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Abstract

Marine management interventions are increasingly being implemented with the explicit goal

of rebuilding ocean ecosystems, but early responses may begin with alterations in ecologi-

cal interactions preceding detectable changes in population-level characteristics. To estab-

lish a baseline from which to monitor the effects of spatial protection on reef fish trophic

ecology and track future ecosystem-level changes, we quantified temperate reef fish densi-

ties, size, biomass, diets and isotopic signatures at nine sites nested within two fished and

one five-year old marine protected area (MPA) on the northwest coast of Canada. We calcu-

lated rockfish (Sebastes spp.) community and species-specific niche breadth for fished and

protected areas based on δ13C and δ15N values. We found that rockfish community niche

width was greater inside the MPA relative to adjacent fished reefs due to an expanded nitro-

gen range, possibly reflecting early changes in trophic interactions following five years of

spatial protection. Our data also demonstrated that the MPA had a positive effect on the

δ15N signature of rockfish (i.e., trophic position), but the effect of rockfish length on its own

was not well-supported. In addition, we found a positive interaction between rockfish length

and δ15N signature, such that δ15N signatures of rockfish caught within the MPA increased

more rapidly with body size than those caught in fished areas. Differences in rockfish size

structure and biomass among fished and unfished areas were not clearly evident. Species

of rockfish and lingcod varied in trophic and size responses, indicating that life-history traits

play an important role in predicting MPA effects. These results may suggest early changes

in trophic behavior of slow-growing rockfish due to predation risk by faster growing higher

trophic level predators such as lingcod inside MPAs established on temperate reefs. Conse-

quently, spatial protection may restore both the trophic and behavioral roles of previously

fished consumers earlier and in measurable ways sooner than observable changes in abun-

dance and size.

Introduction

Despite increasing calls and legislated mandates for ecosystem-based management (EBM) of

terrestrial and marine systems worldwide [1–4], applied marine ecology and fisheries
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conservation science tends to focus on changes in the population abundance or biomass of key

species, rather than changes in the trophic and behavioural interactions that underpin ecosys-

tem-level processes. This tendency is borne out of necessity, because it is much harder to

observe and measure species interactions than it is to count and estimate individuals within a

population. Yet, system change often begins with alterations to flows (e.g., trophic rates), with

detectable changes in stocks (e.g., population abundances) lagging behind [5]. In marine sys-

tems, where the tenets of EBM now underlie efforts to rebuild entire marine ecosystems rather

than their individual parts [6–8], great opportunities exist to develop and apply tools that can

detect the effects of management interventions on species interactions underlying change in

ecosystem structure and function, even before changes in population abundances are

detectable.

The sum of the interactions that link species in an ecosystem is captured by the niche con-

cept [9,10]. While the niche concept has evolved, contemporary definitions retain the formal-

ization of the niche as a multidimensional space capturing both resource and habitat use [11].

Stable isotopes provide one increasingly widely-used empirical approach for describing niche

dimensions [12]. By integrating species interactions over time, stable isotopes can quantita-

tively characterize community-wide aspects of trophic structure and diversity at the level of an

entire food web [13]. Because species and community isotopic niches are an emergent out-

come of the species interactions and energy flows that underlie ecosystem structure and func-

tion, alteration to these niches may signal ecosystem-wide effects of management

interventions.

Marine protected areas (MPAs) are a form of EBM intervention in which changes in species

interactions have been predicted theoretically [1,14,15] and observed empirically [15,16]. In

many cases, the mechanisms driving these changes involve the recovery of previously fished

top predator abundance and size structure, leading to higher predation rates on prey, and in

some cases trophic cascades with wide ranging ecosystem-level consequences [17–20].

Changes in food web interactions associated with predator recovery can be detected by exam-

ining the alteration of a predator’s trophic niche [21]. Yet, the occurrence and magnitude of

these management intervention effects on system-wide interactions are highly context-depen-

dent [20,22], varying with ecosystem diversity, regional oceanography, habitat complexity, and

the nature and magnitude of the fisheries involved [23]. Furthermore, fishery-induced alter-

ations to species interactions typically exhibit time lags, with differential response times vary-

ing among trophic levels [23,24] and life-history traits [25], with long-lived, late-to-mature

fish typically predicted to exhibit time lags in behavioral and numerical response to protection.

Surprisingly, however, empirical evidence from multiple MPAs have revealed relatively

rapid manifestations of direct effects on target species and lagged indirect responses by non-

target taxa. In a meta-analysis of tropical and temperate protected and fished reef habitats,

Babcock et al. [24] detected direct reserve effects on target species within 5.13 ± 1.9 years, an

unexpected result given the life-history characteristics of most targeted species being long-

lived and relatively slow growing. Colonization through cross-boundary movement of mature

adult individuals was postulated as one plausible explanation, which has been demonstrated

empirically [26,27]. Furthermore, indirect effects on non-target taxa took significantly longer

to manifest (13.1 ± 2.0 years), in part due to behavioral modifications of lower trophic level

prey that reduced their risk of predation [24]. These trait-mediated effects on species recovery

times and variable recovery rates across trophic levels within both rocky and coral reef ecosys-

tems suggest that many of the ecological processes we aim to conserve with MPAs operate on

multiple and sometimes unexpected time scales.

