−1
k=1 |ŷi,k − yi,k|

. (20)

Therefore, we have ÎN+1 = [κ−N+1, κ+N+1] as the final
interval forecast. Then, the golden representation value
for this forecasting interval can be obtained as follows:

ŷN+1 = Rep( ÎN+1). (21)

The whole forecasting process is shown in Fig. 2.

IV. APPLICATION

Energy issues involve every aspect of life, including
stock markets and water resource management. In this
section, two types of cases are considered to verify the
performance of the proposed time series model, espe-
cially in energy-related forecasting. In the first case, a
hydrological time series constructed by the annual runoff
of the Biliuhe reservoir from Liaoning Province, China,
is used. In the second case, two well-known financial
time series, TAIEX and HSI, are used. In addition, some
baseline or recent well-developed methods are also taken
into account for comparison to illustrate the performance
of the proposed model.

A. Dataset introduction and performance criteria

Hydrological time series of Biliuhe reservoir
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Fig. 3. Hydrological time series of Biliuhe Reservoir (106m3)

The study area of Case 1 is the Biliuhe River, with an
average annual rainfall of approximately 742.8 mm in the
catchment. Forecasting the annual runoff of reservoirs
such as the Biliuhe River is meaningful because it can
contribute to the designs of many environmental projects
near the river, help plan the plant irrigation system, and
maintain the sustainable utilization of water resources
and energy [14]. In this experiment, the Biliuhe annual
runoff data from 1951 to 2007 are collected. Data from

1951 to 1995 are used as the training set, and data from
1996 to 2007 are used as the validation set. Fig. 3 shows
the whole dataset.

Case 2 contains two experiments, both of which are
financial time series for important stock markets. Energy
is currently playing an increasingly important role in
financial markets. Energy prices such as oil and sustain-
able energy cost are of great relevance to international
markets. In addition, the emerging inherently interdis-
ciplinary subject of energy finance also requires us to
consider energy problems from a financial perspective.
Therefore, in the second study case, the daily stock index
of the Taiwan Stock Exchange Capitalization Weighted
Stock Index (TAIEX), which covers the duration from
1998 to 2006, is first used. For most existing forecasting
models, the training data are from January to October,
while the prediction data are from November to Decem-
ber. However, in the proposed model, there is no need
to keep a very large training set, and here, we let the
size of the training set be only 10, which is far less than
that of the original.

The second experiment utilizes the Hang Seng Index
(HSI) collected from 1998 to 2006. Similarly, the size of
the training set is 10, and the data waiting to be predicted
are from November to December every year.

Thus, we follow this experimental paradigm to pro-
vide an easy starting point for performance comparisons.

Note that here, we follow the experimental paradigm
previously applied in references [92], [93] to make it
easy to verify the feasibility of the proposed method and
perform comparisons.

After the prediction results are obtained, many criteria
can be selected to evaluate the proposed model. The first
one is the root mean square error (RMSE), as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
Q f (i)−Q0(i)

)2
, (22)

where Q f (i) and Q0(i) are the forecast and real time
series data, respectively.

The second is the mean absolute percentage error
(MAPE), as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣Q f (i)−Q0(i)
Q0(i)

∣∣∣∣∣× 100. (23)

The third is the correlation coefficient (Corr), as fol-
lows:

Corr =
(1/N)ΣN

i=1(Q0(i)−Q0)(Q f (i)−Q f )√
(1/N)∑N

i=1
(
Q0(i)−Q0

)2 ×
√
(1/N)ΣN

i=1(Q f (i)−Q f )
2

. (24)

The fourth is the Nash-Sutcliffe efficiency coefficient
(NSE) [94], as follows:

NSE = 1−
ΣN

i=1

(
Q0(i)−Q f (i)

)2

∑N
i=1
(
Q0(i)−Q0

)2 . (25)

Normally, RMSE is the most commonly used evalua-
tion criterion, and the NSE coefficient, which ranges in
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value from −∞ to 1 with a best score of 1, is often used
to assess the forecasting performance of hydrological
models.

Note that both of the above experiments are of the one-
step-ahead type, and the algorithm process is presented
in Algorithm 1.

Algorithm 1: One-step-ahead forecast
Input: Training set: S ; Test set: V ; Observed data:

y; Model: f
Output: Forecast value: ŷ; Error: ε

1 while i in V do
2 Forecast: ŷ← f (S) ;
3 Error: ε(i)← (ŷ− y) ;
4 Update: S ← V(i) ;
5 end
6 RMSE: ε← RMSE(ε(i)).
7 MAPE: ε← MAPE(ε(i)).
8 Corr: ε← Corr(ε(i)).
9 NSE: ε← NSE(ε(i)).

