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Hyperoverlap: detecting biological overlap in n-dimensional space

Abstract and keywords

1. Comparative biological studies often investigate the morphological, physiological or ecological 

divergence (or overlap) between entities such as species or populations. Here, we discuss the weaknesses 

of using existing methods to analyse patterns of phenotypic overlap and present a novel method to 

analyse co-occurrence in multidimensional space. 

2. We propose a ‘hyperoverlap’ framework to detect qualitative overlap (or divergence) between point 

data sets and present the HYPEROVERLAP R package which implements this framework, including functions 

for visualisation. HYPEROVERLAP uses support vector machines (SVMs) to train a classifier based on point 

data (such as morphological or ecological data) for two entities. This classifier finds the optimal boundary 

between the two sets of data and compares the predictions to the original labels. Misclassification is 

evidence of overlap between the two entities. We demonstrate the theoretical and practical advantages 

of this method compared to existing approaches (e.g. single-entity hypervolume models) using the 

bioclimatic data extracted from global occurrence records of conifers.

3. We find that there are instances where single-entity hypervolume models predict overlap, but there are 

no observations of either entity in the shared hypervolume. In these instances, hyperoverlap reports non-

overlap. We show that our method is stable and less likely to be affected by sampling biases than current 

approaches.  We also find that hyperoverlap is particularly effective for situations involving entities with a 

small number of data points (e.g. narrowly endemic species) for which single-entity models cannot be 

reliably constructed. 

4. We argue that overlap can be reliably detected using HYPEROVERLAP, particularly for descriptive studies. 

The method proposed here is a valuable tool for studying patterns of overlap in multidimensional space. 

Keywords ecospace, hyperoverlap, hypervolume, machine learning, morphospace, overlap, support 

vector machines.
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Main Text

Introduction

Many ecological and evolutionary questions revolve around the study of overlap: Do two species (or any 

other entity, Table 1) overlap in terms of climatic requirements? How have particular entities diverged (or 

converged) over evolutionary time? Under what conditions could two entities coexist? These questions of 

biological overlap are central to a broad range of studies including taxonomy (Rissler & Apodaca, 2007), 

investigating broad-scale evolution of climatic envelopes (Donoghue & Edwards, 2014), niche partitioning 

(Peterson et al., 2013), predicting the spread of invasive species (Guisan et al., 2014) and palaeoclimatic 

estimation (Mosbrugger & Utescher, 1997). Many of these studies have been made possible because of 

the relatively recent development of large online databases such as the Global Biodiversity Information 

Facility (GBIF), the Plant Trait Database (TRY; Kattge et al. 2020) and WorldClim (Fick & Hijmans, 2017), 

which make large amounts of biological data publicly available. 

We can use hypervolume concepts to analyse patterns of overlap between sets of point data in 

multidimensional space (e.g. Blonder et al, 2018). Current hypervolume approaches first map each 

observation in an n-dimensional space, where the dimensions are the chosen variables. These approaches 

then create a multidimensional object (a “hypervolume”) that encloses the observations, often allowing 

for error. The hypervolume is then assumed to represent the set of phenotypes or environments occupied 

by the entity. Hypervolume concepts were first used to describe the ecological niche (see Holt, 2009) but 

they are broadly applicable to any multidimensional space and have been utilised in several other fields 

(e.g. morphometry, Sidlauskas, 2008; functional traits, Díaz et al., 2016). However, such hypervolume-

type studies typically seek to predict the distributions of entities, and require a priori assumptions about 

the distribution or shape of the hypervolume, so methods developed for this purpose may not be suited 

to answer questions which require qualitative inference of overlap. 

Many hypervolume-based algorithms in ecology model the occupied region of a single entity – overlap 

detection is a by-product of this application. In this paper, we use the term ‘single-entity method’ to refer 

to any which constructs individual models for each entity and then compares them to analyse overlap. 