In nearshore temperate rocky reef ecosystems along the northeastern Pacific coast, lingcod

(Ophiodon elongatus), a dominant reef predator, and rockfish (Sebastes spp.), long-lived reef
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mesopredators, have experienced significant declines in abundances and size due to commer-

cial and recreational overfishing [28–30]. In an effort to reverse declines, rockfish conservation

areas (RCAs), a type of MPA closed to hook-and-line fishing, were designated along the west

coast of Canada and the United States in the early 2000s [30,31]. Rockfish species are long-

lived, late-to-mature mid-trophic level predators that can exhibit slow responses to spatial pro-

tection. Lingcod on the other hand, are faster growing, higher trophic level predators that

appear to respond more quickly to spatial protection [32–34]. Because RCAs are protecting

rockfish and, indirectly, their predators, lingcod, previous theoretical and empirical research

suggests that the dynamics of predator-prey interactions could be changing in multiple ways

within these MPAs [14,32,35]. Understanding how management interventions, like spatial

protection, affect trophic interactions is important given the multiple, and at times competing,

EBM objectives associated with them [36], in this case to recover rockfish, lingcod, and restore

ecosystem processes.

Here, we 1) establish a baseline of reef fish trophic position and ecology within a five year-

old MPA designated specifically to support rockfish recovery and adjacent fished areas compa-

rable in dominant biophysical characteristics, from which future ecosystem-level changes can

be tracked; and 2) assess the evidence for initial differences in reef-associated species interac-

tions, trophic position and rockfish community niche width among these areas. To do so, we

examined the relative strength of evidence for three alternative, non-mutually exclusive

hypotheses regarding changes in rockfish community niche width as a result of MPA establish-

ment (Fig 1).

We hypothesized that reduced fishing pressure in MPAs can cause an increase in rockfish

density, thereby increasing competition among individuals and prompting a diversification of

prey (and thus basal resources) in rockfish diets relative to fished areas. An expansion in the

δ13C range of the rockfish community trophic niche width would reflect this response

(Hypothesis 1). Alternatively, a release from size-selective fishing pressure within MPAs may

drive a change in size structure by increasing the relative abundance of larger individuals. This

expansion of rockfish trophic diversity would be reflected by an expansion of rockfish niche

width in the δ15N range (Hypothesis 2). Lastly, predatory lingcod may also increase in density

and size in response to spatial protection. Increased lingcod predation may offset MPA-

induced rockfish population changes, resulting in no differences in rockfish community niche

relative to fished areas (Hypothesis 3). To test these hypotheses, we quantified and compared

rockfish community and species-specific niche widths between replicate sites nested within a

five year-old MPA and adjacent fished areas with similar biophysical characteristics. We took

a model selection approach to quantify the strength of evidence for alternative factors driving

differences in rockfish trophic ecology, size, density, and biomass among areas.

Materials and methods

Study region and design

To establish a baseline for reef fish trophic ecology and assess the initial ecosystem-level effects

of an MPA located off the east coast of Haida Gwaii, an island archipelago located in British

Columbia, Canada (Fig 2), we surveyed reef fish and habitat characteristics at nine replicate

rocky reef sites nested within two fished areas (Kunghit Island, ‘Fished North’, n = 3 sites; Lou-

ise Island, ‘Fished South’, n = 3 sites) and an MPA (Lyell Island, n = 3 sites) in July and August

2009. Within areas, sites ranged from 3.4 km– 13.3 km apart. Areas, and the replicate sites

nested within them, were comparable in their habitat, substrate complexity (Figs A-B in S1

File), depth range, aspect, wave exposure, and regional oceanographic context [37], but dif-

fered in their exposure to fishing pressure (i.e., hook-and-line fishing is absent in the RCA and
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present at fished sites). At each site, we quantified reef fish density and sizes and collected

rockfish tissue and gut samples for niche characterization. The MPA was established as an

RCA in 2004, making it five-years old at the time of surveying. With this MPA designation,

commercial and recreational hook-and-line fishing is prohibited, however several invertebrate

and forage fish fisheries are permitted [30].

All sites were embedded within what is now the Gwaii Haanas National Marine Conserva-

tion Area Reserve (NMCAR) established in 2010 (Fig 2B), a year after our 2009 surveys. This

large conservation area surrounds the land-based Gwaii Haanas National Park Reserve and

Haida Heritage Site, extending spatial protection 10 km offshore, creating an integrated terres-

trial and marine conservation area of ~5,000 km2 [38]. At the time of establishment, the

Fig 1. Hypothesized trophic niche widths of rockfish communities in response to changes in their density, size, and trophic interactions in an MPA compared to

fished areas. The first panel depicts a simplified temperate reef food web in which lingcod are dominant predators of rockfish, mesopredators that primarily consume

benthic invertebrates and fish. A hypothetical community isotopic niche space is depicted as a red circle. Hypothesis 1 predicts that the cessation of fishing rockfish

within an MPA will lead to increases in rockfish density, prompting competition among mesopredators, and the expansion of their trophic niche width in the δ13C

range. Hypothesis 2 predicts an expansion in rockfish size structure, thereby expanding rockfish trophic niches in the δ15N range. Hypothesis 3 illustrates a faster

recovery of piscivorous lingcod in the MPA that slows rockfish recovery, resulting in no expansion of rockfish trophic niche width.

