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Abstract. Characterizing the spatial distribution and variation of species communities
and validating these characteristics with data from the field are key elements for an
ecosystem-based approach to management. However, models of species distributions that
yield community structure are usually not linked to models of community dynamics, con-
straining understanding and management of the ecosystem, particularly in data-poor
regions. Here we use a qualitative network model to predict changes in Antarctic benthic
community structure between major marine habitats characterized largely by seafloor
depth and slope, and use multivariate mixture models of species distributions to validate
the community dynamics. We then assess how future increases in primary production asso-
ciated with anticipated loss of sea-ice may affect the ecosystem. Our study shows how
both spatial and structural features of ecosystems in data-poor regions can be analyzed

and possible futures assessed, with direct relevance for ecosystem-based management.
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INTRODUCTION

Ecosystem-based management, which aims to con-
serve ecological services while simultaneously meeting
socioeconomic, political, and cultural needs, is of key
importance for sustainably managing natural resources
now and into the future (Garcia et al. 2003). Funda-
mental to any ecosystem-based management is a thor-
ough understanding of the functioning of the
ecosystem of interest and the spatial distribution and
composition of its major components. This is not an
easy task and most approaches focus on only one
aspect to the exclusion of the other. The two main
pathways to gather this knowledge from collected data
are models of community dynamics (either qualitative
or quantitative) that focus on the ecological structure
and functioning of the system and statistical models
that spatially categorize distributions of species, func-
tional groups, or other operational taxonomic units
using their relationship to environmental predictor
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variables. Combining statistical and qualitative models
would allow us to understand both the composition
and function of ecosystems.

Ecosystem models allow testing hypotheses regarding
the dynamics of interaction networks and the potential
impacts of external drivers on ecosystem components.
They have been fundamental for the management and
assessment of extractive industries (Dambacher et al.
2015, Marzloff et al. 2015, Harvey et al. 2016), in cumu-
lative impact assessments (Melbourne-Thomas et al.
2011a, b, Anthony et al. 2013, Gurney et al. 2013), in
evaluating food-webs (Gillies et al. 2013, Melbourne-
Thomas et al. 2013, Heymans et al. 2016), and in pre-
dicting changes in ecosystem attributes under scenarios
for human use and environmental change (Fulton 2010,
Melbourne-Thomas et al. 2011a, b, Blanchard et al.
2017). These kinds of fully quantitative models usually
require detailed information about the rates of physical
and biological processes in the ecosystem. In contrast,
spatial mapping of species distributions of ecosystems
using statistical models, which typically underpin spatial
planning including assessments for Marine Protected
Areas (Barrett et al. 2001, Jordan et al. 2005, Hill et al.
2017), focus more on high-resolution predictions of the
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spatial distribution of distinct groups of species without
considering the nonlinear correlations between species.
A combination of both approaches allows complemen-
tary insight into ecosystems providing there is adequate
validation by field data.

However, as the physical environment changes in
space in both two and three dimensions, or through
time, so do the interactions between the physical and
the biological environment, influencing species distri-
butions and ecosystem functioning (Edwards and
Richardson 2004, Hoegh-Guldberg and Bruno 2010).
This presents a challenge, particularly in data-limited
regions where little is known about how biological
communities function and how they change in space
and through time, limiting the ability to both conserve
the environment and ensure its sustainable use. Com-
bining spatial and dynamic quantitative approaches
could draw on the strengths of both, thereby clarifying
potential biases and resolving areas of high agreement
(Levins 1966, 1993). This approach could be useful for
data-limited regions because simple network models
can be developed using knowledge from similar
ecosystems and then be combined with spatial data
explicit to the region.

An environment that is comparatively little studied
and not well understood is the deep ocean floor (here
considered as anything below 200 m), one of the largest
biomes on Earth. To date, deep benthic and demersal
ecosystems have usually been broadly categorized into
shelf, slope, and abyssal habitats (O’Hara et al. 2011,
Douglass et al. 2014, Woolley et al. 2016), with latitudi-
nal gradients overlying species distributions (O’Hara
et al. 2011, Woolley et al. 2013). However, the physical
and ecological processes leading to the separation
between these habitats and communities are not fully
understood, and while species differ between the tropics,
temperate, and polar regions, ecological theory suggest
fundamental processes influencing their distribution
should be similar (Woolley et al. 2016). Although depth,
relief, rugosity, slope, and other features of the seafloor
may not directly influence many species, they serve as a
proxy for the important variables that do influence spe-
cies distributions. In particular, these features of the sea-
floor determine whether the benthos at a particular
location is characterized by hard or soft substrata, and
they influence the local ocean current regime, food avail-
ability, and sedimentation patterns. Therefore, it is
important to take into account seafloor features to
understand how the structure and functioning of benthic
ecosystems differ in space (Hogg et al. 2016, Jansen
et al. 2018b).