Joint species models (e.g. Pollock et al., 2014; Ovaskainen et al., 2016) are an emerging tool to 

incorporate biotic interactions into niche models but require absence data as well as presence data so 

they are not considered further here. A
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In this paper, we discuss the limitations of detecting biological overlap using single-entity methods and 

argue that all single-entity solutions to this problem share similar theoretical problems.  We present the 

‘hyperoverlap’ framework – a novel application of a machine learning classifier to detect overlap between 

point data sets sampled from hypervolumes in n-dimensional space. We also present an R package that 

implements this analytical framework – HYPEROVERLAP (see 

https://github.com/matildabrown/hyperoverlap). To highlight the conceptual novelty of our approach, we 

compare the performance of HYPEROVERLAP with the most comparable single-entity approach: Blonder’s 

‘HYPERVOLUME’ algorithms (hereafter referred to as HYPERVOLUME to distinguish the R package from more 

general uses of the term hypervolume). We analyse a real-world example (the ecological ranges of genera 

of conifers) to demonstrate the advantages of our method and discuss the caveats that should be 

considered when using the hyperoverlap framework.  

Current approaches

The geometry of the hypervolume may be measured in several ways, depending on a priori expectations 

about the shape of the hypervolume. A plethora of increasingly sophisticated algorithms have been 

developed to model this hypervolume, either directly or indirectly, and measure overlap between the 

estimated hypervolumes occupied by two entities. Although earlier approaches were computationally 

and/or conceptually limited to low-dimensional analyses (e.g. Broennimann et al., 2012), several recent 

methods allow direct analysis in n-dimensional space. 

Machine learning methods are used extensively to analyse landscape-scale, multidimensional data. In 

explicit hypervolume models, machine learning classifiers are used to predict the habitat suitability of 

each pixel in a landscape (e.g. MaxEnt; Phillips et al., 2006); to classify points in ecological space as ‘in’ or 

‘out’ of the modelled niche (e.g. hypervolume_exclusion_test; Blonder et al., 2018); or to define 

the boundary of the niche in n-dimensional space (e.g. hypervolume_svm; Blonder et al., 2018). Once 

described by an appropriate model, two hypervolumes may be compared and the volumes of the 

overlapping and unique regions can be measured (see hypervolume_set, 

hypervolume_overlap_statistics functions; Blonder et al., 2018).

Current methods of describing hypervolumes vary in the geometric model used. The simplest of these 

methods is the n-dimensional convex hull, implemented in the GEOMETRY R package (R Core Team, 2014; 

Habel et al. 2015). However, many biological hypervolumes are not convex. Similarly, the hypervolumes 

simulated by NICHEA software (Qiao et al., 2016) are constrained to ellipsoids, and so are not broadly 

applicable to the non-convex or irregular data common encountered in ecological problems. Dynamic A
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range boxes (DYNRB PACKAGE; Schreyer et al. 2015) have the advantage that they do not assume normally 

or elliptically distributed data, but the authors acknowledge that correlated variables must be removed 

during pre-processing (Junker et al. 2016). Because many biological variables are strongly correlated, this 

method is limited in the variables that can be analysed. Blonder’s HYPERVOLUME package (Blonder et al., 

2014; Blonder et al., 2018) includes a range of functions for hypervolume modelling and comparison. In 

both HYPERVOLUME AND HYPEROVERLAP the shape of the hypervolume is not defined by a priori expectations, 

so we have used HYPERVOLUME as a standard to evaluate the performance of HYPEROVERLAP. Additionally, 

these methods use the same machine learning classifier (SVM), so conflicting results will be driven by 

conceptual rather than algorithmic differences. 

Weaknesses of using single-entity methods for detecting overlap in multidimensional space

Reliable results from single-entity methods depend on meeting several assumptions, many of which are 

unlikely to hold for landscape-scale datasets (Jarnevich et al., 2015). The most commonly violated of these 

assumptions is that the records are an unbiased sample of the biological range. Satisfying this assumption 

requires even sampling from the entire geographic and ecological and/or phenotypic range of an entity. 

For almost all entities in GBIF, occurrence sampling is substantially biased in geographic space (Boakes et 

al., 2010; Beck et al., 2014), with strong biases towards roads and urbanised areas, and especially strong 

biases towards rare species (Stolar and Nielsen, 2015).

