
Pacific Anthropogenic Carbon Between 1991 and 2017
B. R. Carter1,2 , R. A. Feely2, R. Wanninkhof3 , S. Kouketsu4 , R. E. Sonnerup1, P. C. Pardo5,
C. L. Sabine6 , G. C. Johnson2 , B.M. Sloyan7 , A.Murata4 , S.Mecking8 , B. Tilbrook9 ,
K. Speer10, L. D. Talley11 , F. J. Millero12 , S. E. Wijffels7,13 , A. M. Macdonald13 ,
N. Gruber14 , and J. L. Bullister2,15

1Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA, 2Pacific Marine
Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, USA, 3Atlantic
Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA,
4Japan Agency for Marine‐Earth Science and Technology (JAMSTEC), Yokosuka, Japan, 5Antarctic Climate and
Ecosystem Cooperative Research Center, University of Tasmania, Hobart, Tasmania, Australia, 6SOEST, University of
Hawai‘i at Mānoa, Honolulu, HI, USA, 7CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia, 8Applied Physics
Laboratory, University of Washington, Seattle, WA, USA, 9Commonwealth Scientific and Industrial Research
Organisation (CSIRO) Marine Research and Antarctic Climate and Ecosystem Cooperative Research Center, Hobart,
Tasmania, Australia, 10Department of Oceanography, The Florida State University, Tallahassee, FL, USA, 11Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 12Rosenstiel School of Marine and
Atmospheric Science, University of Miami, Coral Gables, FL, USA, 13Woods Hole Oceanographic Institution, Woods
Hole, MA, USA, 14Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich,
Switzerland, 15Deceased

Abstract We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between
1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few
decades, with most sections having been recently measured as part of the Global Ocean Ship‐based
Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that
combines the extended multiple linear regression method with improvements to address the challenges
of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over
the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to
11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal
increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South
Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the
accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of
the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by
enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of
Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of
hydrographic data and that a continuation of repeated surveys is a critical component of future carbon
cycle monitoring.

1. Introduction

CO2 acts as a greenhouse gas that traps infrared radiation as observed at the top of the atmosphere (Loeb et al.,
2012) and increases in the atmospheric concentration of carbon dioxide (CO2) result inwarming of the ocean,
ground, and atmosphere and in phase changes of ice to liquid water and liquid water to water vapor. Humans
are presently emitting approximately ~10 Pg of carbon (or PgC with Pg=1015g) as CO2 gas into the atmo-
sphere every year. About half of the CO2 released by humans has remained in the atmosphere (Ciais et al.,
2019), while a smaller fraction—historically averaging 28% to 34% of human emissions—has been absorbed
by the ocean (e.g., Gruber, Clement, et al., 2019; Le Quéré et al., 2016) where it reacts with water to form a
weak acid that is mostly neutralized by carbonate ions. As a result, the surface ocean is becoming depleted
in carbonate ions. The bicarbonate‐carbonate ion pair forms the dominant acid‐base buffer in seawater,
and ocean CO2 storage is leading to a decreased capacity of the ocean to store additional “anthropogenic”
CO2 (or Canth; Sarmiento & Le Quéré, 1996). Ocean acidification from CO2 uptake is lowering seawater pH
andmaking the oceanmore corrosive for shells and hard parts of marine organisms that are composed of cal-
cium carbonate (CaCO3) minerals (Doney et al., 2009; Gattuso et al., 2015; Orr et al., 2005).
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Monitoring changes in the rate of Canth storage in the oceans is critical for
several reasons. First, in many efforts to establish global carbon budgets,
changes in the net land carbon reservoir are estimated from residuals
between anthropogenic emissions and changes in the CO2 concentrations
in the atmosphere and the oceans. Refining ocean Canth storage estimates
therefore improves our constraint for the global terrestrial carbon sink (Le
Quéré et al., 2015). Second, understanding the modern Canth distribution
is important for quantifying how different modern ocean chemistry is
from its preindustrial and paleo‐oceanographic states (Zeebe, 2012).
Third, accurate and time‐varying Canth distribution records are critical
for assessing and validating carbon cycle models that simulate future
atmospheric CO2 under potential future emission scenarios (e.g.,
Caldeira & Wickett, 2005; Orr et al., 2001; Wang et al., 2012). Overall, it
is important to know the size and spatial patterns of the ocean carbon sink
and how they evolve over time.

The Pacific Ocean is a substantial sink for Canth due to its large size. Per unit area, the Pacific Ocean is less
efficient at storing Canth than the Atlantic Ocean because the deep Pacific Ocean contains a substantial
amount of water that has not been exposed to the atmosphere for thousands of years, whereas the deep
Atlantic is exposed to the atmosphere through North Atlantic Deep Water formation on timescales closer
to hundreds of years (England, 1995). Except for the portions of the abyssal Pacific ventilated by waters sink-
ing along the Antarctic continental margin (e.g., Johnson, 2008; Orsi et al., 1999), the waters in the deep
Pacific (below 2,000‐m depth) have not been in contact with the atmosphere since long before human
CO2 emissions became substantial. Despite the slow ventilation of the deep Pacific, the Pacific Ocean stores
as much or more Canth than any other ocean basin (i.e., about 37% to 42% of the total ocean storage; Gruber,
Clement, et al., 2019; Sabine et al., 2002, 2004; Waugh et al., 2006) with most of the stored Canth found in the
shallowest ~1,500 m of the Pacific basin, the lowest reaches of which are ventilated by Antarctic
Intermediate Water, Subantarctic Mode Water, and other thermocline water masses such as North Pacific
Intermediate Water.

Repeat hydrographic surveys allow Canth accumulation rates to be quantified from changes in observed dis-
solved inorganic carbon (DIC) distributions and the assumption that other processes governing DIC varia-
bility have consistent or predictable impacts on seawater properties. This approach has been used to
update 1990s era estimates of Pacific Canth (Sabine et al., 2004) for a range of decades (Carter, Feely,
Mecking, et al., 2017; Chu et al., 2016; Kouketsu et al., 2013; Kouketsu & Murata, 2014; McNeil et al.,
2001; Murata et al., 2007; Peng et al., 2003; Sabine et al., 2008; Wakita et al., 2010; Waters et al., 2011;
Williams et al., 2015). One of the most widely applied approaches for estimating decadal Canth changes from
repeated hydrographic measurements is the Multiple Linear Regression (MLR) approach (Wallace, 1995).
The method uses empirical linear relations between observed seawater properties (e.g., temperature T or
potential temperature θ, salinity S, oxygen concentration O2 or apparent oxygen utilization AOU, total titra-
tion seawater alkalinity AT, nitrate N, silicic acid Si, and phosphate P) and DIC concentrations in the same
samples to capture the influences of natural variability (e.g., interior ocean mixing, isopycnal heave, move-
ments of fronts and eddies, and cycling of organic matter and carbonate minerals) on DIC distributions. The
regressions from one set of observations are then applied to property distributions from another year to yield
an estimate of the DIC distributions that would be expected had the various modes of change acted identi-
cally in both years. In the simplest implementation of the MLR approach, the differences between the
observed and reconstructed DIC distributions are then attributed to Canth accumulation (e.g., Sabine
et al., 1999). The method therefore relies on the assumption that Canth accumulation is uncorrelated with
the impacts of long‐term trends in the other seawater properties (Plancherel et al., 2013; Wallace, 1995).