B. Case study 1: Hydrological time series forecasting

TABLE I
HYDROLOGICAL TIME SERIES FORECASTING RESULTS WITH α = 0.8

FROM 1996 TO 2007 (106m3).

Year Real value The proposed model Error

1996 867.48 924.1297 56.6497
1997 446.37 659.3244 212.9544
1998 553.82 475.2472 78.5728
1999 216.61 526.6286 310.0186
2000 119.18 235.4719 116.2919
2001 478.32 215.3422 262.9778
2002 100.52 415.2108 314.6908
2003 143.08 150.1904 7.1104
2004 449.83 301.4942 148.3358
2005 612.73 456.1894 156.5406
2006 438.99 535.2381 96.2481
2007 451.19 467.1541 15.9641

The Biliuhe Reservoir plays an important role in sup-
plying municipal water for Dalian City, which is located
in Liaoning Province, China. Thus, past studies have
often focused on analyzing the reservoir’s annual runoff
data such that they can make a proper prediction for
the future [95]. In this paper, to forecast the annual
runoff level of the Biliuhe River from 1996 to 2007, the
proposed model first makes interval value predictions in
reconstructed multiple frequency spaces for the original
hydrological time series. Then, by using the IOWA ap-
proach (with α = 0.8) and golden rule representation val-
ues, the final forecasting results are obtained, as shown
in TABLE I.

Because we consider the forecasting problem only
from a single-variable perspective, some results achieved
by the proposed model, such as for the year 2001, appear
to be poor. To further illustrate the performance of the

proposed model, we introduce two baseline forecast-
ing models as comparisons. The first is the seasonal
autoregressive integrated moving average (SARIMA)
model [96]. SARIMA means that the time series may
contain seasonal elements and it is often denoted by
SARIMA(p, d, q)(P, D, Q)m, in which m refers the num-
ber of periods for a season, p, d, q represent the order
of autoregressive model, differencing degree, moving
average model, respectively, and P, D, Q represent the
seasonal part of the corresponding model. The second
is a typical three-layer feedforward artificial neural net-
work (ANN). The only parameter α in the proposed
model is the ”orness” level in the maximum entropy
IOWA approach, which is set as 0.7, 0.8 or 0.9 in each
time forecasting. Then, the corresponding results are as
shown in TABLE II. It is evident that the proposed model
improves the accuracy compared to SARIMA or ANN.
In addition, we also find that by setting different α,
the proposed model may have different performances.
TABLE II also shows that the ”orness” level in the
aggregation step has only a limited influence on the final
forecasting results.

TABLE II
THE FORECASTING RESULTS FROM 1996 TO 2007 COMPARED WITH

BASELINE METHODS.

Model RMSE MAPE Corr NSE

The proposed model
α = 0.7 189.79 66.24 0.618 0.242
α = 0.8 180.13 63.84 0.656 0.318
α = 0.9 174.31 63.15 0.679 0.360

SARIMA(3, 1, 1)(1, 0, 1)6 286.64 122.94 -0.105 -0.730
ANN 342.85 149.05 0.135 -1.474

C. Case study 2: Financial time series forecasting

In the first experiment of case study 2, the parameter
α is first set as 0.8. Fig. 4 presents the first experiment
forecast results compared with the actual observed time
series. We find that the proposed model is conservative
when it makes a prediction for a maximum.

To further study the performance of the proposed
model, some classic benchmarks are used to evaluate
the potential of the proposed method. In addition, some
recent alternative approaches, namely, the fuzzy time
series with genetic algorithm (FTSGA) model [98] which
is a hybrid model combing genetic algorithm and fuzzy
time series, the multi-order (first-, second-, third-order)
fuzzy time series model [92] combined with genetic
algorithm and technical analysis such as the Rate of
Change, the method of integrated nonlinear feature se-
lection (INFS) coupled with supportive vector regression
(SVR) [93], and INFS based on an adaptive neural fuzzy
inference system (ANFIS) time series model [93], are
selected for comparison. Note that in the latter two
methods, the INFS method is usually used to choose
important technical indicators, based on SVR or AN-
FIS [93]. The classic methods considered are the first-
and second-order autoregression (AR(1) and AR(2)) or
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Fig. 4. TAIEX forecasting results from 1997 to 2003

TABLE III
A PERFORMANCE COMPARISON (RMSE) FOR FORECASTING TAIEX FROM 1998 TO 2003.