Recently, a number of new techniques have been
developed that can make much greater use of sparse
biological data (Dunstan et al. 2011, Melbourne-Tho-
mas et al. 2012, Foster et al. 2013, Ovaskainen et al.
2017). New statistical techniques, such as Species
Archetype Models (SAMs; Dunstan et al. 2011), can
group multiple species with similar responses to
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environmental predictors together. In SAMs, rarer spe-
cies are modeled together with more prevalent species
that show similar distributional patterns, enabling study
of the distributional patterns of a much bigger propor-
tion of the fauna than previously. Mapping these spe-
cies groupings also reveals insights into spatial
differences in community structure, an important factor
for the functioning of an ecosystem. Another important
recent development allows for quantifying outcome
uncertainty from press perturbations of qualitative net-
work topologies (Dambacher et al. 2002, Raymond
et al. 2011, Melbourne-Thomas et al. 2012). Qualitative
network topologies provide useful insights into ecosys-
tems where data are too limited to fully parameterize a
quantitative ecosystem model (Dambacher et al. 2009).
To reveal insight into how different nodes of the net-
work respond to the simulated perturbation, qualitative
network models (QNMs) incorporate feedbacks and
indirect effects in the network topology into predictions
of system responses to press perturbations (Melbourne-
Thomas et al. 2012). This enables a powerful test of the
effects of putative ecosystem drivers on ecosystem func-
tioning for little-known systems.

In our study, we use a space-for-time modeling
approach for assessing the spatial distribution and
structural dynamics of the Antarctic benthic ecosystem
(Fig. 1). First, we use statistical models to identify
groups of species that respond to the environment in
the same way (Species Archetype Models) and use pre-
dictions of these groups to map the distributions of
demersal fish from trawl data on the East Antarctic
continental shelf and upper slope (Causse et al. 2011).
To identify whether there are consistent patterns across
phyla, we compare the distributional patterns to
mapped predictions of benthic macroinvertebrates from
a previous study in the same region (Jansen et al.
2018b), and use these to quantitatively identify four dis-
tinct habitats characterized by depth and slope that are
shared across multiple phyla. We conceptualize the net-
work topology of the broad Antarctic benthic ecosys-
tem, test how changes in depth and slope affect
ecological structure and validate results from a QNM
with observed species abundances from the study
region. Further, we use the validated models to project
community responses to increases in primary produc-
tion, which is a likely future scenario (Laufkotter et al.
2015). The analysis gives insight into the functioning of
a biodiverse ecosystem in a remote environment and
shows how predicted dynamics in community structure
can be validated and located spatially using species dis-
tributions.

METHODS

Study area

The study region is the George V continental shelf
and slope in East Antarctica, spanning latitudes 139° E
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Fic. 1. Overview of our approach combining spatial and qualitative models to learn about species community structure in dif-
ferent habitats and predict effects of a changing environment. (1) Mapped distributions of distinct communities are based on statis-
tical relationships between “species” (or operational taxonomic unit) distributions and environmental variables. In our study, we use
species archetype models to map communities. (2) The qualitative network topology describes interactions between the species com-
munity and its physical and biological drivers. (3) Using press perturbations of important physical drivers, the qualitative network
model simulates the composition of species communities in different habitats. (4) Comparing predictions from the qualitative and
spatial models and the sampled species data allows validating the network topology to ensure all key drivers are captured in the
model, and that model responses to drivers are consistent with observations. Importantly, the combination of the two different
models allows spatial definition of the boundaries of simulated habitats from the qualitative network model, and identification of
species associated with each habitat. (5) Future scenarios, such as increased primary production near the Antarctic continent, can
be simulated by press-perturbing biological drivers. Critically, these simulations give new insight into how the composition of spe-
cies communities can respond to environmental changes.

to 147° E from the Antarctic coastline to the shelf-break relatively long growing season of phytoplankton (Sam-

at around 65.5° S, and ranging between 200 and
2,000 m depth. The continental shelf in this region is
typically between 500 and 700 m but punctuated by
bathymetric features including the Mertz and Adélie
Banks (200-250 m depth) and the George V and Adélie
Basins (depths up to 1,300 m; Fig. 2). The oceanogra-
phy in this area is mainly influenced by the Mertz Gla-
cier Tongue and the adjacent Mertz Polynya (Cougnon
et al. 2013), an area of ice-free water that drives water
circulation (Massom et al. 2001) and supports a

brotto et al. 2003, Beans et al. 2008).

The Antarctic continental shelf contains significant
levels of biodiversity (Clarke et al. 2004, Gutt et al.
2004, Brandt et al. 2007) due to a combination of excep-
tional environmental conditions. While Antarctic water
temperatures are relatively stable year-around, light
availability, water column stratification, salinity, ocean
currents, and primary productivity are highly variable
due to high seasonality of sunlight and the resulting
melting and freezing processes of sea ice and ice-shelves
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Fic. 2. East Antarctic continental shelf in the George V region with trawl-sample locations. Background colors and contour lines
in gray indicate depth (Beaman et al. 2011). All areas shallower than 550 m are closed to bottom fishing, as are the two deep areas
(dotted circles) due to the presence of vulnerable marine ecosystems (Jones 2017). The inset map (bottom left) shows the location of

the study area (red box).