https://doi.org/10.1371/journal.pone.0223748.g001
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NMCAR only prohibited offshore drilling, however future ocean zoning and no-take protected

areas are currently being planned for this larger ~3,400 km2 NMCAR [38]. Our subtidal sur-

veys were initiated so that baseline conditions prior to the implementation of this larger

marine spatial plan with the NMCAR could contribute towards future ‘before- after- control-

impact’ assessments of the marine plan implementation. Monitoring efforts are continuing in

this area and future studies, like that of Babcock et al. [24], will assess decadal trends in these

fished and protected sites. As of 2019, this RCA is being re-zoned within a new spatial plan

[39].

Studying the ecosystem effects of management interventions, like MPAs, at ecological scales

germane to management and conservation is often constrained by the number and spatial

extent of the management interventions, a paucity of true controls, high degree of variability

among sites owing to factors other than the intervention, and a lack of ‘before intervention’

data. Most studies designed to evaluate MPA effects are confronted with these challenges and

it is the case here, where we have one MPA, no pre-establishment data, and fished sites that

Fig 2. This research was conducted in 2009 on shallow rocky reefs surrounding (A) Haida Gwaii, an archipelago located off the northwest coast of British

Columbia, Canada. (B) We surveyed nine sites nested within three areas; two areas open to hook-and-line fishing (open circles) and one area closed to hook-and-

line fishing in 2004 (closed circles, solid line). An NMCAR was established in 2010 (dashed lines) in which marine planning and ocean zoning is currently underway,

but not implemented.

https://doi.org/10.1371/journal.pone.0223748.g002
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may differ from MPA sites in ways other than their exposure to fishing pressure. To overcome

some of these common barriers, we used a nested, hierarchical survey design, with replicate

sites nested within protected and fished areas, as has been done to test the MPA effects else-

where [19,40,41]. We specifically chose fished sites with biophysical characteristics as similar

as possible to those in the MPA. Moreover, the time since MPA establishment in our case was

short (five years), especially relative to the life history traits of rockfish, which are long-lived,

slow growing and slow to reach maturation [28]. The data presented here represent a snapshot

at the beginning of a recovery trajectory, with a monitoring program designed with the long-

term assessment of this MPA and NMCAR in mind [37].

Reef fish and habitat sampling

To assess the density, biomass, and size of reef-associated fish, we conducted subtidal visual

transects by scuba. At each site, we counted and estimated the length of all reef fish observed

in 4 replicate 30 m x 4 m x 4 m belt transects placed at two depth ranges: shallow (5–8 m) and

deep (10–13 m). Individual fish biomass was calculated using species-specific length-weight

regressions [42]. Benthic reef habitat was classified categorically: gravel (0.5–5cm), cobble (5

cm– 30 cm), small boulder (30 cm– 1 m), medium boulder (1 m– 2 m), large boulder (> 2 m),

or bedrock reef (>10 m). Classes were assigned an ordinal value denoting increasing habitat

complexity. Kelp canopy cover was characterized categorized as zero, fragmented, or full kelp

canopy.

We collected rockfish (n = 89) for stable isotope analysis using hook-and-line fishing meth-

ods at shallow (< 20 m), intermediate (20–33 m), and deep (> 33 m) depths using standard-

ized lures. Fishing effort, specifically lure bottom time, was approximately equal across all

sites. With approval from Simon Fraser University’s Animal Care Committee, fish were sacri-

ficed immediately using a lethal dose (0.5 g / L) of MS222. Multiple species were caught and

measured for weight and total length: S. melanops (black rockfish) n = 24, S. pinniger (canary

rockfish) n = 5, S. nebulosus (china rockfish) n = 17, S. caurinus (copper rockfish) n = 26, S.

maliger (quillback rockfish) n = 15, and S. flavidus (yellowtail rockfish) n = 2 (see Table A in

S1 File for life-histories). White muscle tissue was dissected from the dorsal musculature

behind the head and frozen immediately until laboratory processing. Fish stomachs were

removed and dissected (n = 62 full stomachs). Functional groups of prey were assessed using

mass and an index of relative importance (IRI) based on abundance, mass, and frequency of

occurrence (for detailed methods see Appendix A in S2 File).