Here, we summarize and combine several modifications that have been proposed for the MLR approach,
assess the combined methods (supporting information S1) and apply the updated method to 14 sections in
the Pacific Ocean and in the Pacific sector of the Southern Ocean (Figure 1). Finally, we develop an approach
by which Canth accumulation can be estimated in regions not located directly along these specific sections.
We produce results consistent with Gruber, Clement, et al. (2019)'s recent finding that the Pacific took up 39

Figure 1. Map of the repeat hydrographic sections considered in this analy-
sis color coded by the number of occupations with sufficient measurement
density for analysis. Cruise information is provided in supporting informa-
tion “CruiseInformation.xlsx.” WCOA = West Coast Ocean Acidification.
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(±4)% of a global 34 (±4)‐PgC accumulation from 1994 to 2007 and also extend the Pacific accumulation esti-
mates through 2015. The newest section repeats build on the initial global survey conducted under the
World Ocean Circulation Experiment and the Joint Global Ocean Flux Study in the late 1980s and early
1990s (Wallace, 2001) and are measured as part of the global repeat hydrography effort now sustained by
the Global Ocean Hydrographic Investigations Program (GO‐SHIP; Talley et al., 2016).

Now having three nearly complete decades worth of measurements along Pacific repeat hydrographic lines
affords a comparison of our results to those of recent studies exploring interannual variability in carbon
cycling. Li and Ilyina (2018) indicated that the ocean DIC accumulation rate should accelerate over time
while also experiencing significant decadal variability. This is consistent with recent findings (e.g.,
DeVries et al., 2017; Gruber, Clement, et al., 2019; Gruber, Landschützer, et al., 2019; Landschützer et al.,
2016). Specifically, Landschützer et al. (2016) show that a significant slowdown occurred in the ocean uptake
of CO2 relative to expectations from atmospheric CO2 accumulation between ~1994 and ~2008 and that this
change predominantly originated in the Southern Ocean (defined broadly as the ocean south of 35°S).
DeVries et al. (2017) accounted for the recent ocean CO2 rebound by arguing that a slowdown in overturning
circulation elevated retention of natural CO2 in the Southern Hemisphere between 2000 and 2010 by more
than it slowed Canth uptake. However, they note their methods do not resolve circulation‐induced changes in
nutrient supplies to the surface ocean that could—by modulating the soft tissue pump—dampen natural air‐
sea flux CO2 variability. Our analysis adds to this discussion by directly comparing the 1995 to 2005 period to
the period from 2005 to 2015, which means that our estimates for the earlier period correspond closely to the
anomalously low total CO2 flux periods identified by Landschützer et al. (2016), as well as to the Canth accu-
mulation estimates of Gruber, Clement, et al. (2019). Our study is the first analysis that examines Pacific dec-
adal Canth variability based on direct comparisons of ocean interior carbon measurements over three decades
alongmore than two sections.We argue that Canth accumulation variability can explainmuch of the total (i.e.,
natural and anthropogenic) CO2 air‐sea exchange variability, and suggest that there was a meaningful
circulation‐induced increase in Pacific Ocean Canth accumulation starting late in the 2000 to 2010 decade that
was not yet reflected in the data product (Olsen et al., 2016) that DeVries et al. (2017)'s model assimilated.

2. Methods
2.1. Evolution of the MLR Approach

Many modifications to the MLR approach have been proposed to address various shortcomings of the
method: Friis et al. (2005) showed that misfits between the empirical regressions of DIC and the measured
DIC distributions could lead to large regional biases when interpreted directly and articulated the
“extended” MLR (eMLR) method, which estimates Canth changes as residuals between two sets of regres-
sions fitted to two repeat sections separately when applied to a single distribution of properties (as was done
earlier by Wallace, 1995). To a degree, the fit biases tend to cancel with this approach, with the added benefit
that eMLR greatly limits the impact of random measurement errors (Clement & Gruber, 2018). However, it
does little to remedy the impacts of systematic measurement biases (Carter, Feely, Mecking, et al., 2017).
Quay et al. (2007) found that residuals for the MLR fits could be improved if separate fits were created for
data binned by density intervals. Goodkin et al. (2011) cautioned that over >30‐year time periods the
assumption that the same modes of natural variability are acting on water at a given location may break
down. Plancherel et al. (2013) showed that reconstruction errors are smaller and less biased on average when
using data from sections with consistent station locations. They argue that consistent sampling ensures that
theMLRmodels are fit to the same oceanographic features, therefore increasing the chances that the models
will be biased consistently between decades, allowing the biases to cancel. They also show that the Canth

change estimates yielded by eMLR are dependent upon the choice of the independent variables used to con-
struct the empirical regressions.

More recently, Carter, Feely, Mecking, et al. (2017) used averages of an ensemble of Canth distribution esti-
mates obtained from regressions fit to multiple different combinations of independent variables. Their
ensemble approach decreased both bias and root‐mean‐squared (RMS) error when reconstructing Earth
System Model simulation output with known Canth distributions. Clement and Gruber (2018) showed that
an ensemble average limited to the regressions with the lowest root‐mean‐squared error (RMSE) of the
regression fit to the DIC was better than a full‐ensemble average for basin‐sized layers. They also argued
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that C* (Gruber et al., 1996) is superior to DIC as the independent variable when making eMLR‐based esti-
mates because C* has some of the influences of natural variability removed. However, our analysis indicates
that measurement biases should be considered when using this approach on individual sections (supporting
information S1).

Thacker (2012) noted that it is unlikely that a single occupation could capture the full range of natural varia-
bility affecting seawater DIC distributions and demonstrated improvements by including both the earlier
and the later occupations in the fitting data for a single combined regression. The Canth accumulation rate
from Thacker (2012)'s approach comes via inclusion of “occupation year” in the MLR for DIC. The accumu-
lation rate estimate then equals the regression coefficient for occupation time. This approach has the draw-
back that the rate obtained from this approach is constant for an entire regression region, so Thacker (2012)
advocated only considering limited subsets of a section with each regression.

2.2. Method Overview

In this study we combine recent methodological improvements by merging multiyear regressions (Thacker,
2012) with ensemble MLR (Carter, Feely, Mecking, et al., 2017), applying Velo et al. (2013)'s “moving (spa-
tial) windows” to the data included in the regressions, using adjusted‐DIC (Clement & Gruber, 2018) and
using a weighted average of ensemble members. With the moving window approach, regressions are per-
formed specific to a point in space using data selected within windows of latitude, longitude, and
depth/density around that point in space. The regressions therefore adjust, spatially, to different combina-
tions of data local to the intended regression location. Use of moving windows addresses Thacker (2012)'s
suggestion that limited subsets of sections be considered at a time when using multiyear regressions
(Carter, Feely, Mecking, et al., 2017). Thacker (2012)'s multiyear regression approach has a practical advan-
tage compared to other eMLR approaches (e.g., Carter, Feely, Mecking, et al., 2017; Clement &Gruber, 2018)
in that it accommodates data from hydrographic sections with three or more occupations, sometimes sepa-
rated only by short periods of time (e.g., the SR03 section with measurements in 1995, 1996, 2008, and 2011),
obviating the need for adjustments of data to a given reference year. Although this modified approach could
miss Canth variability at scales smaller than the moving window for data selection, our testing with model
output indicated that Thacker (2012)'s approach nevertheless has a 4% smaller RMS error than the eMLR
approach when reconstructing known modeled Canth changes from model simulation output with added
measurement uncertainties (supporting information S1).