(Convey et al. 2014, Post et al. 2014). The periodic calv-
ing of massive icebergs influences ocean currents, the
activity of polynyas, and icebergs can scour the seafloor
and disturb benthic habitat at depths of up to 500 m
(Gutt 2001).

Suspension feeders are a key component of the diverse
Antarctic benthic ecosystem (Orejas et al. 2000), provid-
ing habitat and food. Fish species such as Trematomus
loennbergi and T. lepidorhinus settle on and hide in the
complex habitat, while other demersal fish, such as Pri-
onodraco evansii, Dolloidraco longedorsalis, Trematomus
scotti, and Chionodraceo myersi, show little to no associ-
ation with benthic invertebrates (Gutt and Ekau 1996).
Although some benthic invertebrates and demersal fish
can be, at least at times, closely associated, there has
been to our knowledge no published study to date inves-
tigating correlations in their spatial distributional pat-
terns in the Antarctic. Demersal fish have been found to
primarily inhabit the deeper inner-shelf depressions and
their upper sides, and descriptive analyses of the region
have found differences in the community structure
between the continental slopes, the basins, and on the
shelf (Koubbi et al. 2010, Causse et al. 2011). Diverse
and abundant benthic macrofaunal communities are
found along the shelf-break and on the shallower section
of the shelf between 200 and 600 m (Post et al. 2011).
Modeling work indicates widespread suspension feeder

cover on the banks (Jansen et al. 2018a), and distinct
communities of benthic macroinvertebrates particularly
along the steep edges of the banks and the coastal and
continental slopes (Jansen et al. 2018b). A more detailed
descriptive analyses of the fish community inhabiting
the George V shelf can be found in Causse et al. (2011),
and a detailed description of the benthic invertebrate
communities in Post et al. (2011).

Biological data

We used previously published data for abundances of
demersal fish (Causse et al. 2011) and benthic macroin-
vertebrates (Robineau et al. 2018) from the George V
shelf. All biological data were collected during the Col-
laborative East Antarctic Marine Census (CEAMARC)
for the Census of Antarctic Marine Life from December
2007 to February 2008 (Hosie et al. 2011).

Demersal fish sampling and identification.— Beam trawls
(3 m wide, 1.39 m high, mesh size in the cod end
10 x 10 mm) were used to collect demersal fish at 66
sites. Sample sites were placed along different environ-
mental gradients spanning banks, shelf depressions,
coastal and continental slopes (Fig. 2), and spanning
the entire shelf from 139° E to 145° E. Trawl distance at
the bottom ranged mostly between 500 and 1,000 m
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(range between 85 and 1,698 m) at depths of 150-
2,065 m. There was no spatial-, depth-, or slope-related
bias in the duration/distance of the trawls, and we
accounted for the distance trawled in the analysis of the
fish abundance. Mounted video cameras were used to
study avoidance of the trawl by fish.

Fish species were identified following Gon and Heem-
stra (1990), based on fresh or preserved specimens and,
where possible, DNA barcoding. A total of 53 species
belonging to eight families were identified (Appendix S1:
Table S1), with Nototheniidae the most abundant family
(44.7% of individuals), followed by Bathydraconidae
(19.8%; Causse et al. 2011). A detailed description of
sampling and identification and a thorough descriptive
analysis of the demersal fish diversity in the region can
be found in Causse et al. (2011).

Benthic invertebrate sampling and identification.— Ben-
thic invertebrate abundances in percent coverage were
estimated from underwater still images, collected using a
forward-facing 8 megapixel Canon EOS 20D SLR
(Canon, Tokyo, Japan) with two speedlight strobes
mounted on the beam trawls used to collect demersal
fish. Hereafter, “trawls” refers to the fish trawls and
“transects” refers to all still image transects. Still-cam-
eras taking pictures every 10 s were deployed at 32 sites,
and transect length was mostly between 4 and 6 km
long, with the exceptions ranging between 3 and 16 km.
Tow speed was 2.5 knots (1 knot = 0.51 m/s), and the
average field of view of the seabed was 3.5 m, ranging
between 0.6 and 7 m at times. A total of 2,724 out of
3,442 images were usable for analysis. The bottom one-
third of each image was scored. For each image, the
abundance of each species/morphotype was estimated
within 5% bins from 0% to 50%, and within 10% bins
from 50% to 100%.

Benthic invertebrates were identified to the highest
taxonomic resolution possible. Where species identifica-
tion was not possible, specimens with similar overall
appearance were grouped into morphotypes (opera-
tional taxonomic units). A total of 172 benthic inverte-
brate morphotypes were identified and grouped into
three feeding mode classes for analyses. A detailed list of
identified benthic invertebrate morphotypes containing
information about their taxonomic class, their feeding
type, and their association with the different species
archetypes has been published in the supplementary
material in Jansen et al. (2018b).