To assess the long-term diet assimilation of rockfish, we processed dorsal muscle tissue of

rockfish for stable isotopes. Following standardized procedures for marine samples in Levin

and Currin [43], frozen tissue samples were thawed and rinsed with 10% HCl, followed by de-

ionized water baths to remove carbonates. Samples were dried at 60˚ C for 48 hours and

ground to a powder and encapsulated for analysis at the UC Davis Stable Isotope Facility. δ13C

and δ15N signatures were calculated relative to international standards, V-PBD for carbon and

air for nitrogen:

dX ¼
� Rsample

Rstandard
� 1

� �

x 1000

��

Eq 1

where X = 13C or 15N and R = 13C/12C or 15N/14N, respectively. δ units are in parts per thou-

sand (‰), representing the relative enrichment of heavy to light isotope. Increasingly positive

δ values represent increased enrichment of the heavy isotope. Accuracy is denoted as long-

term standard deviation at UC Davis: 0.2 ‰ and 0.3 ‰ for δ13C and δ15N, respectively. We

assumed that a shared isotopic baseline for δ15N was representative of all fish sampled in this

Expanded consumer niche widths may signal an early response to spatial protection
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study. This assumption was supported by the observation of a mean δ15N of 10.32 ‰ (n = 47,

SD = 0.4) for rock scallops (Crassodoma gigantea) that were opportunistically collected at the

same sites where fish were sampled (placing them one trophic level below the smallest fish

sampled). Because they are among the longest-lived filter-feeding invertebrates present on

these reefs, rock scallops provide a time-integrated baseline estimate for δ15N for this system.

A summary of δ15N and δ13C for each fish species can be found in Table A in S2 File.

Niche widths calculations and comparisons

To assess differences in rockfish niches, we first estimated isotopic niche widths for each spe-

cies as multivariate standard ellipse areas (SEA) using methods developed by Jackson et al.

[44] within the R package SIAR [45]. We estimated SEA using δ13C and δ15N means, variance,

and covariance in a Bayesian framework and applied a correction factor to the bivariate data

to prevent bias from small sample sizes, producing a final species niche estimate SEAC. SEAC

is robust to small samples sizes, as well as variable collection numbers [44]. Yellowtail rockfish

were excluded from analyses due to limited sample size.

Rockfish community (e.g., species combined) niche breadth was estimated for each area.

From Jackson et al. [44] methods, we estimated convex hulls by connecting species derived

SEAC estimates. This method incorporates natural propagation of uncertainty, and the ability

for statistical comparison, building on initial community niche metrics proposed by Layman

et al. [13]. From the convex hulls, we estimated four metrics that assess rockfish community

niches that indicate various aspects of trophic diversity within the food web [44]: total area

(TA), nitrogen range (NR), carbon range (CR), and mean distance to centroid (CD). TA is an

estimate of total niche size, providing the total extent of trophic diversity within the commu-

nity assemblage. NR and CR were calculated as the greatest distances between maximum and

minimum δ15N and δ13C values, respectively, of the convex hull. NR represents the vertical

structure of the food web and reflects the total number of trophic levels for within the commu-

nity assessed, while CR provides an indicator of the diversity of basal energy inputs. CD, calcu-

lated by the distance between an individual and the δ15N - δ13C centroid in the community,

provides a measure of mean trophic diversity.

Data analysis

To determine if rockfish niche expansion occurred in the MPA (Fig 1), we compared niche

metric isotopic extent between the MPA and each fished area, at the community level (niche

metrics: TA, NR, CR, CD) and at the species level (niche metric: SEAC) among areas. We cal-

culated the probability of niche expansion, by comparing the posterior distributions of the

niche metrics (e.g., comprised of estimates of isotopic niche size) between areas, where the

number of estimates greater in the MPA relative to a fished area, divided by the total number

of estimates in the distribution, gives a probability of expansion [46]:

P a > bð Þ ¼

P
ðXa > XbÞ

n
� 100 Eq 2

Where a and b represent the posterior distributions of a niche metric (e.g., TA) of differing

areas (e.g., a = MPA and b = fished area). X represents a single estimate in the posterior distri-

bution of metric a and b, and n is the total number of estimates in each posterior distribution

(n = 104). By estimating proportion of estimates in a that were larger than b, we calculated the

direct probability of the niche expansion in the MPA relative to fished areas. We further

extended these methods to compare niche sizes among different species (e.g., a = black rock-

fish vs. b = copper rockfish).
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We constructed linear mixed effects models (LMEs) for rockfish communities, species-spe-

cific rockfish, and lingcod observed on scuba transects to test for the effects of spatial protec-

tion on fish densities, sizes, and biomass. Models of log transformed fish biomass were

analyzed with a Gaussian error distribution and identity link function and fitted by residual

restricted maximum likelihood (REML) using the R package lme4 package [47]. Generalized

linear mixed effects models (GLMMs) of fish density were fit with a Poisson error distribution

and log link function. Protection status (status), kelp canopy cover (kelp), depth, and benthic

habitat class (benthic habitat) were treated as fixed factors and assigned an ordinal value of

increasing values representing more protection, kelp canopy cover, depth, and rock size,

respectively. Site was treated as a nested random effect due to the hierarchical nested nature of

our sampling design [48]. Differences in community and species-level size structure were

assessed with size-frequency distributions between fished areas and the MPA.

To determine the effects of spatial protection on rockfish δ15N signatures (e.g., trophic

diversity), we used LMMs. Protection status was treated as a fixed-effect, as well as rockfish

body size (length) because size is known to effect δ15N signatures, a proxy of trophic level [49].

We included an interaction between length and MPA status to test if protection status medi-

ated the relationship between rockfish size and δ15N. In this model, site was included as a ran-

dom effect. In addition, we tested for separate effects of each fished areas (Fished North and

Fished South) on the relationship between fish length and δ15N by treating area as a fixed

effect. This model showed no difference in the relationship between fish length and δ15N

among fished areas (Table A and Fig A in S3 File).

