
water

Article

An Improved Relative Permeability Model for
Gas-Water Displacement in Fractal Porous Media

Huimin Wang 1,2, Jianguo Wang 1,3,* , Xiaolin Wang 2 and Bowen Hu 1

1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining
and Technology, Xuzhou 221116, China; hmwang@cumt.edu.cn (H.W.); bowenhu123@163.com (B.H.)

2 School of Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia; xiaolin.wang@utas.edu.au
3 School of Mechanics and Civil Engineering, China University of Mining and Technology,

Xuzhou 221116, China
* Correspondence: nuswjg@yahoo.com

Received: 31 August 2019; Accepted: 16 December 2019; Published: 19 December 2019
����������
�������

Abstract: Many researchers have revealed that relative permeability depends on the gas-water-rock
interactions and ultimately affects the fluid flow regime. However, the way that relative permeability
changes with fractal porous media has been unclear so far. In this paper, an improved gas-water
relative permeability model was proposed to investigate the mechanism of gas-water displacement
in fractal porous media. First, this model took the complexity of pore structure, geometric correction
factor, water film, and the real gas effect into account. Then, this model was compared with two
classical models and verified against available experimental data. Finally, the effects of structural
parameters (pore-size distribution fractal dimension and tortuosity fractal dimension) on gas-water
relative permeability were investigated. It was found that the sticking water film on the surface of
fracture has a negative effect on water relative permeability. The increase of geometric correction
factor and the ignorance of real gas effect cause a decrease of gas relative permeability.

Keywords: two-phase flow; gas-water displacement; relative permeability; water film; fractal porous
media

1. Introduction

Unconventional natural gas, especially shale gas, has become increasingly important in the global
energy supply in the past decade [1,2]. Hydraulic fracturing technology has been successfully applied
to the exploitation of unconventional natural gas for the permeability enhancement of shale gas
reservoirs. The fracturing fluid retains in the target formation and changes the flow mechanism in a
longer production time [3,4]. In this flow regime, the relative permeability, as an essential parameter
for characterizing the behavior of two-phase flow in a complex porous medium, plays a critical
role in shale gas production and CO2 geological storage [5,6]. Previous studies focused on the flow
characteristics of gas in porous media and ignored the significant effect of water in complex micropores
on gas effective permeability. This behavior is harmful to understanding the mechanism of gas-water
displacement in complex pore structures. For instance, it may lead to an inaccurate prediction of
fracturing fluid flowback in shale gas production. Therefore, it is meaningful to study the gas-water
relative permeability in complex fractal porous media for gas-water displacement.

The gas-water relative permeability has been investigated through experiments, theoretical
modeling, and numerical simulations. Figure 1 summarizes some classical relative permeability
models and provides a brief introduction to the development of relative permeability model in recent
years. The Purcell model calculated the permeability through capillary pressure data and formulated a
relatively primitive permeability model [7]. This model assumes that the sum of the gas and water
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relative permeability is equal to 1, which does not agree with the actual fluid flow in porous media.
Subsequently, this model was further modified by many scholars. Gates and Leitz [8] integrated the
relative permeability from the capillary pressure. Burdine [9] thought that the assumption of capillary
parallelism was not accurate and introduced the tortuosity factor into the Purcell model. Mualem [10]
proposed an integration method based on the Purcell model. For simplicity, Romm [11] developed a
relative permeability model which ignored the phase interference between the gas and water phases.
This model is also called the X model. Brooks and Corey [12] introduced a pore-size distribution
index to modify the capillary pressure function and proposed a more generalized gas-water relative
permeability model. The Brooks–Corey model has been widely used in modeling two-phase flow in
complex porous media. Fourar and Lenormand [13] derived a viscous coupling model after integrating
Stokes’ equation and the effect of viscosity. Combined with momentum balance, viscosity, and cubic
law, Chima and Geiger [14] developed a new relative permeability model. After ignoring the capillary
pressure, Chima’s model became a unique form of the viscous coupling model. Li et al. [15] improved
Chima’s model through the consideration of the influences of capillary tortuosity and irreducible water
saturation on relative permeability. The above relative permeability models have made significant
contributions to the prediction of two-phase flow in porous media. They also found that the relative
permeability of the gas phase is more susceptible to the geometry of flow channels. However, these
relative permeability models did not thoroughly consider the effects of complex pore microstructures
on fluid flow.
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Figure 1. Schematic diagram for the development of relative permeability model.