Feeding modes of fish and invertebrates.— Feeding mode
is a functional trait that can play an important role in
determining species distributions (Gaston 1987, Lom-
barte et al. 2003, Jansen et al. 2018¢). In our study, we
build a qualitative network topology based on the pri-
mary feeding modes of demersal fish and benthic
macroinvertebrates and validate the qualitative network
analysis using quantitative information about species
distributions (see Qualitative network model).
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For each species of fish, we identified their primary
feeding mode (either zooplankton, zoobenthos, or nek-
ton) using FishBase and published literature (Lombarte
et al. 2003, Duhamel et al. 2010; Appendix S1: Table S1;
database available online).” We were unable to assign pri-
mary feeding modes to only seven species and thus did
not use those species to validate the QNM.

Benthic invertebrates from the region have previously
been classified into suspension feeders, deposit feeders
and predators by Jansen et al. (2018¢), using their taxon-
omy and morphology along with expert knowledge. We
used the previously published data set containing the full
list of species, their feeding types and abundances (Robi-
neau et al. 2018).

Environmental data

For mapping the spatial distribution of demersal fish,
we used the same environmental covariates considered
for mapping the distribution of benthic invertebrates as
in Jansen et al. (2018b). Specifically, we considered
depth, slope of the seafloor, and topographic position
index derived from Beaman et al. (2011), ocean current
speed, tidal current speed, and temperature at the sea-
floor derived from a regional oceanographic model
(Cougnon et al. 2013), and three estimates of the avail-
ability of food at the seafloor from Jansen et al. (2018¢;
viz. food particles arriving near the seafloor after sinking
from the surface, horizontal flux of food along the sea-
floor, and food particles settling onto the seafloor). We
excluded environmental covariates that were highly cor-
related with variables already selected, such as surface
productivity (highly correlated with the number of sink-
ing particles arriving near the seafloor; Pearson’s
r = 0.971), and roughness of the seafloor (highly corre-
lated with slope; Pearson’s r = 0.992).

Similarly to Jansen et al. (2018b), we corrected excep-
tionally high values from the map of settling particles to
a value of 1,000 (35 out of 2,515 grid-cells contained val-
ues between 1,035 and 5,122), as these high values are
likely an artefact of the modeling process rather than a
real pattern to be observed.

Modeling approaches

We used a multi-model approach for analyzing the
benthic ecosystem on the George V shelf (Fig. 1). We
first mapped the spatial distribution of demersal fish in
the region using SAMs and set up a network topology
using previously published detailed descriptions of the
Antarctic ecosystem (see Qualitative network model for
details). We then ran a QNM using press perturbations
to simulate different habitats and compare responses of
the species communities to the predicted species commu-
nity patterns from the SAMs. Finally, we used the QNM

7 www.fishbase.se
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to test how anticipated future increases in primary pro-
duction will likely affect the species communities.

Species archetype models.— For statistical analysis of the
fish data, we used SAMs (Dunstan et al. 2011, 2013),
which are based on finite mixtures of generalized linear
models (GLMs) where mixing occurs across species. The
probability of membership of species to each species
archetype group is estimated during model fitting and
the response of each archetype group to the covariates is
described by a GLM. In this way, multiple species can be
modeled by a single GLM that describes the group
response to the environment. The SAM models do not
consider spatial autocorrelation as this would require a
separate model for each species. We initially developed
SAMs for both count data (number of individuals per
species) and presence—absence data, but a preliminary
analysis using the count data did not show reliable
results due to the high number of rare species, and the
generally low count of fish, which results in data set
characteristics more similar to presence—absence data.
Therefore, we converted our data set to presence—
absence data for analysis and used a Bernoulli distribu-
tion in the SAM analyses.

For the SAM analysis, we considered all the environ-
mental covariates outlined in Environmental data and
additionally included the logarithm for slope and a
quadratic term for depth to account for exponential and
hump-shaped responses in the data. We did not consider
interactions terms and all environmental variables were
included in the final model as each one was relevant to
at least one species archetype (see also Fig. 3). As sug-
gested in Dunstan et al. (2011), we used Bayesian
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information criteria (BIC) for selecting the optimal num-
ber of species archetypes. We ran 50 iterations of the
same model with random starts and extracted the BIC
in each of these models to ensure that inference was
based on the global maximum of the likelihood surface.
We then used the model with the optimal number of spe-
cies archetypes, and the suite of maps of environmental
covariates to predict the probability of occurrence of
each species archetype across the study area. We
restricted the prediction area to the continental shelf
down to ~2,200 m, the maximum depth that the beam
trawl was deployed, and do not predict below the Mertz
Glacier Tongue where we have no samples and where
environmental conditions might differ to the study
region.

Deriving a constant offset for a logit link function and
a Bernoulli response is not possible, and therefore trawl
distance was not included as an offset in the SAMs.
While univariate models may underpredict rare species,
SAMs are typically better at predicting rare species (Hui
et al. 2013), giving confidence in the model outputs.

For the statistical analysis, we used R version 3.3.1
(R Core Team 2016) and SAMs were developed using
the R package SpeciesMix (Dunstan et al. 2011).