Models 1998 1999 2000 2001 2002 2003 2004 Average

AR(1) [97] 144.53 116.84 155.12 112.39 97.09 91.67 79.94 113.94
AR(2) [97] 135.21 128.15 142.30 129.84 89.80 66.58 60.33 107.46
FTSGA [98] (2013) 112.96 102.74 126.68 115.79 65.56 57.40 56.10 91.03
INFS+SVR [93] 117.28 118.91 148.52 110.76 70.38 59.22 53.07 96.88
Multiorder fuzzy [92] (2016) 114.21 110.09 125.42 113.22 63.99 52.99 52.40 90.33
ANFIS + INFS [93] (2016) 121.18 112.11 132.19 113.23 65.83 57.62 54.33 93.78
The proposed model (α = 0.8) 108.06 107.69 114.08 120.97 58.38 50.74 45.38 86.47

TABLE IV
PERFORMANCE IMPROVEMENT DEGREE (%) FOR FORECASTING TAIEX FROM 1998 TO 2003.

Models 1998 1999 2000 2001 2002 2003 2004 Average

AR(1) [97] 25.23 7.83 26.46 7.63 39.87 44.65 43.23 24.11
AR(2) [97] 20.08 15.97 19.83 6.83 34.99 23.79 24.78 19.53
FTSGA [98] (2013) 4.34 -4.82 9.95 -4.47 10.95 11.60 19.11 5.01
INFS+SVR [93] 7.86 9.44 23.19 -9.22 17.05 14.32 14.49 10.75
Multiorder fuzzy [92] (2016) 5.38 2.18 9.04 -6.85 8.77 4.25 13.40 4.27
ANFIS + INFS [93] (2016) 10.83 3.94 13.70 -6.84 11.32 11.94 16.47 7.79

ARIMA models [97] and the choice depends on the
autocorrelation function (ACF) and partial autocorrela-
tion function (PACF) analysis. Statistical comparisons are
shown in Table III. From this table, it is clear that the
proposed model performs better in most situations. More
improvement details are shown in TABLE IV, where we
can find that except for the prediction result in 2001,
the performance of the proposed model is comparatively
stable, and on average, the model actually achieves
improved forecasting accuracy (from 4% to 25%).

Fig. 5 shows the result for the second experiment, and
the prediction results are shown in TABLE V. Similar to

the last experiment, the ”orness” α = 0.8. In TABLE VI,
it is evident that in most situations, the proposed model
can improve the accuracy by 10% compared to recent
time series forecasting models. In 2004, the forecast result
of the proposed model is not as good as that of the
multiorder fuzzy time method [92], but its accuracy is
still improved by approximately 3.03% on average. Fur-
thermore, the proposed model even achieves a 14.10%
average improvement in forecasting accuracy compared
with the INFS and SVR hybrid methods and an average
improvement of approximately 8% compared with the
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Fig. 5. HSI forecasting results from 1997 to 2003

TABLE V
A PERFORMANCE COMPARISON (RMSE) FOR FORECASTING HSI FROM 1998 TO 2003.

Model 1998 1999 2000 2001 2002 2003 2004 Average

AR(1) or ARIMA(1, 1, 0) 195.36 232.54 255.52 155.45 106.24 122.59 112.81 168.64
AR(2) or ARIMA(2, 1, 0) 196.40 227.65 257.00 154.55 106.37 122.53 111.49 168.00
FTSGA [98] (2013) 202.66 217.09 246.12 163.33 104.28 129.00 101.29 166.25
INFS+SVR [93] 216.39 285.05 254.16 158.53 108.98 126.86 113.21 180.45
Multiorder fuzzy [92] (2016) 194.28 220.87 240.31 159.27 95.01 127.21 81.98 159.85
INFS + ANFIS [93] (2016) 201.18 235.68 249.28 157.97 105.6 124.15 103.28 168.16
The proposed model (α = 0.8) 180.24 226.36 233.91 140.44 93.09 114.15 96.85 155.01

TABLE VI
PERFORMANCE IMPROVEMENT DEGREE (%) FOR FORECASTING HSI FROM 1998 TO 2003.

Models 1998 1999 2000 2001 2002 2003 2004 Average

AR(1) or ARIMA(1, 1, 0) 7.74 2.66 8.46 9.66 12.38 6.88 14.15 8.08
AR(2) or ARIMA(2, 1, 0) 8.23 0.57 8.98 9.13 12.48 6.84 13.13 7.73
FTSGA [98] (2013) 11.06 -4.27 4.96 14.01 10.73 11.51 4.38 6.76
INFS+SVR [93] 16.71 20.59 7.97 11.41 14.58 10.02 14.45 14.10
Multiorder fuzzy [92] (2016) 7.23 -2.49 2.66 11.82 2.02 10.27 -18.14 3.03
INFS + ANFIS [93] (2016) 10.41 3.95 6.17 11.10 11.85 8.05 6.23 7.82

classic autoregression model.