Thus, real-world entities are often represented by sampled data that are irregular, holey, discontinuous, 

or include outliers (Blonder, 2016). Outliers are often treated as noise by modelling algorithms – which 

are designed to filter out noisy data – but sampling effort, habitat fragmentation, and the geographical 

distribution of suitable habitat can each cause real occurrence records to appear as outliers. Highly 

restricted, often endangered entities with geographic outliers are often high priorities for conservation 

management but are also most likely to be misrepresented by these models. Adjusting the model-fitting 

parameters to ensure that every occurrence record is included in the model predictions (i.e. a 0% 

omission threshold) can result in severe extrapolation. In species distribution modelling, this means that 

conditions well outside the observed hypervolume are predicted to be suitable (Escobar et al., 2018). This 

means that the choice of omission threshold may falsely inflate or decrease observations of overlap 

between entities. 

These issues are unavoidable when attempting to resolve the complex problem of accurately modelling 

the hypervolume from sampled point data, and there is no universal best approach (Qiao et al., 2015). 

However, we suggest that the detection and description of the observed overlap between two A
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hypervolumes can be achieved by comparing the point data for entities directly and is thus a simpler task 

than explicitly modelling the hypervolume. 

Hyperoverlap conceptual framework

We propose a qualitative method for detecting multidimensional overlap. There are three possible 

qualitative relationships between points sampled from two hypervolumes: nested, overlapping, or non-

overlapping (Fig. 1). If the observations from each hypervolume can be perfectly separated by a decision 

boundary (Table 1), we cannot identify a shared region and the entities do not overlap. If this decision 

boundary does not exist, the entities overlap (with misclassified points occupying the shared region). If we 

assume that all observations of an entity are within the hypervolume, this principle can be applied to 

samples of point data (but see Caveats and Limitations). 

The HYPEROVERLAP algorithm finds the optimal separating hyperplane between two entities using SVMs 

based on point data and calculates the number of points belonging to each entity on either side of this 

boundary. If there are no misclassified points, we infer that the hypervolumes for the entities do not 

overlap (Fig 1a, but see Caveats and Limitations). If at least one point is misclassified (Fig.1b), the two 

entities overlap. If no boundary can be found (Fig.1c), one hypervolume is ‘nested’ within the other (see 

Terminology). 

If there is a single hyperplane (of n-1 dimensions) which perfectly separates the observations from each 

hypervolume, the entities are linearly separable (Fig. 2a). For entities which cannot be separated using a 

linear plane but occupy distinct regions of space (Fig. 2b), a kernel function (Scholkopf & Smola, 2002) can 

be used to find a curvilinear decision boundary. Polynomial kernel functions are preferred because other 

functions (e.g. sigmoidal or Gaussian) can create complex decision boundary shapes that are likely to 

overfit the classifier (Fig. 2c). The order of the polynomial kernel function constrains the complexity of the 

decision boundary. Potential concerns about the biological meaningfulness of this boundary may be 

addressed by visualisation (functions provided in the HYPEROVERLAP package). 

Sketch of the HYPEROVERLAP algorithm

Before implementing The HYPEROVERLAP workflow, it is important to pre-process data to exclude duplicate, 

incomplete or erroneous records, and to ensure that the dimensions are comparable (see Blonder, 2018). 

A support vector machine (SVM) is then trained on the data using the E1071 package (Meyer et al., 2018). 

This creates a fitted linear model that is used to predict the labels of the input data. If the model correctly 

classifies every point (i.e. the entities can be separated by the linear hyperplane) the function returns the A
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result (non-overlap) and the coordinates of the decision boundary. If there are misclassified points, SVMs 

are trained using polynomial kernels of increasing complexity, each time evaluating the number of 

misclassified points until a separating hyperplane is found. If such a hyperplane is not found, the result 

(‘overlap’) is returned. 

Finding the decision boundary for non-overlapping entities is fast (typically milliseconds) but can be much 

slower if the entities overlap. To prevent excessive searching, the algorithm does not attempt a non-linear 

kernel if the linear result is that the two entities are nested, or if a certain number of points representing 

significant overlap are misclassified. This parameter is user-defined (see stoppage.threshold; 

package documentation). 