Qualitative  network — model—1. Model  setup.— For
describing and analyzing biological and environmental
interactions in the Antarctic benthic ecosystem
described by each SAM group, we used a QNM based
on a qualitative network topology with signed digraphs
(Fig. 4). Species archetype membership was composed
of all species with a probability of 0.8 or greater for that
group. We used previous detailed descriptions of this
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Fic. 3. Probability of occurrence for five species archetypes (SA) of demersal fish in relation to each of the environmental vari-
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environmental predictor variables are important in determining high or low probability of occurrence for each species archetypes.

The abbreviation tpi stands for topographic position index.
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FiG. 4. Qualitative network topology describing interactions and responses in the Antarctic benthic ecosystem. The color code
distinguishes between different categories of physical drivers (gray, white), ecological drivers (green), and key functional groups
(blue). “Pelagic food sources” included surface primary production, secondary production through zooplankton, and the export of
this production toward the seafloor. An arrow head shows positive influence; a circle head shows negative influence; dotted lines
indicate weak or uncertain interactions. The model also includes self-limitation for each component of the network (not shown on
diagram). Drivers that we press-perturbed in the qualitative network analysis are marked ().

region and of the Antarctic benthic marine ecosystem
(Beaman and Harris 2005, Gutt 2007, Koubbi et al.
2010, Post et al. 2010, 2011, 2017, Causse et al. 2011,
Gutt et al. 2011, Gillies et al. 2013, Jansen et al. 2018¢)
to choose which components to represent in the network
model and the nature of their relationships, including
whether the relationship is uncertain or weak (repre-
sented by dotted lines in Fig. 4). A detailed description
of each interaction in the network can be found in
Appendix S1: Table S2. For our analysis, we focused on
physical and biological interactions that are affected by
changes in either depth, slope, or food availability, which
the SAM models indicated were the structuring physical
forcing that determined species composition. Based on
the models for both demersal fish and benthic species we

expect that the species present in each combination of
these physical forcing will differ. In our network topol-
ogy, we use the simplified term “pelagic food sources” to
represent the complex pelagic ecosystem dynamics
between primary production, zooplankton communities,
and the export of particulate organic carbon. While the
strength of individual nodes in the pelagic ecosystem dif-
fers, general increases in surface primary production
positively influence both the zooplankton abundance
and the export of particulate organic carbon. This sim-
plified representation reduces model complexity while
still allowing us to assess how overall changes in primary
production affect the benthic ecosystem. We have chosen
not to include icebergs in our network topology, which
can play an important role in the ecosystem (Gutt et al.
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2007) but are difficult to predict because of their
stochastic occurrence. We also did not include non-tidal
ocean currents because in contrast to tidal currents, they
are affected by depth and slope in a less consistent man-
ner. In our analysis, we use only the network topology
presented in Fig. 4 and have not compared results across
alternative model structures.

The nodes and interactions of the network model were
then analysed using QPress (Melbourne-Thomas et al.
2012). QPress uses a simulation approach for evaluating
the uncertainty of the effects of press perturbations in a
network. We ran 10,000 simulations of the network,
where in each simulation a random value between 0 and
1 (0 and 0.5 for uncertain or weak interactions) is drawn
from a uniform distribution and allocated to each inter-
action (positive or negative) in the network. Thus, we
used 10,000 quantitative networks that were qualita-
tively identical to the signs of the original qualitative
network.

For simulating the four main benthic habitats deter-
mined from the SAMs (i.e., deep-flat, deep-steep, shal-
low-flat, shallow-steep), we simultaneously changed
slope and depth by individually assigning either a posi-
tive or a negative sign (Appendix S1: Table S3). Further,
to simulate anticipated future conditions of increased
primary production (Jones et al. 2014), we increased
pelagic food sources in each of those four habitat simula-
tions, resulting in a total of eight scenarios. We use the
number of positive outcomes for each trophic group in
the eight scenarios when comparing QNM predictions.

2. Model evaluation.—Combining SAM models, abun-
dance data and QNM models allows us to have informa-
tion on the species composition at any location and to
describe in broad terms how we expect the ecosystem in
that location to function. In our study, the environmen-
tal responses and spatial distribution of the SAMs
(Figs. 3, 5) indicate four different ecosystem types and
allow us to identify the location where they will occur.
To determine if the trophic groups modeled in the QNM
are responding in the way that the QNM predicts, we
evaluate the QNM results for different combinations of
depth and slope using the abundances of demersal fish
from the benthic trawls (Causse et al. 2011), and the esti-
mated cover of benthic invertebrates from seafloor
images (Robineau et al. 2018).

The SAMs for both fish and invertebrates result in a
total of 11 species archetypes from the two studies. As
suggested from the species archetype responses to the
environment (Fig. 3) and the visual comparison of the
spatial maps (Fig. 5), we classified the region into four
main habitats using k-means clustering of the species
archetype distributions (target of four clusters using
1,000 random starts; Appendix S1: Fig. S5). Within each
habitat, we then calculated mean proportional abun-
dances of all faunal categories as observed in the sam-
ples (Appendix S1: Table S4). We chose to use
proportional abundances between broad feeding types
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rather than absolute abundances to allow comparison to
the QNM results, which also show proportional changes
in abundance.