Note that in the final step, IOWA is adopted to obtain
the final prediction. In fact, this IOWA can be seen as a
kind of aggregation framework ~W. If we further adopt
the maximal entropy method [78], the only parameter
α should be well considered. TABLE VII and TABLE
VIII make a comparison for the forecasting results with
different selections of α or the degree of ”orness”. Note
that we only consider α ≥ 0.5 because according to
Equation (7), (20) and the related maximal entropy rules
[78], parameter α characterizes a preference for specific

time-frequency spaces with comparatively small errors
in the past prediction process and Equation (20) indicates
that we should prefer more these spaces with small
accumulative errors, i.e., the α should be larger than 0.5.
Particularly, if α = 0.5, the IOWA method becomes a
simple mean calculation. From the above tables (TABLE
VII and VIII) and figures (Figs. 6(a)&6(b)), we can find
that in the experiments, 0.8 is perhaps not the best choice
and sometimes the simple mean can even do better.
However, the differences among various α are not very
large, and thus the proposed model can be said to be
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stable to some extent, because the parameter does not
have a drastic influence on the model’s performance.

V. CONCLUSION

In this paper, a multiple time-frequency spaces fuzzy
interval forecasting model is proposed for energy and
finance forecasting modeling. First, the original time
series is decomposed and reconstructed in different time-
frequency spaces using the EEMD method. In this sit-
uation, we can consider decomposed components sep-
arately and value the specific ones which are easy to
forecast more. Then, every subseries is transformed into
a corresponding visibility graph by exploring the poten-
tial link relations in the times series. After the LRW link
prediction method is adopted, the forecasting interval for
each subseries can be obtained, which is used to avoid
inaccurately direct forecasting, and better represent the
uncertainty in the prediction process.

Inspired by the golden rule representation values, a
novel rule-based representation function is proposed to
select proper representation values for these forecasting
intervals. Please note that in this rule-based way, we can
adapt the proposed model to different application con-
texts by adopting different rules. Eventually, by means
of the IOWA operator, the forecasting results in different
time-frequency spaces will be aggregated, and then, the
final prediction will be made. Two study cases with
improved forecasting accuracy compared with well-
developed traditional or recent time series forecasting
models can illustrate the advantages of the proposed
method in real energy and stock market time series.
Besides, the proposed model has few parameters and is
stable, because the IOWA parameter α has little influence
on the final results.

The proposed model considers time series in a net-
work view and then performs the forecasting by link
prediction methods. Because the process of transforming
the time series into the complex network is strictly
irreversible, the forecasting results from the network
nodes to values are seen as fuzzy intervals according
to the weakly reversed visibility algorithm and the most
recent time series real value. Our proposed method still
has some limitations. First, it cannot handle multivariate

TABLE VII
TAIEX FORECASTING RESULTS (RMSE) WITH DIFFERENT ORNESS (α)

Year α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

1998 106.97 107.04 107.41 108.06 108.81
1999 106.17 106.63 107.04 107.69 108.78
2000 114.71 113.62 113.40 114.08 116.80
2001 112.72 114.52 116.94 120.97 127.99
2002 58.71 58.57 58.44 58.38 58.37
2003 49.80 50.33 50.70 50.74 50.57
2004 47.22 46.60 46.03 45.38 45.03

TABLE VIII
HSI FORECASTING RESULTS (RMSE) WITH DIFFERENT ORNESS (α)

Year α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

1998 176.05 177.96 179.23 180.24 181.83
1999 223.82 225.02 226.21 226.36 225.78
2000 222.23 223.63 227.26 233.91 247.16
2001 141.19 141.00 141.16 140.44 141.43
2002 92.58 91.00 90.64 93.09 100.18
2003 110.17 110.86 112.22 114.15 116.48
2004 93.04 93.50 94.98 96.85 100.60

time series because the visibility algorithm can transform
only univariate time series into networks. Another limi-
tation is the golden rules used to select representation
values, which may require further improvement for
suitable adaptation to the time series forecasting context.
In addition, the recovery of interval time series from
networks requires further consideration; in particular,
further study of multivariate time series forecasting
models from the network perspective will be necessary
to improve the prediction accuracy in more complex
situations. Moreover, the question of how to obtain more
suitable fuzzy forecasting intervals deserve is worthy of
further investigation.
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