Machine learning classifiers are typically trained with the aim to correctly predict the labels of unknown 

data. Various caveats about relative and absolute sample sizes apply to SVMs when they are used to 

automate identification in this way. However, these caveats are not relevant to HYPEROVERLAP, which does 

not use SVMs in a predictive fashion. Instead, HYPEROVERLAP uses the SVM classifier as a descriptive tool 

and so overfitting is prevented by setting constraints on the shape of the decision boundary. This can be 

verified using visualisation of the decision boundary (in three or fewer dimensions) or visualisation of the 

data using ordination (in four or more dimensions) using functions in the HYPEROVERLAP R package (see 

Appendix S1 in Supporting Information for example). 

Theoretical advantages of HYPEROVERLAP

Dimensionality and sample size

The hyperoverlap algorithm considers the data for two entities simultaneously, unlike other hypervolume 

methods (e.g. HYPERVOLUME, BLONDER ET AL., 2018; NICHEA, Qiao et al., 2016 ). It is often difficult or 

impossible to use single-entity methods to fit models to very small samples, and thus to investigate many 

relevant problems (e.g. those involving threats to endangered species). This problem affects all methods 

which fit individual models to entities. However, the most relevant sample size for HYPEROVERLAP is total 

sample size for the pair of entities. As a result, this approach can be effective with sample sizes as small as 

1 for one of the entities –provided that the number of observations of the other entity is at least 

moderately large (see Evaluation: Results; Case Study 2).  However, care should be taken when analysing 

two very small entities, as discussed in Caveats and Limitations. 
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Computational effort

Conventional measurement of overlap from single-entity models require two phases; initial modelling, 

then pairwise comparison of models. Unless the number of entities is very small, conventional memory 

constraints demand that these models are written to disk and re-read for comparison, separating these 

two phases. Hyperoverlap builds models using the paired data, so does not require this storage step. 

Computational effort is further reduced by constraints on the shape of decision boundary; the decision 

boundary produced by HYPEROVERLAP is constrained to linear and low-degree polynomial kernels (unlike 

the edges of the hypervolumes modelled using HYPERVOLUME). 

Evaluation

Methods 

To evaluate the performance of HYPEROVERLAP, we compared parallel results between HYPEROVERLAP and 

HYPERVOLUME for 71 conifer genera (2485 pairs). Conifers are an ideal group for this because the group is 

diverse with regard to ecological and distributional range (e.g. Pinus occurs across the Northern 

Hemisphere; Wollemia is only found in one gorge near Sydney, Australia; Farjon & Filer, 2013) and 

because species of conifers have well-defined bioclimatic ranges (Brodribb & Hill, 1999). The data are 

geographic point records for each genus of conifer used by Larcombe et al. (2018). We extracted climatic 

data for each point record from WorldClimV2 at 30” (approximately 1km2) resolution and used DISMO 

(Hijmans et al., 2015) to build the values for three variables which are known to correlate to physiological 

stresses in conifers. These variables were mean minimum temperature of the coldest month (mint.cm) 

reflecting frost tolerance (Sakai & Larcher, 2012); mean temperature of the warmest quarter (at.warmq) 

reflecting growing season temperature (Prentice et al., 1992); and mean precipitation of the driest 

quarter (p.dryq) reflecting drought tolerance (Mackey, 1994). Although HYPEROVERLAP has been developed 

for n-dimensional analyses, using only three dimensions for evaluation allowed the results to be inspected 

directly, without requiring ordination. We also conducted analyses using two additional variables (mean 

precipitation of the warmest and wettest quarters, respectively) to assess computational performance in 

higher dimensional space.

Precipitation records (p.dryq) were transformed to an approximately normal distribution by taking the 

fourth root and all variables were z-transformed to the global (-90° to 90° latitude) mean and standard 

deviation of each variable. We compared the overlap/non-overlap results, computational time and 

stability of the two methods (HYPEROVERLAP and HYPERVOLUME). To evaluate stability, each overlap detection A
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function was run ten times (a larger number of runs was not computationally feasible). We then compiled 

and compared the results from each method. For each entity pair that gave conflicting results, we visually 

inspected the data to assess the accuracy of each method. 

Runtimes are given for scripts run on an Intel i7-8700k CPU.