For illustrating the spatial match between species
archetype distributions based on presence/absences and
the observed species abundances from the sample sites,
we aggregated the abundances of all fish/invertebrates
that occur in both the same species archetype and have
the same feeding mode for each site (Appendix S1:
Figs. S1, S2).

We adjusted fish counts for sampling effort by divid-
ing through the distance trawled at each site. Estimates
of the percentage cover of invertebrates did not need
adjusting because they are mean values across transects.

REsuLTs

Species archetype models of demersal fish

Based on SAMs, we find five distinct species arche-
types of demersal fish on the George V shelf, each con-
taining between 5 and 16 species from a total of eight
families (Fig. 5; a hard-classed prediction of the fish spe-
cies archetypes summarizing their spatial distribution is
given in Appendix S1: Fig. S4). Demersal fish can be
found along three main habitat types, namely shallow
banks (~200-300 m), shelf depressions, and the conti-
nental slope (Fig. 5). The confidence in the predictions
is high (Fig. 5; Appendix S1: Fig. S3).

Species archetype A (SA-A) is made up of species
belonging to the taxonomic families of Artedidra-
conidae, Bathydraconidae, and Zoarcidae, and is pre-
dicted for deep (~400-1,200 m), flat habitat that has a
lot of food arriving near the seafloor alongside a low
topographic position index (i.e., which is typical for the
inner-shelf depressions). Unexpectedly, the analysis sug-
gests this species archetype is more likely to occur at
low levels of sedimentation (Fig. 3), which is atypical
for the basins. The number of particles arriving near
the seafloor and the number of particles settling on the
seafloor are positively correlated in this area, which
potentially downplays the importance of settling parti-
cles in the model. Similar to SA-A, SA-B also occurs in
the inner shelf depressions but contains a wider range
of taxonomic families with less common and less abun-
dant species and the model doesn’t predict the occur-
rence of this archetype very well (Fig. 5; Appendix SlI:
Fig. S3).

Species archetype C is dominant along the shelf break
and continental slope, preferring deep and steep habitat.
It is comprised of equal amounts of zoobenthos- and
zooplankton-feeding species, is dominated by species
from Channichthyidae, Liparidae, and Zoarcidae, and
contains the only Macrouridae and Muraenolepididae
found in the samples. Although this species archetype is
predicted mainly along the deep and steep shelf-break,
zooplankton-feeding species also sometimes occur on
the shelf (Appendix S1: Fig. S1).
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Fic. 5. Comparison of species archetype model results for demersal fish species (A—E, this study) and for benthic invertebrates
(F-K, from Jansen et al. 20185). The area under the Mertz Glacier Tongue is excluded from the predictions. Drawings in the col-
umn between fish and invertebrates indicate the main habitat corresponding to each pair of species archetypes. From top to bottom,
these are: Deep-flat (A, B, F), deep-steep (C, G), shallow-flat (D, H, I), widely distributed (E, J), shallow-steep (K). Species arche-
type models are based on observations from 68 sites (fish) and 41 sites (invertebrates).
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Species archetype D (SA-D) contains a mix of feeding
types from a wide range of species and is predicted
mainly on the shallower banks, where it occurs in low
numbers. Certainty in the prediction is high, but the
environmental preferences of SA-D are complex.
Although the mapped predictions show higher probabili-
ties on the shallower banks, the probability of occur-
rence for this archetype is higher for deeper and steeper
habitat with a low topographic position index (Fig. 3).

Species archetype E contains common, abundant, and
widely distributed species, mainly from the families
Channichthyidae and Nototheniidae. The model shows
a positive correlation between predicted and observed
values, yet the relationship is relatively weak
(R*=0.364), and the model underestimated values
where observed abundances are high (Appendix SI:
Fig. S3).

The predicted spatial distribution of demersal fish
shows similarities to the distribution of benthic macroin-
vertebrates in this region (Jansen et al. 2018b; high-
lighted in Fig. SF-K and in Appendix S1: Table S5),
although in contrast to the benthic macroinvertebrate
archetypes, the demersal fish archetypes generally do
not change strongly along environmental gradients
(Fig. 3). The k-means clustering of the species archetype
distributions into four main habitats broadly classifies
the region along gradients of depth and slope
(Appendix S1: Fig. S5), although the very small number
of samples (two and four samples for invertebrates and
fish, respectively) within the shallowest and steepest cat-
egory prevents comparing this habitat to all other habi-
tats. Within the remaining three habitats, suspension
feeders and zoobenthos feeding fish dominate the inver-
tebrate and fish communities, particularly in the shal-
low-flat habitat (70.4% for suspension feeders and 69.3%
for zoobenthos-feeding fish; Appendix S1: Fig. S6,
Table S4). Deposit-feeding invertebrates occur propor-
tionally more often in deep habitats while numbers of
predatory invertebrates are between 13.5% and 16.4%
across all evaluated habitats. Relative proportions of
zooplankton-feeding fish and nekton-feeding fish are
close to two times higher in the deep than in the shallows
(39.1% and 38.5% in the deep vs. 23.3% in the shallow-
flat for zooplankton-feeding fish; 7.8% and 9.4% in the
deep vs. 4% in the shallow-flat for nekton-feeding fish).