Our modified approach combining these improvements is referred to here as the “Canth accumulation rates
estimated from ensembles of regressions” (CAREER) approach. The errors for the approach are assessed for
individual estimates and basin inventories, alongside the errors for individual estimates from similar
approaches, in supporting information S1. An overview and a stepwise description of the technique is
provided as supporting information S2.

2.3. Data Selection and Regressions Used

Measurements of S, θ, AOU, N, Si, DIC, and AT are taken from version 2 of the Global Data Analysis Project
(GLODAPv2) data product whenever possible (Olsen et al., 2016). These data include the GLODAPv2 adjust-
ments based on deep crossovers between sections (https://glodapv2.geomar.de/). Recent (i.e., after ~2012)
data that are not part of GLODAPv2 are downloaded from the Carbon and CLIVAR Hydrographic Data
Office website (https://cchdo.ucsd.edu or https://www.nodc.noaa.gov/ocads/). A complete list of sections,
Expocodes, PIs, cruise dates, 2,500 to 4,000‐m average linear (S, θ, DIC, and AT), and multiplicative (N, Si,
and P) property offsets between each successive cruise pair and quality control notes are provided as
supporting information S4 (CruiseInformation.xlsx). The offsets presented therein are separate from the
GLODAPv2 adjustments and were used only to decide which data to include. No adjustments were made
to the data other than the GLODAPv2 recommended adjustments.

Plancherel et al. (2013) noted that it is important to use consistent sampling locations for all occupations of a
section. We thus removed data from consideration if they are located more than 120 nautical miles (nm)
from a station measured along another occupation of the same section. This criterion is relaxed to 300 nm
for the “West Coast Ocean Acidification” WCOA section, which had uneven station spacing over the same
broad area in two complete reoccupations. In addition, data are omitted if they exceed the zonal or meridio-
nal limits of the cruise occupation with the shortest zonal (for zonal sections) or meridional (for meridional
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sections) extents. The WCOA cruises were treated as meridional cruises (Figure 1). The number of stations
omitted for each cruise is also given in supporting information S4.

In the CAREER approach, regressions are specific to individual data point locations in the second cruise
along each section, and for each measurement on that second cruise, data are included in the regression if
they are measured along the same section (from any year) and within latitude, longitude, and
depth/density windows centered on the regression location. The initial sizes of the windows around the
regression coordinates are 10° latitude, 20° longitude divided by the cosine of the latitude, and the union
of both a 50‐m depth and a 0.1‐kg/m3 σθ potential density vertical window. The window dimensions are
iteratively doubled in size if fewer than 50 data points fall within the windows until at least 50 data points
with viable C^ values are selected for the regression, where C^ is a simplified variant on C* (Gruber et al.,
1996) defined here as

C¼DIC−rC:O2O2 (1)

The rC:O2 term (equaling −117/170 mol C mol O2
−1; Anderson & Sarmiento, 1994) reflects the impact of

organic matter remineralization on DIC (sensitivity to this assumed value is tested in supporting informa-
tion S1). Unlike Clement and Gruber (2018) we do not include adjustments for carbonate mineral cycling
nor do we use AT as a predictor because our analysis indicated that increases in uncertainty resulting from
measurement biases in the required parameters outweigh the potential benefits from these adjustments, at
least when considering sections individually (supporting information S1). For similar reasons we also do not
include adjustments for denitrification like Sabine et al. (2002).

The regressions relate C^ to 16 combinations (supporting information Table S3) with n predictor properties

C¼α0 þ ∑
n

i¼1
αiPi (2)

Here αi is the regression coefficient for the ith property (Pi) included in the regression and α0 is a constant.
Regression coefficients are determined through least squares “robust regression” that iteratively tests for and
then excludes outlier data (where outliers are more than 4.685 deviations from the regression by default,
though we get similar results without applying this best practice exclusion step). Phosphate is not used in
these regressions because it provides little additional statistical information not provided by N and AOU
(Slansky, 1997), and the phosphate measurement uncertainty is relatively larger than the nitrate uncer-
tainty. Decimal year Y (i.e., where 1 July 2020 is “2020.5”) is included in every regression (Thacker, 2012).

We excluded data from shallower than 50 m or the deepest monthly mean mixed layer depth in the clima-
tology of Holte et al. (2017), whichever was deeper. Shallower than these depths, Canth was determined
assuming the full equilibration of seawater changes with the atmospheric mole fraction of CO2 (xCO2)
increases as recorded at Cape Grim (the rationale for using Cape Grim is given in supporting
information S3, but we note that this choice has little impact on our results). The simplistic assumption of
tracking atmospheric changes is used because near‐surface waters are strongly impacted by seasonal, sub-
seasonal, and shorter‐timescale processes that make the eMLR approach less viable (Sabine et al., 1999).
Including near‐surface data would both yield poor surface estimates and also potentially bias deeper regres-
sion coefficients. While there is substantial natural variability in surface partial pressure of CO2 (pCO2)
mooring record trends (Sutton et al., 2017), the longer‐term global mean surface ocean pCO2 increase is
broadly consistent with anthropogenic forcing (Bates et al., 2014; Landschützer et al., 2016) indicating that
the surface change assumption is a plausible simplification for the surface anthropogenic component.

CO2SYS for Matlab (van Hueven et al., 2011) is used to calculate the impacts of changes in pCO2 (and later
Canth) using the carbonate coefficients from Lueker et al. (2000) and the total hydrogen ion pH scale. For
consistency, borate coefficients from Uppström (1974) are used instead of the updated coefficients deter-
mined by Lee et al. (2010) because the earlier coefficients were used by Lueker et al. (2000) and are thus con-
sistent with their coefficients (see: Orr et al., 2015). The mixed layer calculations are performed at 0‐dbar
pressure and using the potential temperature (relative to 0‐dbar pressure) to determine air‐sea equilibration.
In situ conditions are used for all other carbonate system calculations to quantify the impacts of Canth on pH
and aragonite saturation state (Ω) where Canth is found. Where surface AT is not measured, it is estimated
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from S, θ, and AOU using Locally Interpolated AT Regression (equation 7; Carter, Feely, Williams, et al.,
2017). Uncertainties in these calculations are dominated by errors in the assumed pCO2 or DIC property
changes and are relatively insensitive to uncertainties in the estimated AT.

After the regressions are completed, the regression terms associated with the years (i.e., the 16 αY terms) are
averaged—weighted using the inverse of the αY coefficient uncertainties—to obtain CAREERCanth accumu-
lation rate estimates (RCanth) for the period spanned by all data along each section. N − 1, where N is the
number of occupations of each section; accumulation rate estimates between one occupation of a section
and the next occupation are also computed excluding all other data from that section besides the two occu-
pations being compared. We refer to estimates using all data as “full‐record rate estimates” and estimates
using only one time interval, two section occupations at a time, as “successive‐occupation rate estimates.”
For sections with only two viable occupations (e.g., P13, P14, and P21) the full‐record and successive‐
occupation rate estimates are identical.

2.4. Extending Canth Accumulation Rates to Total Canth

Total Canth is estimated by referencing our accumulation rate estimates to Sabine et al. (2004)'s ΔC*‐based
Canth 1994 distribution, as gridded by Key et al. (2004), interpolated by potential density to our measure-
ment densities (see supporting information S1 for details). For each section, we begin with the earliest
“successive‐occupation” accumulation rate estimates and use these to project backward in time from
1994 and forward in time to the date of the second occupation. The next set of Canth accumulation rate
estimates is then used to project forward until the year of the next cruise occupation (if any exists).
The procedure by which we interpolate Canth along sections from one occupation to the next is provided
in supporting information S2.