Complex nanoscale pore structures of shale gas reservoirs can be directly observed by the
advanced image technology such as focused ion beam-scanning electron microscopes (FIB-SEM)
and broad ion beam-scanning electron microscopes (BIB-SEM), but the inclusion of these complex
microstructures into the relative permeability model has become a challenging problem. There are
several mathematical and physical issues to be solved. The first issue is the description of complex
microstructures. Mandelbrot [16] first developed the fractal theory for self-similarity in complex
porous media. The fractal theory has been regarded as a useful tool to describe nanoscale pore
structures [17–19]. The second issue is the interaction between complex microstructures and fluid flow
in porous media. Many scholars have discussed the influence of the complex pore structure on the
flow mechanism in the relative permeability model [20–22]. For example, Li et al. [23] considered some
non-interconnected tortuous capillaries in fractal-like porous media and proposed a novel gas-water
displacing model. Lei et al. [17] developed a relative permeability model in multiscale porous
media, which takes lognormal distribution function and residual water saturation into consideration.
Ghanbarian et al. [21] developed a relative permeability model to consider the tortuosity-connectivity
factor and effective saturation. The influences of drawdown pressure on the relative permeability of
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water and gas phase were experimentally investigated by Mo et al. [24]. Their experimental results
indicated that gas relative permeability increases with drawdown pressure. Additionally, the increase
in drawdown pressure can reduce irreducible water saturation. Huo and Benson [25] experimentally
investigated the dependence of relative permeability on stress. They found that both irreducible water
saturation and endpoint gas phase relative permeability decrease with the increase of effective stress at
the same flow rate. Li et al. [1] stated that the interface effect plays a significant role in gas-water relative
permeability. When the contact angle is higher than 90 ◦, the surface of hydrophobic material decreases
the resistance of fluid flow, and the relative permeability correspondingly increases with the contact
angle. Lei et al. [26] proposed a fractal model for the prediction of gas-water relative permeability in
fractures. They found that increasing the complexity of pore structure (fractal dimension) would result
in a decrease of water relative permeability, while the gas relative permeability has a corresponding
increase with the ratio of fluid viscosity. Geng et al. [18] deduced a fractal apparent permeability model
for shale gas flow in the heterogeneous matrix (organic and inorganic matters). If the organic matter in
the matrix is ignored, the apparent permeability will be overestimated up to 24.1%. Therefore, pore
shape, maximum pore size, and porosity are primary factors that have significant effects on apparent
permeability [27]. Cai et al. [28] proposed an improved permeability model to consider viscous flow,
molecular diffusion, and surface diffusion. However, this model uses a uniform diffusion coefficient to
deduce gas permeability, ignoring the effect of water on the transport mechanism. Wang et al. [29]
considered surface effects (hydrogen bond, double layer repulsive force, Vander Waals force, and
structure repulsive force) into the gas-water relative permeability model. They found that the effect
of hydrogen bond can significantly enhance fluid flow in porous media. However, the interaction of
microstructures and fluid flow regimes has not been well-described in relative permeability models.

Because of the extremely low permeability of shale and complex pore structure, the relative
permeability is difficult to measure in experiments. Thus, an analytical method for deriving gas-water
relative permeability is critical. In the above-mentioned relative permeability models, the complexity of
the pore structure, geometric correction factor, water film, and real gas effect are not comprehensively
considered. It is still not clear how the irreducible water in the shale gas reservoir affects the gas flow
in the complex pore structure. In this paper, an improved gas-water relative permeability model was
proposed based on fractal theory. This improved fractal model takes the complexity of pore structure,
geometric correction factor, water film, and real gas effect into consideration. Then, the improved
fractal model was compared with two classical models and verified against available experimental
data. Finally, the effects of structural parameters, geometric correction factor, water film, and real gas
effect on gas-water relative permeability were investigated.

2. Proposed Gas-Water Relative Permeability Model

In this section, the two-phase flow mechanism in complex pore structures is investigated.
The threshold pressure gradient and the critical capillary radius are depicted in a conceptual model
to emphasize the influence of capillary size on the gas-water displacing process. Then, the fractal
dimensions are introduced to describe the complexity of porous media. Finally, an improved gas-water
relative permeability model is derived from accounting for the influences of the complex pore structure,
geometric correction factor, water film and the real gas effect.

2.1. Two Classical Relative Permeability Models

2.1.1. Brooks–Corey Model

In the Corey model, relative permeability is a function of capillary pressure as

Krw =

(
h
pc

)m

(1)
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where h is a constant, pc is the capillary pressure in porous media, m is a correction coefficient, and Krw

is the water relative permeability.
For complex pore structures, this equation cannot predict the relative permeability with sufficient

accuracy. Researchers have found that relative permeability is sensitive to pore-size distribution.
The classical Brooks–Corey model introduces a macroscopic parameter of pore-size distribution index
λ to describe the heterogeneity of pore structure. Their relative permeability model is

Krw = (S∗w)
(2+3λ)/λ (2)

Krg = (1− S∗w)
2
[
1− (S∗w)

(2+λ)/λ
]

(3)

where S∗w represents the effective water saturation and is a function of capillary pressure pc.

2.1.2. Viscous Coupling Model

Considering the effect of viscosity on fluid flow, Fourar and Lenormand [13] developed a gas-water
relative permeability model as

Krw =
S2

w
2
(3− Sw) (4)

Krg = (1− Sw) +
3
2
µrSw(1− Sw)(2− Sw) (5)

where Sw is the water saturation. µr is the viscosity ratio of gas to water and is µr = µg/µw.