Results

Overlap detection

HYPEROVERLAP detected 1134 non-overlapping pairs of entities (of 2485 pairs; Fig. 3). Of these non-

overlapping pairs, 1082 (95%) could be separated with a linear decision boundary, and only 52 (2.1%) 

required a curvilinear hyperplane (polynomial kernel function) to identify ecological non-overlap. The 

number of non-overlapping pairs identified by HYPERVOLUME varied with run, ranging from 1076 to 1092 

(see Computational Time and Stability).

There were differences in the results given by different methods. HYPEROVERLAP reported 133 non-overlaps 

(5.5% of the 2415 pairs excluding Wollemia) that were classified as overlaps by HYPERVOLUME (see Case 

Study 1), and 33 overlaps (1.4% of total) where HYPERVOLUME reported non-overlap (see Case Study 2). 

Visualisation confirmed the status of all the non-overlaps identified by HYPEROVERLAP that were reported as 

overlaps by HYPERVOLUME. There was no discernible pattern in these conflicts; they do not cluster by 

taxonomic group or sample size (Fig. 4). In addition, while HYPEROVERLAP satisfactorily created models to 

compare Wollemia with each other genus, HYPERVOLUME could not produce a hypervolume for this taxon 

because, with only two unique points in ecospace, it was not possible to build a model in three 

dimensions. Although Wollemia cannot be included in comparisons of stability or computation times 

between HYPERVOLUME and HYPEROVERLAP, it should be noted that the small number of points for this entity 

is not an artefact of sampling effort. These data represent the entire range of this genus at this spatial 

resolution.

Computational time & stability

At the default parameters (cost=1000, kernel=”polynomial”, kernel.degree=5, 

stoppage.threshold=0.4), the mean total runtime (all pairwise comparisons) for HYPEROVERLAP 

was 228 minutes (range 212-239 minutes). The results from HYPEROVERLAP were exceptionally stable; the 

results for identifying overlap versus non-overlap, shape, polynomial order and number of misclassified 

points were identical in all 10 runs. When the algorithm was constrained to linear decision boundaries, 

the average runtime was 85 minutes. A
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At default parameters, computation of HYPERVOLUME results took 16 minutes. However, these results were 

less stable than those produced by HYPEROVERLAP. Qualitative results (overlap/non-overlap) were 

inconsistent for 109 pairs of entities (4.5%). Increasing the samples.per.point parameter by a factor 

of 100 reduced this instability to 38 pairs (1.6%) but increased the average runtime to 327 minutes. 

Preliminary tests in five-dimensional ecospace (adding mean precipitation of the warmest and wettest 

quarters) emphasised the computational advantage of HYPEROVERLAP in higher dimensions; the average 

runtime at default parameters was 147 minutes for HYPEROVERLAP and 855 minutes for HYPERVOLUME. 

Case Study 1: Dacrycarpus and Cupressus 

The comparison of Dacrycarpus (555 unique points in ecospace) and Cupressus (133 points) illustrates the 

main reason for the observed conflicting results between HYPEROVERLAP and HYPERVOLUME (points in orange 

and red, Fig. 3). HYPERVOLUME finds that these entities overlap (Fig. 5b; overlap shown in green), but 

HYPEROVERLAP finds that the points of each entity occupy distinct regions of ecospace. This can be verified 

by visualisation of the decision boundary (Fig. 5a). The region of overlap found by HYPERVOLUME is the 

result of small but non-trivial extrapolation by the model-building algorithm; none of the original 

observations are within this region of apparent overlap. This extrapolation effect was observed for all 

entity pairs for which HYPEROVERLAP detected non-overlap, but HYPERVOLUME reported overlap (80% of total 

conflicts). If our goal is to predict potential overlap, then this extrapolation may be sensible. However, if 

we are aiming to identify regions of multidimensional space occupied by both entities, we suggest that the 

result given by HYPEROVERLAP is more accurate.  