We used a model selection approach to evaluate the strength of evidence for alternative can-

didate models of reef fish biomass, density, and rockfish δ15N values. We compared models

with combinations of fixed factors that we deemed ecologically relevant a priori. The relative

support for each model was determined using Akaike information criterion (AIC) corrected

for small sample size (AICc). Models were standardized relative to the best-fit and most parsi-

monious model to determine ΔAICc values, where lower values indicate the best compromise

between model fit and complexity. ΔAICc values of� 2 were used as a cut-off to separate well-

supported models from those that were less well-supported [50]. Akaike weights (Wi) were cal-

culated as the ratio of Δi values for each model relative to the entire set of candidate models.

To assess the relative importance of each variable in our biomass and density model sets, we

averaged the top models using Akaike weights in a weighted average. Using the R package

MuMIn [51], average parameter estimates and unconditional variance were calculated from

models with ΔAICc values< 4, as well as their relative variable importance (RVIs), the sum of

the Akaike weights of the models in which that factor appears. Prior to model averaging, we

standardized the continuous predictor variables by subtracting their mean and dividing by 2

standard deviations for direct comparison of parameter coefficients [52].

Results

Differences in rockfish community & species niches between the MPA and

fished areas

We found an 86% and 72% probability that the total extent of rockfish community trophic

diversity, indicated by total community niche space (TA), was larger in the MPA than Fished

North and Fished South, respectively (Fig 3A; Table 1). Niche expansion in the MPA was

largely due to an increase in trophic level diversity indicated by a wider nitrogen range (NR

extent). Specifically, the rockfish community NR within the MPA had an 89% probability of

being larger than that of the Fished North and a 73% probability of being larger than that of

the Fished South. There was a lower probability (39% Fished North; 37% Fished South) that

Expanded consumer niche widths may signal an early response to spatial protection
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Fig 3. Rockfish isotopic niches. (A) Community niche widths among sites nested within two areas open to fishing (open symbols and dashed lines) and protected sites

closed to fishing in an MPA (closed circles and solid lines). (B) Species-specific niche widths (SEAC) across Fished North, the MPA and Fished South: black rockfish

(grey), canary rockfish (pink), china rockfish (green), copper rockfish (orange), and quillback rockfish (purple).

https://doi.org/10.1371/journal.pone.0223748.g003
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the protected and fished areas’ rockfish community niches differed in their isotopic carbon

range (CR).

Rockfish species-specific niches (SEAc) differed between fished and protected areas for

some species, but not all (Fig 3B; Table 2A). Black rockfish had an 87% probability of having a

larger niche width at sites within the MPA relative to Fished North, yet only a 44% probability

of having a larger niche compared to Fished South (Fig 3B; Table 2A). We found very low

probabilities (17–34%) that china and copper rockfish niche widths differed between the MPA

Table 1. Community-wide measures of rockfish trophic structure compared between the MPA and each fished area (North and South). Total area (TA) of the con-

vex hulls represents the total niche space occupied and thus total extent of trophic diversity in the food web. Nitrogen range (NR) represents the vertical structure within a

food web, and carbon range (CR) represents the range in basal resources at the base of a food web. Mean distance to centroid (CD) provides an average measure of trophic

diversity and is a function of species spacing. Probability (%) of difference in niche metrics were calculated with Eq 2.

Rockfish Community Niche

Measure of Trophic Structure

Probability (%) of Niche Metric Difference

MPA > Fished North MPA > Fished South Fished South > Fished North

Total Extent of Trophic Diversity (TA) 86 72 71

Trophic Level Diversity (NR) 89 73 70

Basal Resource Diversity (CR) 39 37 53

Trophic Diversity Species Spacing (CD) 45 42 53

https://doi.org/10.1371/journal.pone.0223748.t001

Table 2. Species-specific trophic niche comparisons. Rockfish species SEAC, a measure of isotopic niche width,

compared (A) among areas and (B) within areas. Probability (%) of difference in species niche width were calculated

using Eq 2.

A) Species Area Comparison % Probability of Niche Expansion

Black rockfish MPA > Fished North 87

MPA > Fished South 44

Fished North > Fished South 12

China rockfish MPA > Fished North 22

MPA > Fished South 17

Fished North > Fished South 39

Copper rockfish MPA > Fished South 4

Quillback rockfish MPA > Fished South 93

B) Area Species Comparison % Probability of

Niche Expansion

Fished North Canary > Black 92

China > Black 92

China > Canary 49

MPA Quillback > Copper 95

Quillback > China 89

Quillback > Black 81

Copper > Black 20

Copper > China 34

China > Black 33

Fished South Copper > Quillback 95

China > Quillback 90

Black > Quillback 79

Copper > Black 69

China > Black 68

China > Copper 54

https://doi.org/10.1371/journal.pone.0223748.t002
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sites and the sites nested within both fished areas. Quillback rockfish had a 93% probability of

having a larger niche width in the MPA than Fished South. No quillback or copper rockfish

were caught in the fished area north of the MPA and were unable to compare to those sites.