Tracking the impacts of Canth on ocean pH is an important application for Canth estimates, as it allows infer-
ences about the degree to which organism habitats have been perturbed from their natural states. Once total
Canth estimates are obtained, “preindustrial” in situ pH and Ω are estimated for each decade by subtracting
the Canth estimates along each occupation from the DIC observed during the same occupation and recalcu-
lating the pH and Ω. The impacts of ocean acidification on pH and Ω (ΔpH and ΔΩ, respectively) are then
calculated as the preindustrial values subtracted from the modern calculated values.

A new method, related to the multiparametric interpolation of Velo et al. (2010), is used to extrapolate the
total Canth estimates to the basin scale. A locally interpolated regression (LIR) (Carter, Feely, Williams,
et al., 2017) is created relating Canth to S, θ, the depth, the years since 1995 (Y1995, with a maximum of
10), and the years since 2005 (Y2005, with a minimum of 0). As the LIR is used solely for basin‐wide estima-
tion, we only briefly note that the methods of its creation in all ways mirror those of Locally Interpolated AT

Regression version 2 as presented by (Carter, Feely, Williams, et al., 2017), with the following exceptions: (1)
Only a single regression is used. (2) Data incorporation windows are set to 30° latitude and 60° longitude.
These are necessarily larger than the windows used for CAREER estimates because these regressions are
not always centered on repeated hydrographic sections where nearby data are guaranteed, and data are
needed for at least three distinct dates to fit both Y terms. (3) To ensure the regressions remain “local” to
the extent possible, the training data are weighted according to the inverse of three distance terms added
in quadrature. The weighting term W is calculated separately for each combination of properties and
Canth estimate being regressed

W ¼ max 20; 4 Latm−Latrð Þð Þ2 þ cos Latrð Þ Lonm−Lonrð Þð Þ2 þ depthm−depthr

100 meters

� �2
 !−0:5 

(3)

Here Lat is the latitude, Lon is the longitude, “depth” is in meters, the subscript r refers to the coordinate of
the regression, and the subscriptm refers to the coordinate of the measurement being weighted. The factors
of 4 and 1/100 meters reflect observations that ocean properties typically vary more meridionally and (espe-
cially) vertically than zonally. Weights are capped at 20−0.5 (or ~0.224) to avoid the nearly infinite weights
that would otherwise occur at grid cells adjacent to or on hydrographic sections, ensuring that a number
of values affect the regressions.

10.1029/2018GB006154Global Biogeochemical Cycles

CARTER ET AL. 602



The LIR allows a local Canth estimate to be obtained anywhere in the Pacific Ocean and Pacific sectors of the
Southern Ocean from latitude, longitude, depth, S, T or θ, and Y (which the routine then uses to calculate
Y1995 and Y2005). The LIR reproduces the training data (total Canth estimates in the years the sections were
measured, i.e., including no temporally interpolated or extrapolated data) well with errors of −0.022 (aver-
age) ±2.6 (RMSE) μmol kg−1 Canth. To estimate likely errors encountered in parts of the Pacific where Canth

estimates are unavailable, each CAREER estimate was reconstructed using a LIR that is trained separately at
each of the Canth estimate locations but excluding the Canth estimates from occupations of the section that
produced the estimate being tested. This experiment suggested slightly larger reconstruction errors of
0.038 (average) ±3.5 (RMSE) μmol kg−1 Canth.

The LIR is applied to the World Ocean Atlas annual average data product (Locarnini et al., 2013; Zweng
et al., 2013) with Y inputs of 1995, 2005, and 2015, and these estimates are multiplied by calculated in situ
densities and the grid cell ocean volumes and summed over the top 1,500 m to yield basin Canth inventory
estimates. Uncertainties in basin inventories for these 3 years are dominated by potential errors in the
1994 referenceΔC*‐based Canth distributions (±5 μmol kg−1 basin‐wide Canth). However, these errors should
be consistent between decadal estimates and therefore cancel when computing decadal basin inventory
changes. This suggests that the majority of the uncertainty for decadal basin inventory changes is attributa-
ble to CAREER estimate errors (i.e., section‐wide biases of ±1.4 μmol kg−1 Canth, which only partially cancel
for basin averages; supporting information S1).

3. Results and Discussion
3.1. Full Record Accumulation Rates

Canth accumulation rates typically range from~0 μmol·kg−1·year−1 at depth (>1,500m) to ~1.1 μmol·kg−1·year−1

in the warmer regions of the surface ocean. The Canth accumulation rates (Figure 2) agree with earlier
Canth accumulation estimate patterns from observations and models (e.g., Carter, Feely, Mecking, et al.,
2017; Kouketsu et al., 2013; Waters et al., 2011), as expected from air‐sea CO2 exchange patterns and interior
ocean transport (Talley et al., 2016, and references therein): Pacific Canth accumulation rates are greatest in
shallow thermocline waters with the lowest potential densities (σθ), both because these waters are well
ventilated and because warmer surface waters with little remineralized DIC typically have lower Revelle
Factors (Revelle, 1934) and therefore exhibit a larger DIC increase in equilibrium with a given anthropo-
genic pCO2 increase.

Pacific Canth accumulation and storage patterns do not geographically match Canth uptake patterns (e.g.,
Gloor et al., 2003; Sarmiento et al., 1992). The discrepancy between the patterns of uptake and accumulation

is due largely to interior ocean transport of Canth from the high‐latitude regions where Canth is primarily
taken up from the atmosphere to the midlatitude thermoclines where it is primarily stored (e.g., Mikaloff

Fletcher et al., 2006). The P16 section near 150°W captures most of the meridional gradients in Canth accu-
mulation seen across the basin (Figure 2a): There is substantial accumulation in the surface ocean ranging

from >1.1 μmol·kg−1·year−1 in the warm equatorial latitudes to ~0.7 μmol·kg−1·year−1 at higher latitudes

and deeper penetration (up to ~1,500 m) of Canth in the subtropical gyres. The penetration is deeper particu-
larly in the subtropics of the Southern Hemisphere where Subantarctic Mode Water and Antarctic
Intermediate Water ventilate to the base of the subtropical gyre (Sabine et al., 2008; e.g., 0.3 vs. 0.0

μmol·kg−1·year−1 at 900‐m depth along 40°S vs. 40°N, respectively). Canth accumulation is shallower near

the equator and within the divergent subpolar gyres. These Southern Hemisphere and equatorial Canth accu-
mulation patterns are also seen along P15, P18, and SR03 (Figures 2b, 2c, and 2g), while the Northern