Qualitative network model

The results from simulating different benthic habitats
using press perturbations on depth and slope as key
“drivers” show varying amounts of agreement with the
validation data dependent on the functional group
(Fig. 6). Proportional changes in abundances of sus-
pension-feeding invertebrates and zoobenthos-feeding
fish, the functional groups with the largest propor-
tional abundances within the benthic invertebrates and
demersal fish, are predicted correctly from the QNM
across all three habitats that were compared. In
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- | = - | = Zoobenthos-feeding fish
= |+ - |+ Nekton-feeding fish
+ | + Suspension feeders
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- |+ Predators
+ | - Zooplankton-feeding fish
- | = Zoobenthos-feeding fish
- | - Nekton-feeding fish
Deep-steep

FiG. 6. Cross-comparison of changes in macroinvertebrate
and fish functional groups between Antarctic benthic habitats.
Predicted change (P) for each functional group is the trend
change in total positive outcomes after 10,000 press perturba-
tions of the qualitative network model. Observed change (O) is
the change in functional group abundance approximated
through the species archetype models (see Methods for details
on the calculation). Table is read from top-left to bottom-right,
e.g., moving from a shallow-flat to a deep-flat habitat, the
qualitative network model predicts a decrease in suspension
feeders (—), which is confirmed by the observed values (—).
Red symbols are instances in which observed values do not
confirm the predicted changes (see Appendix S1: Fig. S5 for
absolute values).

contrast, five out of six predictions for changes in
abundances of predatory functional groups are not
supported by the validation data. The other discrepan-
cies in our results are that deposit feeders are predicted
to decrease from shallow-flat to deep-steep habitats,
while the validation data shows the opposite, and that
zooplankton-feeding fish are predicted to increase
from deep-flat to deep-steep habitat while the observed
data show a decrease.

The comparison of habitats shows that, when mov-
ing from a shallow to a deeper habitat, relative abun-
dances of zooplankton-feeding fish increase (by +8%
and +12%, Fig. 7), while zoobenthos feeding fish
(—18% and —47%) and suspension feeders decrease
(—48% and —9%, Fig. 7). When moving from a deep-
flat to a deep-steep habitat, abundances of suspension
feeders increase (+39%), while deposit feeders, zooben-
thos-feeding fish, and nekton-feeding fish decrease
(—=51%, —29%, —9%).
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Increasing primary production and thus zooplankton
abundance and particulate organic carbon export, an
expected future scenario on the Antarctic continental
shelf, results in increased abundances of most seafloor
fauna across the simulated habitats (Fig. 7). Hard sub-
strata decrease in all habitats due to the increased sedi-
mentation, and only shallow-steep suspension feeders
decrease slightly. The model indicates surface-derived
food near the seafloor already at saturating levels in
shallow habitat prior to increasing primary production,
and therefore increases in surface-derived food only
increase the sedimentation load with negative influence
on abundances of suspension feeders.

Discussion

Characterizing the spatial and structural dynamics of
ecological communities and validating these patterns
with data from the field is key for an ecosystem-based
approach to management. Validation of our QNM using
SAMs combines two very different approaches, and
draws on the strengths of both. The QNMs allow both
describing the ecosystem and network topology qualita-
tively and simulating system-level effects of future
change, and the SAMs allow describing distinct species
groupings and locating where they occur. This is particu-
larly relevant for areas with limited data, such as the
Antarctic or parts of Africa and Asia, where ecosystem
characterization will be crucial for developing an ecosys-
tem-based management of marine resources (FAO
2016).

The simple QNM we present here explains the major-
ity of relative changes in abundances of the largest func-
tional groups in transitioning between three of the four
main seafloor habitats. The QNM seems to not be able
to predict changes in predatory functional groups in
transitioning between habitats, presumably because, in
reality, predatory fish and invertebrates are responding
to more complex biological interactions than those
described in the simple network structure used in this
study. While our study focusses on East Antarctica, the
general characterization into bathymetric classes should
hold true not only around the Antarctic continent, but
also on other continental shelves and slopes around the
world (Danovaro et al. 2010, O’Hara et al. 2011, Wool-
ley et al. 2016). The main difference from the Antarctic
to lower latitudes will be related to temperature and sea-
sonality, both of which influence the magnitude of inter-
actions among functional groups in pelagic and benthic
systems. For example, particles from phytoplankton
blooms at higher latitudes are usually exported to the
deeper ocean in higher proportions than at lower
latitudes where particles decompose faster during sink-
ing due to higher temperatures and different pelagic
food-web dynamics (Lutz et al. 2007, Siegel et al. 2014).
However, these differences should not fundamentally
change the structure of the system, i.e., deep-flat habitats
should still receive more sedimentation than shallow-
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steep habitats, with concomitant effects on the distribu-
tion of fauna. Thus, similar network topologies to those
used here can possibly be applied to other regions with
limited data.