When species-specific niche widths (SEAC) were compared within areas, we found that spe-

cies occupied unique niche spaces of varying position and size (Table 2B, Fig 3B). At Fished

North, canary and china rockfish each have a 92% probability of having a greater niche width

than black rockfish, while china and canary rockfish niche sizes did not differ from each other

(Table 2B). Quillback rockfish niche width at the fished area south of the MPA had a 95%,

90%, and 79% probability of being smaller than copper, china, and black rockfish, respectively.

Conversely, quillback rockfish niche width in the MPA had a 95%, 89%, 81% probability of

being greater than copper, china and black rockfish niche widths, respectively. Across all areas,

both fished and protected, china rockfish consistently tended to be enriched in both δ15N and

δ13C compared to black rockfish.

Factors driving an increase in δ15N range

We detected evidence that protection status had a positive influence on rockfish δ15N signature,

a measure of trophic diversity, of fish inhabiting shallow reefs off Haida Gwaii (model Wi =

0.70, Table 3, Fig 4). Further, we found that protection status mediated the relationship between

rockfish length and δ15N signature (Fig 4), such that δ15N signatures of rockfish caught within

the MPA increased more rapidly with body size than those caught in fished areas (Fig 4). Cop-

per, black, and, quillback rockfish species appear to be driving this trend. The potential positive

effect of rockfish length, irrespective of protection status, was imprecise (confidence intervals

cross 0). We did not find evidence for differences in effects of Fished North and South on the

relationship between rockfish length and δ15N (Table A and Fig A in S3 File).

Stomach contents differences in rockfish between areas

Overall, rockfish diets in the MPA had high richness relative to the Fished North and South

areas (Appendix A in S2 File). China, copper, and quillback rockfish species stomach contents

reflected this pattern, while black rockfish displayed less rich diets. However, the composition

of prey consumed by rockfish was variable between species and areas, as indicated by mass

and IRI prey items. At Fished South, most species (china, copper, and quillback), consumed a

high proportion of small cryptic crabs (e.g., Pugettia richii, Scrya acutifrons, Cancer oregonen-
sus), or fish (e.g., black rockfish). At Fished North, rockfish exhibited species-specific differ-

ences in diet, however amphipods were most prevalent here compared to the MPA and Fished

South. Species displayed unique foraging preferences, such that black rockfish diets were typi-

cally dominated by Caprella alaskana, fish, and zooplankton. China and copper rockfish diets

showed high proportions of small cryptic crabs and quillback rockfish consumed crabs and

amphipods. Diets of quillback and copper rockfish at Fished North were highly diverse.

Table 3. Relative support of models explaining δ15N as a function of rockfish body length and protection status. Models were compared using likelihood of model

given the data (Log(L)), K, and ΔAICC values. Asterisks (�) represent an interaction term. The top model is shaded grey.

Response Model K Log(L) AICc Δ AICc Wi

Rockfish δ15N Length + Status + Length�Status 6 -77.97 166.7 0.00 0.70

Length + Status 5 -80.19 168.9 2.19 0.25

Status 4 -82.79 171.9 5.19 0.05

Length 4 -84.84 176.0 9.28 0.01

Intercept 3 -87.34 178.8 12.15 0.00

https://doi.org/10.1371/journal.pone.0223748.t003
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Rockfish density, biomass, and size in fished and protected areas

We did not clearly detect a greater density or biomass of the rockfish community at sites

within the MPA compared to sites in adjacent fished areas based on underwater visual surveys

(Fig B in S3 File). Rather, we observed high intra and inter-site variability, some of which was

driven by schooling species (e.g., single, large school of black rockfish at a site within the

northern fished area). We did not detect evidence for positive effects of protection status on

any specific rockfish species biomass or density (Table B and Figs C-D in S3 File), although

quillback rockfish and lingcod densities tended to be slightly higher, yet variable, in the MPA

relative to the fished sites as suggested by Hypotheses 1 and 3. Consequently, protection status

had a positive, albeit imprecise and relatively weak effect on quillback rockfish and lingcod

density (RVI = 0.23, 0.44 respectively; Fig D in S3 File).

Fig 4. Community δ15N and body length relationships. Relationship between rockfish δ15N and body length, as a function of MPA protection status (b = 0.05, R2 =

0.19) with 95% confidence intervals (shaded bands).

https://doi.org/10.1371/journal.pone.0223748.g004
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We found evidence that benthic habitat type and kelp cover were important factors driving

rockfish community density (RVI = 1 and 1, respectively) and black rockfish density (RVI = 1

and 1 respectively; Fig D in S3 File). MPA status was less important, and in fact had a negative

effect on community biomass (RVI = 0.75) and density (RVI = 0.59), and black rockfish den-

sity (RVI = 0.82) and biomass (RVI = 1) (Figs C-D in S3 File), likely driven by the school in

Fished North. We also detected evidence that china rockfish density was strongly influenced

by both benthic habitat type (RVI = 1) and depth (RVI = 0.91) in combination (ΔAICc = 0,

Wi = 0.47). Lastly, the size distributions of rockfish, at the community or species level, from

scuba observations did not notably differ between fished and protected areas (Fig E in S3 File).