Hemisphere and equatorial features are seen along P10, P13, and P14 (Figures 2d–f). The zonal Canth accu-

mulation rate sections indicate deeper Canth accumulation on the poleward and central portions of the sub-
tropical gyres (Figure 3d) than equatorward (Figure 3c) and deeper accumulation in the convergence areas

of the subtropical gyres than in the divergent subpolar gyres (Figure 3). Zonally, Pacific Canth accumulation
tends to accumulate deeper near the western edges of the subtropical gyres (Waters et al., 2011). This is visi-

ble for the P02 (Figure 3b), P21 (Figure 3c), and P06 (Figure 3d) sections where Canth accumulation rate iso-
pleths shoal to the east.
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Along the zonal S04I (Figure 3e) section (~60–65°S) a small but significant Canth signal extends along the
ocean floor (averaging 0.24 μmol·kg−1·year−1 below 1,500 m and east of 120°E) where Katsumata et al.
(2015) previously reported near‐bottom warming, freshening, and AOU decreases and where Murata et al.
(2019) detected significant increases of anthropogenic CO2 in deep and bottom layers. Deep ocean Canth

accumulation is also present along the intersecting meridional SR03 section (Figure 2g), although this mod-
erate signal is not statistically distinguishable from zero at these depths and latitudes in our estimates or in
prior analyses (Pardo et al., 2017). Sabine et al. (2002) reported measurable chlorofluorocarbons (CFCs) and
therefore estimated small concentrations of Canth at depths >2,000m along both sections. These two sections
provide further evidence that Antarctic Bottom Water, which is known to be warming and freshening over
large regions (Purkey & Johnson, 2013), is also bringing Canth into the deep Southern Ocean on decadal
timescales (as Ríos et al., 2012, reported in the Atlantic). These signals go from the surface to the ocean floor
and extend slightly off the continental shelf, though blurring—from the wide windows required for the
CAREER analysis— is possible of a narrower accumulation along the continental margin that might be
expected from entrainment of Canth into Antarctic Bottom Water. Abyssal accumulation is also positive
but not independently statistically significant along the western portion of S04P. The lower accumulation
estimates below the center of the Ross Sea Gyre than further west are consistent with pathways of Adélie
Land BottomWater formed east of SR03 (Rintoul, 1998) and Ross Sea BottomWater brought north in a deep
western boundary current past Cape Adare (Gordon et al., 2015). Consistent with these Canth estimate pat-
terns, significant deep Canth (Sabine et al., 2002) and CFC (Orsi et al., 1999) concentrations have been
observed on the eastern and northern boundaries of the Ross Sea that do not extend to the S04P transect
through the center of the Ross Sea.

Figure 2. Canth accumulation rates estimated for the predominantly meridional sections (a) P16 along ~150°W, (b) P15
along ~170°W, (c) P18 along ~103°W to 110°W, (d) P10 along ~140°E to 150°E, (e) P13 along ~165°E, (f) P14 along
~175°W to 180°W, (g) SR03 along ~140°W to 150°W, and (h) WCOA along a series of section extending from the U.S. West
Coast (see Figure 1). Time spans of these estimates are given in the panel titles. Estimates with colors covered by white
dots are not statistically distinguishable from 0 change to greater than 95% confidence. Thick gray contours demark
every 0.5 μmol/kg beginning at 0, and thinner gray contours demark every 0.1 μmol/kg. Inset maps indicate the section
locations. WCOA = West Coast Ocean Acidification.
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3.2. Column Canth Inventory Increases

We consider column inventory changes along sections down to 1,100 m. This is shallower than the integra-
tion depth used for the basin inventory estimates (presented in the next section) because those benefit from
potentially canceling measurement biases along the 14 sections used to create them whereas section inven-
tory estimates do not. Thus, the signal‐to‐noise ratio is lower for column inventory estimates and the depth at
which observed changes are likely to be spurious is shallower.

Column inventory increases over the top 1,100 m of the Pacific along meridional (Figure 4) and zonal
(Figure 5) sections match the accumulation rate estimates, with larger Canth inventory increases in the sub-
tropics than near the poles or at the equator (e.g., Figure 4a) and larger increases in the western portions of
the gyres (e.g., Figures 5c and 5d) than in an eastern boundary current (Figure 4g). However, column inven-
tory increases also show considerable variability from decade to decade (Figures 4 and 5, comparing color‐
shaded regions), notably including the larger column inventory increases in the recent decades along the
equatorward sides of the Southern Hemisphere Subtropical Gyre (Figures 4a–4c). Carter, Feely, Mecking,
et al. (2017) reported Canth column inventory increased along P16 at a rate of 0.29 (±0.11) mol C·m−2·year−1

from 1991 to 2005 and at a rate of 0.45 (±0.11) mol C·m−2·year−1 from 2005 to 2015. We find comparable
rates of 0.31 (±0.13) and 0.43 (±0.20) mol C·m−2·year−1 for these two periods, respectively (Table 1).

Interdecadal variability in Canth inventory increases are attributable to decadal change in Canth uptake and
transport to an extent, but the large uncertainty intervals imply that there is a limit on the accuracy of Canth

accumulation estimates along a single section from a single decade. Themajority of column inventory uncer-
tainty is attributable to the potential for unknown biases in the measurements: consider that the ±1.4 μmol
kg−1 estimate bias translates to ±1.6 mol C m−2 when summed over 1,100 m or 0.16 mol C·m−2·year−1 after
a decade. At least ~60% of this bias is attributable to measurement biases instead of methodological errors
(supporting information S1). The relative impacts of measurement errors on Canth accumulation rates
decrease over time and with repeated occupations, both due to more independent and partially canceling

Figure 3. Canth accumulation rates estimated for the zonal (east‐west) sections (a) P01 along 40°N to 47°N, (b) P02 along 30°N to 33°N, (c) P21 along 15°S to 25°S,
(d) P06 along 30°S to 33°S, (e) S04I along 43°S to 67°S, and (f) S04P along 65°S to 71°S (mapped in Figure 1). Time spans of these estimates are given in the
panel titles. Estimates with colors covered by white dots are not statistically distinguishable from 0 change to greater than 95% confidence. Thick gray contours
demark every 0.5 μmol/kg beginning at 0, and thinner gray contours demark every 0.1 μmol/kg. Inset maps indicate the section locations.
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measurement biases and larger signal accumulating over a longer time span. The decreasing error bounds in
column inventory changes along P06 (Figure 5d), for example, demonstrate the substantial improvements in
signal/noise obtained with long‐term records. Combining information from several repeated hydrographic
sections (as we do in the next section and as Clement & Gruber, 2018, advocate) also reduces the
inventory change uncertainties.

Numerous Pacific column inventory change estimates have been made previously (Table 1). Our estimates
agree within 1σ (ours or theirs) withmost of these estimates, though ours are lower than Sabine et al. (2008)'s
north of 20°N (only) and Wakita et al. (2010)'s in the Northwest Pacific. These differences stem from our use
of the recently released GLODAPv2 data product (Olsen et al., 2016) and the methodological improvements
in the CAREER approach (supporting information S1). Our analysis indicates that errors from traditional
eMLR approaches are ~20% greater than from CAREER when applied to the same sections, though earlier
error estimates did not always consider parameter choice uncertainties so this may not be clear from Table 1.

3.3. Total Basin‐Wide Inventories

We reference to the 1994 ΔC*‐based estimates of Sabine et al. (2004) to provide estimates of Pacific basin
Canth inventories summed to 1,500‐m depth of 42.2 (±5), 50.9 (±5), and 62.6 (±5) PgC for 1995, 2005, and

Figure 4. Canth accumulation rates expressed as column inventories over the top 1,500 m of the water column along meridional sections (a) P16 along ~150°W,
(b) P15 along ~170°W, (c) P18 along ~103°W to 110°W, (d) P10 along ~140°E to 150°E, (e) P13 along ~165°E, (f) P14 along ~175°W to 180°W, (g) SR03 along ~140°W
to 150°W, and (h) WCOA along a series of section extending from the U.S. West Coast (see Figure 1). Estimates (black lines, broken where shallow waters
prevented a full 1,500‐m integral) are shown with uncertainties (red, blue, and gray bands). Time spans of these estimates are given in the panel titles (and the
figure legends when multiple estimates are available). Inset maps indicate the section locations. WCOA = West Coast Ocean Acidification.
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Figure 5. Canth accumulation rates expressed as column inventories over the top 1,500m of the water column along zonal (east‐west) sections (a) P01 along 40°N to
47°N, (b) P02 along 30°N to 33°N, (c) P21 along 15°S to 25°S, (d) P06 along 30°S to 33°S, (e) S04I along 43°S to 67°S, and (f) S04P along 65°S to 71°S (mapped
in Figure 1). Estimate (black lines, broken where ocean depths prevented a full 1,500‐m integral) and uncertainties (blue, red, green, and gray bands) are shown.
Time spans of these estimates are given in the panel titles and legends.