Although often described as pristine, Antarctic waters
have already experienced measurable change (Walther
et al. 2002, Constable et al. 2014, Gutt et al. 2015), and
will undergo further change in the future due to climate
change (Jones et al. 2014, Griffiths et al. 2017). The pre-
dicted decrease in sea-ice cover and an increase in melt-
ing will likely lead to higher primary production in
certain areas, fueling growth of fauna on the seabed
(Barnes 2017) and increasing sedimentation. Our results
suggest that increases in pelagic food sources are unli-
kely to lead to major structural changes in benthic com-
munities, as almost all elements in the QNM increased
in similar proportions. However, other factors that will
change in the future, such as temperature and ocean
acidification, are not captured in our network model,
but are likely to affect the distributions of species and
functional groups differentially (Constable et al. 2014,
Griffiths et al. 2017, Marzloff et al. 2018). For example,
increases in temperature to above 0°C could lead to
shifts from species communities tolerant to freezing tem-
peratures to more generalist types of species communi-
ties (Griffiths et al. 2017). Because SAMs aggregate the
distributions of single species, they can be used to vali-
date additional functional aspects of community struc-
ture that form part of a network model, depending on
how much is known about the individual species. Incor-
porating these factors in a more comprehensive QNM
can help to better understand whether and how different
parts of the ecosystem are likely to change in the future.
Further, a network model that incorporates different
habitats, or includes estimates for how the ecosystem
changes in the transition between habitats, can be used
to test how changes in climate or other human pressures
such as fishing affect those habitats, facilitating better
management of ecosystem pressures.

Our combined assessment shows bathymetry and
slope characterize the Antarctic benthic ecosystem into
four main habitats, namely the various permutations of
shallow/deep and flat/steep. In general, the large bathy-
metric features corresponding to these habitats are the
shallow banks, the steep slopes along the banks and near
the coast, the deep inner-shelf depression and the deep
and steep continental shelf-break with the upper slope
(Fig. 2). On top of this main bathymetric characteriza-
tion, pelagic food sources and other factors such as
ocean currents or disturbance through icebergs (not con-
sidered here) affect the system. Indeed, in our case, the
location of the highly productive Mertz polynya over the
deep-flat section of the shelf can explain some of the dif-
ferences between predictions and observations, such as
why we observe more zooplankton-feeders than pre-
dicted on the deep-flat than on the deep-steep section of
the shelf. In contrast, the abundance of suspension feed-
ers in the shallow-flat habitat might be generally under-
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Fic. 7. Evaluation of Antarctic benthic and demersal community responses to press perturbations of the qualitative network
model (10,000 simulations). To simulate the four main habitats, we used four combinations of negative/positive effects on depth and
slope (Appendix S1: Table S3). Red indicates how often the component increases and blue how often it decreases as a response to the
perturbation. Gray indicates how often responses are neutral because of weak or nonexisting links through the network. Variables that
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Fig. 7. (Continued)
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are press-perturbed in the analysis are marked with P. The left column (labeled “Responses to press perturbations on key habitat vari-
ables”) shows how different components of the ecosystem respond to a change in the habitat (e.g., moving into a shallower and flatter
habitat, the amount of surface-derived food near the seafloor increases). The right column shows the difference between the basic
model with change in only depth and slope, and when pelagic food sources increase in addition to a change in depth and slope.

predicted because the bathymetry data does not capture
small-scale steep features on the largely flat banks. Our
results are consistent with previous evidence that bathy-
metry and its derivatives influence the spatial distribu-
tion of species and communities in the Antarctic benthic
and demersal ecosystem (Barry et al. 2003, Beaman and
Harris 2005, Post et al. 2010, 2017, Douglass et al. 2014,
Jansen et al. 2018¢). However, we show how bathymetry
changes the dynamics of physical and biological pro-
cesses that influence species communities, providing a
better understanding of how different habitats might
respond to future changes.

In conclusion, we have shown how our integrated
approach can be used to analyze the spatial distribution
and the structural dynamics of benthic communities in
a diverse but data-limited region. Our integrated
approach suggests that no major changes will occur in
benthic community structure as result of increased pri-
mary production in the future, an insight we could not
have gained from using just a single model. The four
main habitats identified, described and simulated are
commonly found in marine ecosystems globally, and
the SAMs can be used to assess confidence in the topol-
ogy of the qualitative network while also allowing
insight into where specific habitats and functional
groups can be found across the study area. We suggest
that incorporating directly into QNMs how depth and
slope influence ecosystem relevant mechanisms will
allow to better investigate how species community
dynamics change in space and through time, with par-
ticular relevance for data-limited regions such as the
Antarctic.
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