Case study 2: Metasequoia 

Metasequoia (representing the single species, M. glyptostroboides) is a narrowly endemic genus of 

conifers with only three unique points in ecospace at our sampling resolution. Its native range is limited to 

a small region of Hubei Province, China, although fossils indicate that it was previously widespread 

(LePage et al., 2005). This entity proved the most problematic for HYPERVOLUME; for over 20% of pairs 

involving Metasequoia (15 pairs) the results for HYPEROVERLAP and HYPERVOLUME were in conflict.  Although 

the conflicting result for Metasequoia and Cathaya is a case of false separation like those discussed in 

Case Study 1, all the other conflicts represent cases in which HYPERVOLUME finds a false separation 

between Metasequoia and the other entity. In these latter cases, HYPEROVERLAP identified overlap, and 

visualisation shows that the region occupied by Metasequoia is deeply nested within the hypervolume 

occupied by the other entity (Fig. 6). It is not clear what is driving this anomalous result from HYPERVOLUME, 

but large differences in sample size may contribute. A
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Caveats and limitations

The first obvious limitation of the hyperoverlap framework is that while it effectively detects overlap or 

non-overlap, it does not measure the amount of overlap. The overlapping region may be studied by 

visualisation or inspection of misclassified points, but to measure its volume or calculate a similarity index 

between the two entities would require the edges of each entity to be defined. This would then invoke 

the assumptions and challenges associated with single-entity models that this framework was designed to 

circumvent. However, the shared hypervolume may be modelled based on misclassified points using 

existing methods. 

There are certain theoretical situations where entities do not overlap but cannot be separated using the 

HYPEROVERLAP algorithm (see Fig. 7 for examples). Although some of these situations may be biologically 

plausible, we did not find evidence of any in this study. However, such cases may be identified by using 

the visualisation functions in the HYPEROVERLAP package. 

HYPEROVERLAP is also subject to many caveats that apply to the use of hypervolume concepts. Incomplete 

records cannot be placed in hyperspace so must be excluded or otherwise augmented (see Blonder 2014). 

Although SVMs handle high dimensionality well, care should be taken when comparing entities that are 

both highly restricted in multidimensional space. The extreme case is that if the total number of unique 

points for a pair of entities is lower than n+1, where n is the number of dimensions, the two entities can 

always be separated perfectly with a linear hyperplane. Curvilinear separation is not recommended for 

small total sample sizes. 

It should also be noted that observations represent points in time as well as space; the occupation of 

morphological or ecological space by an entity is dynamic and is likely to change through time – the fossil 

record of conifers shows evidence of major changes in ecological occupation during the Cenozoic 

(Macphail, 2007). A significant caveat is that hyperoverlap does not directly identify overlap between 

pairs of hypervolumes, instead it identifies overlap between observations sampled from those 

hypervolumes. Thus, there will be a false identification of non-overlap if there are no observations from 

the true region of intersection. Other methods deal with this issue mainly by padding each point, in effect 

extrapolating the range of each entity. However, this solution is problematic, as discussed above (Case 

Study 1). In any case, no approach can fully overcome poor sampling. In particular, care should be taken 

when using databased occurrence records, which are likely to include some erroneous observations. 

Visualisation of results and expert knowledge of the entities concerned are both vital to using 

HYPEROVERLAP and to identify errors such as those illustrated in Fig. 7.  A
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Extensions to HYPEROVERLAP 

Here, we have focused on overlap versus non-overlap, rather than exploring the question of nested 

hypervolumes, but this type of relationship can also be explored using the hyperoverlap framework. This 

has several possible applications in studying recent changes in hypervolumes, including phenological shifts 

and detection of ecological range expansion in invasive species. Although this conceptual extension has 

not been tested, it is a promising avenue for further research and potential inclusion in future versions of 

the HYPEROVERLAP R package. 

Conclusions

The hyperoverlap framework presented here has potential applications in many disciplines – although the 

concepts underpinning this method have been used widely within ecology, they are not specific to this 

field. HYPEROVERLAP can be used to investigate ecological and evolutionary partitioning, palaeoclimatic 

conditions, taxonomy and historical changes in ecology or morphology.

For many biological questions, it is not necessary to model the underlying hypervolume to evaluate 

overlap. By comparing the space occupied by entities without explicitly describing the geometry of the 

underlying hypervolumes, fewer assumptions are required to be met and results can be more accurate 

and reliable than existing methods, as demonstrated clearly for our real-world example (conifers). The 

approach is particularly effective when the set of entities to be compared is very large and includes 

entities with a small number of occurrences relative to the dimensionality of the analysis (e.g. species 

with highly restricted distributions), or when there are potential complex interactions between variables. 