Table 1
Column Inventory (Top 1,100 m) Increases Compared to a Compilation of Literature Estimates

Study Section Method Their rate σ± Our rate σ± Time Span

[mol m−2 yr−1] [mol m−2 yr−1]
Murata et al. (2007) P06 ΔnCT

Cal 1.0 ± 0.4 0.62 ± 0.16 1992–2003
Sabine et al. (2008) P16 N of 20°N eMLR 0.4 ± 0.1 0.20 ± 0.13 1991–2006
Sabine et al. (2008) P16 20°S to 20°N eMLR 0.3 ± 0.1 0.26 ± 0.13 1991–2006
Sabine et al. (2008) P16 60°S to 20°S eMLR 0.6 ± 0.1 0.48 ± 0.13 1991–2006
Sabine et al. (2008) P16 S of 60°S eMLR 0.1 ± 0.1 0.04 ± 0.13 1991–2006
Murata et al. (2009) P10 ΔnCT

Cal 0.5 ± 0.1 0.45 ± 0.16 1993–2005
Wakita et al. (2010) ~160°E to 45°N DIC with ΔC* 0.4 ± 0.1 0.29 ± 0.10 1992–2008
Waters et al. (2011) P06 TTD 0.72 ± 0.2 0.74 ± 0.11 1992–2010a

Waters et al. (2011) P06 eMLR 0.79 ± 0.2 0.74 ± 0.11 1992–2010a

Waters et al. (2011) P18 eMLR 0.46 ± 0.2 0.32 ± 0.13 1994–2008
Williams et al. (2015) S04P eMLR 0.1 ± 0.02 0.09 ± 0.10 1992–2011
Pardo et al. (2017) SR03 CT

0 0.3 ± 0.24 0.31 ± 0.11 1995–2011
Carter, Feely, Mecking, et al. (2017) P16 Ensemble eMLR 0.29 ± 0.11 0.31 ± 0.13 1991–2005
Carter, Feely, Mecking, et al. (2017) P16 Ensemble eMLR 0.45 ± 0.11 0.43 ± 0.20 2005–2015
Carter, Feely, Mecking, et al. (2017) P02 Ensemble eMLR 0.53 ±0.11 0.65 ± 0.17 1991–2004
Carter, Feely, Mecking, et al. (2017) P02 Ensemble eMLR 0.46 ± 0.11 0.56 ± 0.21 2005–2013

aOur comparison estimate goes ~7 years longer than this period.
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2015, respectively. The Pacific Canth inventory increased by 8.8 (±1.1) PgC between 1995 and 2005 and by
11.7 (±1.1) PgC (Figure 6) between 2005 and 2015. These increases suggest an average increase of 0.94
(±0.11) PgC year−1 over the 1994–2007 time period, which compares well with Gruber, Clement, et al.
(2019) findings of an average Pacific accumulation of 0.97 PgC year−1 (when using our Pacific basin
bounds and integrated to 1,500‐m depth).

Kouketsu et al. (2013) estimated Pacific Canth increased by 8.4 (±0.5) PgC between 50°S and 65°N in the ear-
lier decade (1995 to 2005), where we find 7.7 (±1.1) PgC accumulation (Table 2). The majority of this (statis-
tically insignificant) discrepancy originates in the 20°S to 50°S latitude band where Murata et al. (2007)

Figure 6. Column inventories contoured summed from the surface to 1,500‐mdepth in color for (left) 1995, (middle) 2005,
and (right) 2015 in color and labeled in black. Thick gray contours demark every 10 mol/m− beginning at 0, and
thinner gray contours demark every 2.5 mol/m2. The total Pacific Basin inventory is written in light gray. The inventories
in the panel on the left are lower than the inventories they are based on (44.5 ± 5 PgC for 1994; Sabine et al., 2002),
especially in the Southern Ocean, due primarily to the shallower depth of integration. Decadal changes of the zonal
integrals of these inventories are provided in Table 2.

Table 2
Pacific Inventory Increases by Latitude Band for Both Decades, Compared to Literature

Latitude Δ Inventory Comparison Δ Inventory Comparison
from to 1995–2005 1995–2005 2005–2015 2005–2015
(°N) (°N) PgC PgC PgC PgC

Comparisons to Carter, Feely, Mecking, et al. (2017), ensemble eMLR
−80 −70 0.05 (±0.02) — 0.04 (±0.02) —

−70 −60 0.27 (±0.09) — 0.06 (±0.09) —

−60 −50 0.60 (±0.13) 0.56 0.45 (±0.13) 0.84
−50 −40 0.96 (±0.14) 0.90 1.06 (±0.14) 0.97
−40 −30 1.05 (±0.14) 0.96 1.47 (±0.14) 1.07
−30 −20 0.98 (±0.14) 0.65 1.63 (±0.14) 1.31
−20 −10 0.83 (±0.15) 0.35 1.66 (±0.14) 1.20
−10 0 0.67 (±0.15) 0.29 1.38 (±0.15) 0.72
0 10 0.84 (±0.15) 0.46 1.18 (±0.15) 0.56
10 20 0.85 (±0.13) 0.79 0.84 (±0.13) 0.52
20 30 0.81 (±0.10) 0.60 0.74 (±0.10) 0.64
30 40 0.50 (±0.08) 0.35 0.60 (±0.08) 0.53
40 50 0.21 (±0.06) 0.13 0.36 (±0.06) 0.35
50 60 0.13 (±0.03) 0.07 0.22 (±0.03) 0.21
60 70 0.05 (±0.01) — 0.04 (±0.01) —

Comparisons to Kouketsu et al. (2013), ΔnCT
Cal, 120°E to 131°E included and marginal seas omitted for this comparison

40 65 0.3 (±0.19) 0.3 ± 0.2 0.6 (±0.19) —

20 40 1.3 (±0.21) 1.5 ± 0.2 1.3 (±0.21) —

−20 20 3.1 (±0.45) 2.7 ± 0.4 5.0 (±0.45) —

−50 −20 3.0 (±0.31) 3.9 ± 0.3 4.2 (±0.31) —

−50 65 7.7 (±0.93) 8.4 ± 0.5 11.0 (±0.93) —

Entire Pacific 8.8 (±1.1) — 11.7 (±1.1) —

Note. The italicized numbers come from other studies included for comparison.
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found more Canth than we do along P06 (Table 1). These estimates were also used for Kouketsu et al. (2013)'s
basin storage synthesis. Carter, Feely, Mecking, et al. (2017) inferred storage estimates of 6.1 (±1.5) and 8.8
(±2.2) PgC for the full Pacific basin in the earlier and more recent decades, respectively, from P16 alone.
When considering basin changes divided by latitude bands (Table 2), the majority of the (statistically insig-
nificant) increase in the current estimates relative to Carter, Feely, Mecking, et al. (2017) earlier estimates in
the 2005 to 2015 decade is found in the Southern Pacific and equatorial latitudes (~40°S to 10°N), where the
added information from many cruises (e.g., P10, P13, P14, P18, P15, and P21) improved estimates and
reduced the estimate uncertainty by half.