In general, most rockfish were observed at Fished North, while lingcod were observed exclu-

sively in the MPA and Fished South.

Discussion

Recent evidence from marine protected areas established on both tropical and temperate reefs

points to unexpectedly rapid manifestations of direct effects on long-lived target species and

behavioral modifications by lower trophic level species that reduced their risk of predation

[24]. Here, we present baseline data on the trophic structure of rockfish in a recently estab-

lished MPA and adjacent fished sites with evidence for differences in their community niche

width, signaling early changes in trophic interactions within this newly protected rocky reef

ecosystem. Rockfish community niche width was greater inside the MPA relative to adjacent

fished areas (Fig 3A, Table 1). This greater niche width was driven by higher trophic level

diversity reflected by a wider nitrogen range, theoretically consistent with the hypothesis that a

release from size-selective fishing pressure can enable larger rockfish to consume larger, higher

trophic level prey (Fig 1; Hypothesis 2). Accordingly, protection status had a positive effect on

rockfish δ15N (Fig 4), and mediated the positive relationship between rockfish size and δ15N.

Contrary to this hypothesis, we did not detect a strong effect of the MPA on observable rock-

fish size. We hypothesize that behavioral responses by rockfish to higher order predation risk

imposed by lingcod may precede observable population-level responses by rockfish. Species-

specific life-history traits help to explain these seemingly paradoxical results.

MPAs and the expansion of trophic level diversity

By supporting the recovery of previously fished predators, MPAs can alter food web structure

[53,54], key trophic rates [18,19,55], and consumer niche breadth [21]. We found evidence

that spatial protection may expand the dietary niche breadth of an entire rockfish community

by increasing its trophic level diversity relatively rapidly. Rockfish community niche expansion

in the MPA was driven by shifts of some species to higher trophic positions. Multiple, non-

mutually exclusive ecological mechanisms could have triggered this response.

Our results suggest that recent spatial protection may alter rockfish feeding behavior. The

δ15N signature of protected rockfish increased more rapidly with body size than those in fished

areas, such that fish of equivalent size, and species composition, were more enriched in δ15N

within the MPA (Fig 4). Given these trends and no detectable increase in the mean length or

size distribution of rockfish communities in the MPA (Figs C-E and Table 2 in S3 File), our

results imply protected rockfish were either feeding on different prey, or on similar prey that

were at a higher trophic level. Observations of higher prey species richness in rockfish stomach

contents from the MPA suggest differences in foraging compared to fished areas (Appendix A

in S2 File). Dell et al. [56] similarly found that mesopredatory fish in MPAs foraged at higher

trophic levels relative to fished areas despite smaller fish sizes in the MPA. This was caused by

a prey switch from invertebrates to small recruiting fish that were more abundant in the MPA

Expanded consumer niche widths may signal an early response to spatial protection
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than non-MPA areas. In contrast, kelp bass (Paralabrax clathratus) in southern California

MPAs did not demonstrate higher trophic positions than those at non-MPA sites, possibility

due to ephemeral availability of pelagic food sources [57].

Previous studies on similar temperate reefs demonstrate strong behavioral responses by

rockfish to predation risk from lingcod [58,59]. Lingcod are fast growing predators on temper-

ate reefs known to consume rockfish [60] and respond positively to spatial protection [61]. We

found that lingcod densities tended to be slightly higher, yet variable, in the MPA we surveyed

relative to the fished sites (Fig B in S3 File). Empirical evidence from southern British Colum-

bia suggests that lingcod have higher densities of larger spawning individuals in old, well-

established MPAs relative to fished areas [62], which may have direct negative effects on sub-

adult rockfish [59]. In fact, rockfish biomass consumed by lingcod in Washington State was

5–10 x higher in MPAs than adjacent fished areas [63]. Simulation models of lingcod and

rockfish interactions within MPAs off the northeastern Pacific [64] highlight the generality of

the community-level consequences of protecting apex predators on the recovery of their prey

[1], although behavioral evidence would be needed to substantiate this hypothesis.

Rockfish display anti-predator behaviors in the presence of predators, such as avoidance

and reduced attack rates on prey [58]. These behaviors are prevalent among slower-growing

and late-to-mature rockfish (e.g., quillback and copper rockfish) relative to rockfish with faster

life-history traits in similar trophic positions (e.g., black rockfish). Relative to Fished South,

quillback rockfish niches had a 93% probability of niche expansion in the MPA (Fig 3B). In

addition, we observed enriched δ15N signatures in quillback and copper rockfish in the MPA

relative to Fished South, which suggests a behavioural change in foraging to higher trophic lev-

els possibly to avoid lingcod predation (Figs 3B and 4A). Black rockfish also showed an 87%

probability in niche expansion in the δ15N range in the MPA relative to Fished North, however

less support for this was detected among this pelagic rockfish in Fished South (44% probabil-

ity). Higher lingcod densities in the MPA relative to Fished North, but less so relative to Fished

South (Figs B and D in S3 File), may have triggered behavioral shifts in rockfish foraging

detectable in their isotopic signature.