The HYPEROVERLAP R package provides a user-friendly, intuitive machine-learning method to detect overlap 

in n-dimensional space, and is an additional tool to use in analyses of many biological datasets. 
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Tables

Table 1. Key terms in the hyperoverlap framework

decision boundary The hypersurface which best separates the data of a pair of 

entities in n-dimensional space. May be linear or non-linear. 

entity Any group of individuals to be compared, as per 

Broennimann et al. (2012). Not limited to species; other 

examples may be genera, families, native or invasive 

populations or any other statistical population.

explicit hypervolume 

method/model

Any method or model which explicitly describes the 

geometry of the hypervolume. Examples include convex 

hulls (Habel et al. 2015), dynamic range boxes (Schreyer et 

al. 2015) and the HYPERVOLUME package (Blonder et al., 

2014; Blonder et al., 2018).

hyperplane An n-1-dimensional subspace of an n-dimensional space. 

hypervolume A contiguous n-dimensional region in n-dimensional space. 

kernel A function that transforms the original, n-dimensional data 

into higher dimensional space in such a way that a 

hyperplane can be fitted to the data (see Scholkopf & 

Smola, 2002).

nested hypervolumes A qualitative relationship between two hypervolumes 

where one entity occurs entirely within the region of space 

occupied by the other entity. 

overlap The observed intersection in n-dimensional space of the 

hypervolumes occupied by two entities, where the 

dimensions represent biological variables.

single-entity method An approach to overlap detection which constructs A
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individual models for each entity, then measures overlap of 

these models.

support vector machine (SVM) A machine learning classifier that finds the maximal-margin 

separating hyperplane within classes (see Scholkopf & 

Smola, 2002)
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Figure captions
Figure 1. There are three possible relationships between two hypervolumes. Points sampled from two hypervolumes (top panels) 

can be used to train a classifier, find the optimal decision boundary (dashed line), and identify misclassified points (highlighted in 

yellow). The possible relationships are: the hypervolumes do not intersect (a); the hypervolumes intersect (b) or one hypervolume 

is contained within the other (c). This concept can be easily visualised in two or three dimensions but can be generalised to any n-

dimensional space.

Figure 2. Decision boundaries generated using different kernel functions. A linear kernel (a) always produces a linear decision 

boundary, a polynomial kernel (b) may produce a curvilinear decision boundary and a Gaussian kernel (c) can produce a complex 

decision boundary which does not reflect the underlying biology. 

Figure 3. Pairwise comparison of climatic distributions of conifer genera (grouped phylogenetically) using HYPEROVERLAP. A fully 

labelled version of this figure is available online (See Appendix S2). Phylogeny from Leslie et al. (2012).

Figure 4. Conflicting results between HYPEROVERLAP and HYPERVOLUME, with entities ordered phylogenetically (a) and by number of 

unique points in hyperspace (b).  

Figure 5. The ecological occupation of Dacrycarpus (blue) and Cupressus (red). These entities can be separated by a single linear 

hyperplane using HYPEROVERLAP (a), but HYPERVOLUME predicts a region of overlap, shown in green (b).

Figure 6. The ecological occupation of Metasequoia and Taxus. The occurrences of Metasequoia (position indicated by arrows) are 

nested within the region occupied by Taxus, but the models produced by HYPERVOLUME do not intersect, despite obvious visual 

overlap.

Figure 7. Two possible relationships between two entities for which HYPEROVERLAP would be expected to falsely detect overlap. The 

pattern shown in (a) could be caused by a combination of biological thresholds (e.g. enzyme thermal tolerances) and competitive 

exclusion. In (b), biological, geographic or other factors could cause the hypervolume geometry to be holey or otherwise very 

complex. In both cases, the HYPEROVERLAP decision boundary (shown by dotted line in (a)) cannot separate the two entities when 

constrained to a polynomial kernel. However, these scenarios can be resolved using visualisation. 
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