3.4. Decadal Canth Accumulation Variability

For the entire Pacific, we find that the accumulation rate accelerated by 2.9 (±1.6) PgC decade−2 from the
earlier decade (between 1995 and 2005) to the more recent decade (between 2005 and 2015). This accelera-
tion is, however, only marginally statistically significant (p= 0.07) due to the large uncertainties of these dec-
adal differences. Most of this acceleration stems from the South Pacific, that is, the region between 40°S and
the equator (Table 2). There, the estimated decadal acceleration of 2.6 (±0.6) PgC decade−2 is highly signifi-
cant (p < 0.01), consistent with enhanced storage within the Southern Pacific Subtropical Gyre observed
along P06, P18, P16, and P15 in the successive occupation sections (Figure 7, with successive occupation sec-
tions for other sections in supporting information Figure S2 and accumulation rate changes in supporting
information Figure S3).

Since atmospheric CO2 continued to rise between the two decades, an acceleration of the accumulation
rate is expected (e.g., Mikaloff Fletcher et al., 2006). We estimate this expected acceleration using two
methods detailed in supporting information S3; these methods are a fixed‐circulation transport matrix
estimate and an estimate based on transient steady state accumulation assumptions (see: Gruber,
Clement, et al., 2019). They result in a combined estimate of a 1.4 (±0.4) PgC decade−2 expected accelera-
tion for the whole Pacific basin and a 0.5 (±0.2) PgC decade−2 acceleration for the Southern Pacific
Subtropical Gyre. Thus, only about half of the acceleration for the entire Pacific can be attributed to
the increase in atmospheric CO2 (1.4 (±0.4) versus 2.9 (±1.6) PgC decade−2),while for the Southern
Pacific Gyre this fraction is only about one fifth (0.5 (±0.2) versus 2.6 (±0.6) PgC decade−2). In other
words, the accumulation rate in the Southern Pacific Subtropical Gyre accelerated by a whopping 2.1
(±0.6) PgC decade−2 beyond the increase expected from the accumulation of atmospheric CO2 alone
(p < 0.01).

Carter, Feely, Mecking, et al. (2017) attributed the increase along P16 to an increase in the overturning (or
“spin‐up”) of the gyre subtropical cell (England et al., 2014; McPhaden & Zhang, 2004) from the mid‐1990s
through at least 2014 (Roemmich et al., 2007, 2016). The maximum observed increase in accumulation shifts
southward going from west to east: it is found north of 20°S along P15, broadly between 30°S and 5°S along
P16, and between 35°S and 20°S along P18. Similarly, along P06 near 30°S, the increase is most intense in the
east near P18 and, later, in the central Pacific near P16 (Figures S3d and S3e). The pattern in space (and
time along P06) is consistent with enhanced ventilation or circulation of South Pacific Tropical Water late
in the 2000s decade that propagates north and west before remerging, in part, in the equatorial Pacific
(Qu et al., 2013; 18°S to 18°N) where we see a 1.3 (±0.3) PgC decade−2 Canth accumulation acceleration
between decades.

It is not straightforward to contrast anomalies in the rate of accumulation of Canth in the ocean's interior
with changes in the air‐sea CO2 fluxes inferred from surface pCO2 measurements. The comparison is not
direct both because the surface CO2 fluxes are combinations of natural and anthropogenic signals and
because interior ocean mixing can lead to CO2 accumulation far from uptake. It is nevertheless instructive
to attempt such a comparison as it might provide indications about the importance of the contribution of
the fluxes in Canth to the total variability in the air‐sea CO2 fluxes (see also Gruber, Landschützer, et al.,
2019). The rapid increase in the accumulation of Canth in the South Pacific gyre after 2005 appears very con-
sistent in timing with the strong increase found earlier in the Southern Ocean uptake of CO2 south of 35°S
(the latitudes responsible for the majority of the global air‐sea CO2 flux variability; Gruber, Landschützer,
et al., 2019) after 2000, and especially the high rates of uptake after 2009, when this region was taking up
more CO2 from the atmosphere than expected from the increase in atmospheric CO2 (Feely et al., 2017;
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Figure 7. Successive occupation Canth accumulation rates estimated for the meridional (north‐south) sections (a) P16 along ~150°W, (b) P15 along ~170°W, (c) P18
along ~103°W to 110°W, and the zonal (east‐west) section (d) P06 along 30°S to 33°S (mapped in Figure 1). Time spans of these estimates are given in the panel
titles. Estimates with colors covered by white dots are not statistically distinguishable from 0 change to greater than 95% confidence. Small gray and black
dots indicate data locations in the earlier and later decades, respectively. Thick gray contours demark every 0.5 μmol/kg beginning at 0, and thinner gray contours
demark every 0.1 μmol/kg. Inset maps indicate the section locations.
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Gruber, Landschützer, et al., 2019; Landschützer et al., 2015, 2016). We note that these authors use a broad
definition of the Southern Ocean that includes the ventilation regions for much of the southern Pacific
Subtropical Gyre thermocline, and our results show that shallower subtropical gyre thermocline ventilation

may be at least as important for decadal Canth variability as thermocline ventilation by mode and intermedi-

ate waters (Figure 7). Thus, it appears as if at least some part of the increase in the Southern Ocean CO2

uptake from the atmosphere was also driven by an anomalous uptake of Canth. A zeroth‐order estimate of
this contribution can be obtained by comparing uptake and accumulation accelerations over the basin scale;
the large spatial scales considered should reduce the impacts of DIC redistribution from interior ocean mix-
ing. Landschützer et al. (2016)'s flux product suggests that the Pacific Ocean (as we have defined it) took up

2.7 PgCmore CO2 in the 2005‐to‐2015 decade than in the 1995‐to‐2005 decade. This is indistinguishable from

our estimate of 2.9 (±1.6) PgC acceleration from Canth. This implies that we can account for more or less the

entire acceleration in Pacific CO2 uptake through an increase in the uptake of Canth, most likely driven par-

tially by changes in circulation. Thus, our observations imply a substantially larger contribution of Canth

variability to the total air‐sea CO2 flux variability than was suggested by DeVries et al. (2017).