Behaviorally-mediated interactions are well-documented among apex predators and meso-

predators, in efforts by mesopredators to reduce the risk of predation [65]. Due to a trade-off

with predation risk, foraging behaviors can be altered [66] where niches expansions to a more

diverse set of prey occurs [67]. Given the unique species-specific life-history traits among reef

consumers in our study, Hypotheses 1–3 (Fig 1) are not only non-mutually exclusive, but are

likely co-occurring at different rates as the recovery of trophic and behavioral interactions

plays out within this newly protected food web.

Studies elsewhere suggest that the recovery of apex predator size structure in MPAs can

lead to an increase in food chain length (i.e. the number trophic levels) within a food web,

because larger fish (i.e., with larger gape sizes) can consume larger, higher trophic level prey.

This same mechanism was proposed for the dietary niche expansion of the California sheep-

head wrasse (Semicossphus pulcher) upon recovery of its population size structure following a

reduction in previously intense fishing [21]. South of our study area, along the west coast of

Vancouver Island where sea otter (Enhydra lutris) populations have been recovering and trig-

gering a trophic cascade, increases in this apex predator and associated kelp forest habitat have

been associated with expanded rockfish trophic niches, attributed to an increase in fish prey

availability [68]. Here, we show that the trophic positions of reef fish in a Haida Gwaii ecosys-

tem increase with body mass, which agrees with recent research [69], and our results indicate a

positive MPA effect on trophic position. However, we did not observe larger or more abun-

dant rockfish within the MPA. This is not surprising given just five years of spatial protection

for a notoriously slow-growing fish genera (generation times 6–22 years, Table A in S1 File).
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Rockfish species will likely respond to spatial protection in different ways due to their

unique life-histories (Table A in S1 File). Species composition may thus play a key role in

determining community-level niche responses. Here, rockfish species occupied unique niches

within areas, and had varying responses in the MPA relative to fished areas (Fig 3B, Table 2B).

For instance, unlike findings on Vancouver Island during the recovery of E. lutris [68], we did

not see black and copper rockfish responding similarly in niche size. Alterations to trophic

interactions, such as recovering higher trophic level predators, are expected to induce complex

ecosystem changes, and thus affect these species uniquely, influencing how community niches

will respond.

Another alternative explanation for the larger rockfish niche width in the MPA compared

to fished areas, as well as differences in species composition between fished areas, is a differ-

ence in the underlying prey base among the geographic areas, unrelated to protection status.

Because of the low sample size, due to a high proportion of empty stomachs of fish caught, the

snapshot data afforded by stomach content analysis is less powerful than the stable isotope

samples, which provide a long-term, integrated picture of prey assimilation. We acknowledge

that our sample size, constrained by permits and sampling time, is small (n = 87 individuals

among 5 species) and thus, the degree to which our estimates are representative of communi-

ties is constrained. While isotopic indices are a convenient proxy of trophic patterns, they also

suffer from bias, especially when small sample size leads to wide dispersion, and thus should

be interpreted carefully [70]. These limitations should be kept in mind when interpreting our

results.

Long-term tracking of the trophic ecology and abundance of reef-associated fish across

these sites through time and in comparison to this baseline survey will be necessary to distin-

guish among these possible explanations. Studies on how MPAs may alter the trophic positions

of recovering consumers indicate that trophic responses will likely depend on ecosystem struc-

ture (e.g., habitat type, predators and prey), species characteristics (e.g., generalist vs specialist

consumers), and/or regional biotic and abiotic processes. While emerging isotopic evidence

has demonstrated that MPAs may alter trophic dynamics [56], other studies have found no

effects [71,72] relative to adjacent areas. Moreover, niche responses to protection remain

unclear, where expansion can occur when community size structure recovers [21], or shrink

relative to adjacent fished areas due to differences in prey availability [57].

Restoring trophic and behavioral roles of predators with spatial protection

Food web responses to spatial protection are complex and will continue to change as previ-

ously fished apex and mesopredators grow in size and grow in population abundance [1,14].

Density-dependent effects will likely drive benthic predators to expand their home ranges out-

side MPAs, exposing themselves to fishing mortality and once again altering the trophic inter-

actions within MPAs [16,73]. Habitat changes can also occur via trophic cascades within

MPAs [17,74], altering available habitat known to be important for reef-associated fish [75].

As such, trophic responses to spatial protection will change through time in unpredictable

ways yielding ecological surprises [23]. We offer a benchmark by which to assess long-term

changes in trophic structure post MPA establishment.

Ecosystem-based interventions, such as MPAs, are increasingly being used to rebuild ocean

ecosystems. Yet, ecosystem change often begins with alterations in ecological interactions pre-

ceding detectable changes in populations. Fortunately, contemporary tools allow us to detect

changes in trophic interactions that can otherwise escape observation. The patterns we docu-

ment here imply that among ecosystems subject to spatial protection, dynamic and sometimes

surprising changes to system flows (i.e., trophic interactions) may be anticipated before
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detectable changes in system stocks (i.e., population abundance and size structure). If the con-

servation objective of an EBM intervention is to restore ocean ecosystems, restoring both the

trophic and behavioral roles of previously fished predators may manifest in measurable ways

other than simply abundance and size.
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