DeVries et al. (2017) suggest that global Canth accumulation was unusually slow from 2000 to 2010 due to
sluggish upper ocean overturning circulation. A direct comparison of our accumulation estimates with
the results of DeVries et al. (2017) is not possible because of the 5‐year shift between the time periods
we and they consider and the limitation that neither of our methods can resolve variability within time
spans. However, their findings are broadly consistent with our finding of slower Canth accumulation in
the subtropical South Pacific in the periods prior to the 2005 (P16), 2008 (P18), 2009 (P15), and 2010
(P06) cruises compared to afterward. If we shift our LIR regression time spans to the periods before
and after 2000 (instead of 2005; see section 3.4) and (as DeVries et al., 2017, did) use no data collected
after late 2013, then our accumulation rate estimate for the period after 2000 is a slow 7.9 (±1.1) PgC
per decade. This accumulation rate rebounds to a number essentially identical to our accumulation rate
for 2005 to 2015 of 11.6 (±1.1) PgC per decade if we include the new section occupations since 2014
(including five in the Southern Pacific: P15, P16, P18, P06, and S04P). This suggests that the strong recent
accumulation was not visible in the older data used by DeVries et al. (2017). The absence of data prior to
the early/middle 1990s means that our estimates for 1990 to 2000 are not as accurate, but we note that
these estimates are always greater than our estimates for 1995 to 2005. Collectively, these observations
suggest that ~1995 to 2010 was a period of comparatively slow Canth accumulation with faster accumula-
tion occurring both before and since then. DeVries et al. (2017) attribute a −0.9 PgC decade−2 ocean Canth

uptake deceleration across the Pacific Basin to circulation variability between the 1990s and the 2000s,
which is comparable in magnitude to our 1.5 (±1.6) PgC decade−2 estimate of the recent (after 2005)
rebound in accumulation (with the caveat that this is a comparison between basin uptake and accumula-
tion and does not account for transport into or out of the domain). Interestingly, DeVries et al. (2017)
found circulation pattern anomalies in the 1990s (see their extended data Figure 2) that fit spatially with
the basin‐integrated accumulation rate changes we see after 2005 (supporting information Figure S4),
notably including increased Southern Ocean overturning and stronger ventilation of the Southern
Hemisphere's shallow thermocline (15°S to 35°S, 100‐ to 500‐m depth).

Canth accumulation below ~200‐m depth in the Pacific Ocean is higher between 2005 and 2015 compared to
the earlier decade and lower closer to the surface. Even though these changes are not statistically significant
yet (supporting information Figure S5b), this pattern is consistent with a gradual penetration of the anthro-
pogenic transient into the deeper reaches of the subtropical thermoclines and with a diminishing capacity of
the surface ocean to store additional Canth as Revelle Factors increase along with surface pCO2 (Revelle,
1934). The mean Canth penetration depth (Broecker et al., 1979) was 349 m in 1995, 355 m in 2005, and
372 m in 2015 based on our analysis. The larger penetration depth increase in the recent decade represents
a departure from steady state evolution of an exponential transient signal and supports the idea of a
circulation‐driven change in accumulation between 2005 and 2015 (Gammon et al., 1982). Changes in ven-
tilation resulting from physical circulation variability challenge the interpretation of eMLR results as purely
Canth signals since this variability could result in nonstationary relationships between seawater properties
(Goodkin et al., 2011). Nevertheless, the uncertainty analysis (supporting information S1) shows that such
violations of eMLR assumptions are a small component of the Canth estimate uncertainty.
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Figure 8. Total Canth estimated in 1995 and 2015 (a, b) and the impact of this Canth on (c, d) pH (ΔpH) and (e, f) the aragonite saturation state Ω (ΔΩ) along all
14 sections considered across the Pacific. Animated versions of these figures are available as supporting information.
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3.5. Impacts of Canth on Seawater Chemistry

The impacts of Canth on aragonite mineral saturation state Ω closely resemble the Canth distributions, with
the highest Canth concentrations (~50 μmol/kg in 1995 and >65 μmol/kg in 2015) near the surface and in the
subtropical gyre thermoclines matching the largest decreases inΩ (~0.5 in 1995 and >0.65 in 2015: Figure 8).
In contrast, calculated ΔpH typically has a subsurface maximum absolute change where there is no corre-
sponding Canth maximum (with typically ~0.005 to 0.015 greater pH decreases at ~200‐m depth than at
the surface). The ΔpH maxima are found between the ocean surface where the Canth concentrations are
highest and the deeper old remineralized‐DIC‐rich waters where Canth concentrations are lower, but the
impact of Canth on pH (closely related to the Revelle factor) is at a maximum (Feely et al., 2009).
Similarly, the impacts of surface Canth on pH are greatest in the colder, higher Revelle factor, high‐latitude
waters (Egleston et al., 2010, with 0.04 larger surface pH decreases at high latitudes being common). The sub-
surface ΔpH maxima are especially pronounced in upwelling areas such as off the U.S. West Coast where
cold very high DIC waters are brought near the ocean surface (with pH decreases as large as −0.125 in
1995 and −0.185 in 2015). Canth estimates for 1995, 2005 (not shown), and 2015 are interpolated or extrapo-
lated in time (see section 3.4) to produce visualizations of Canth accumulation and its impacts on pH and Ω
(additional supporting information).

4. Summary

We present updated estimates of Pacific Canth inventories and accumulation rates determined using updates
to the eMLR approach combining several recommendations from the literature (Carter, Feely, Williams,
et al., 2017; Clement & Gruber, 2018; Thacker, 2012). Our estimates are obtained by comparing measure-
ments from a section to measurements from subsequent occupations of that same section. Our efforts take
advantage of the fact that GO‐SHIP has recently completed the second, third, or fourth occupations of most
of the 14 sections used in this study.

Canth accumulation, storage, and inventories are estimated for a range of locations, depths, and latitude

bands. A central finding is that the Pacific Canth accumulation rate increased from 8.8 (±1.1, uncertainties
at 1σ) PgC per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. The

majority of this ocean Canth increase occurs in response to the large and growing burden of Canth in the atmo-

sphere. However, we find that the variability in this ocean Canth sink can be attributed to both atmospheric

Canth accumulation and ocean circulation and ventilation variability: the observed acceleration of 2.9 (±1.6)

PgC decade−2 is larger than the 1.4 (±0.4) PgC decade−2 acceleration expected from increasing atmospheric

Canth, though only significantly larger across the Southern Pacific Gyre where 2.1 (±0.6) PgC decade−2 of a

2.6 (±0.6) PgC decade−2 acceleration is not attributed to atmospheric accumulation. Our data synthesis is
consistent with literature indicating a recent spin‐up of Southern Hemisphere Subtropical Gyre circulation.

We suggest that these circulation changes have led to an increase in ocean Canth storage beyond that

expected from atmospheric Canth accumulation and that this enhanced Canth storage is, at least in part, a
consequence of the recent reinvigoration of the global ocean carbon uptake—predominantly south of
35°S—that has been noted in literature.

Accumulation rates are significant over the top 1,500 m of the Pacific and tend to be greatest in warmer,
lighter waters that have lower Revelle Factors and are in close contact with the atmosphere. In the interior,
Canth accumulation extends deepest nearer the intermediate and mode water formation areas located along
the boundaries between the subtropical and subpolar gyres and in the western portions of the subtropical
gyres where the thermocline extends deepest (with surface convergence centered around 30°S and 30°N
for the Southern and Northern Hemisphere Gyres, respectively; e.g., Lumpkin & Johnson, 2013).
Upwelling and surface divergence near the equator (particularly in the Eastern Tropical Pacific), in the sub-
polar North Pacific, in the Southern Ocean, and along the eastern boundary current of the California
Current System displace well‐ventilated water with deeper water with less Canth, leading to lower accumula-
tion rates and smaller inventory increases in these regions. However, accumulation rates are increasing in
recent years in the equatorial latitudes where Canth reemerges (Toyama et al., 2017). Our findings are con-
sistent also with recent findings of decadal Canth accumulation in bottom waters originating from the
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Southern Ocean, though extending this analysis to other sections crossing the Indian and Atlantic sectors of
the Southern Ocean would improve confidence in this observation.

A comparison of the magnitudes of the Canth accumulation rate estimates to their declining uncertain-
ties suggests that continuing repeat hydrographic reoccupations with the highest quality measurements
and a comparably dense sampling plan will be essential for continued monitoring of decadal Canth

accumulation in the ocean and its roles in modulating atmospheric CO2 increase and driving ocean
acidification.
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