2.2. Gas-Water Displacement and the Variation of Capillary Pressure with Water Saturation

Figure 2 presents a simplified conceptual diagram to express the variation of capillary pressure
with water saturation. The solid red line represents the process of gas displacing water. The initial state
of the rock formation is fully water-saturated, and the pressure increases with gas injection. When the
capillary entry pressure is overcome, the front of two-phase flow starts to move. The accumulated
pressure will cause the gas to break through the upper boundary of the rock formation. This pressure is
called breakthrough pressure. Finally, the increase of pressure does not further reduce water saturation
in the fracture. This minimum water saturation is irreducible water saturation (IRWS). The blue
dotted line represents the process of water imbibition. As the capillary pressure decreases, a portion
of the gas is trapped in tinny pores or fractures under the wetting phase pressure. This minimum
capillary pressure is often termed as snap-off pressure. The corresponding saturation is irreducible gas
saturation (IRGS).

Both the pore-size distribution index and the capillary entry pressure are macroscopic parameters.
They can express the complexity of rock pore structure. Such a model can macroscopically match the
experimental data of permeability but does not describe the interaction of gas and water from the
microscopic mechanism. In fact, the effects of pore-size distribution and tortuosity on permeability
should be discussed from the viewpoint of fractal dimension. From a capillary theoretical model to
the integration of capillaries in different radius sizes, fractal theory can better explore the effects of
complex pore structure on permeability. Besides, the capillary entry pressure is usually regarded
as a fixed value in the classical Brooks–Corey model. However, this value is difficult to determine
using experimental tests. In this paper, we defined the critical capillary radius, which corresponds
to the capillary entry pressure. When the capillary tube size is smaller than the critical radius of the
capillary, the gas cannot displace the water, and the water flow fills the entire capillary flow channel.
On this sense, this part of water is the irreducible water and its saturation is called the irreducible
water saturation in the two-phase flow.
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2.3. Irreducible Water Saturation and Threshold Pressure Gradient

This concept of irreducible water saturation is very similar to the threshold pressure gradient
(TPG) that was mentioned in our previous study [6]. From the macroscopic view, the residual water
in the target reservoir blocks the pore-throat. Only when the capillary pressure is higher than the
capillary entry pressure, the two-phase flow can be observed, as shown in Figure 3a. TPG is a vital
parameter in describing the gas starting flow against viscous forces. This TPG makes the Darcy flow
gradually transform to a low-velocity, non-Darcy flow when water saturation is gradually increasing.
Many researchers have indicated that permeability, water saturation, and pore pressure are controlling
parameters for TPG in tight gas reservoirs [23,25,30]. On this sense, we proposed the following formula
for TPG:

TPG = aesw · eb∗p f +c∗p2
f

a = e−(5.4491×1015
×k+1.13293)

b = 8.81931× 1013
× k− 0.06892

c = −5.83713× 1011
× k + 0.0129

(6)

where k is the intrinsic permeability, p f is the pore pressure, a is a correction coefficient for water
saturation, and b and c are correction coefficients for pore pressure. These correction coefficients are
also linked with shale permeability.

The accuracy of Equation (6) was checked using the experimental data from Ding et al. [30].
Their comparison is shown in Figure 4. Figure 4a presents the rise of TPG with the increase of water
saturation. Figure 4b shows the effect of different permeabilities on TPG. Although TPG describes
the gas-water displacement in capillary tubes, it does not consider the complex pore structure of
porous media.
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2.4. Calculation of Water Saturation and Irreducible Water Saturation

Based on the Laplace formula, capillary pressure can be expressed as

pc =
2σ cosθ

rc
(7)

where pc is the capillary pressure, σ represents the surface tension, and θ is the contact angle of
gas-water-rock interface.

If the surface tension and contact angle are constant, the capillary pressure has an inverse
proportional relationship with the pore radius. There is a critical capillary radius rc in the complex
distribution of capillary pore size. When the pore size is larger than the critical capillary radius, the gas
flow can occur in the capillary tube, and the water film is attached to the capillary wall. If the capillary
tube size is smaller than the critical radius rc, the capillary tube is fully saturated with water and gas
flow does not occur. Therefore, from the microscopic view, the gas can displace water only when the
capillary tube radius is greater than the critical capillary tube radius, as described in Figure 3b.

The water sources come from two parts: One is a single water flow (r < rc), and the other is the
gas-water two-phase flow (r > rc). According to the area ratio of pores, the water saturation can be
calculated by pore-size distribution and water film as [20]

Sw =

∫ rc

rmin
πr2(−dN) +

∫ rmax

rc
π
(
r2
− r2

wg

)
(−dN)∫ rmax

rmin
πr2(−dN)

(8)

When the pore size is less than the critical capillary tube radius, there is not enough capillary
pressure to further displace the water in pores. At this time, the water saturation is the irreducible
water saturation and is calculated by

Swi =

∫ rc

rmin
πr2(−dN)∫ rmax

rmin
πr2(−dN)

=
r

2−D f
c − r

2−D f

min

r
2−D f
max − r

2−D f

min

(9)

Figure 5 shows the variation of irreducible water saturation with critical capillary tube radius.
No linear relationship was observed between the critical capillary radius and irreducible water
saturation. When the critical capillary radius is large enough, the irreducible water saturation grows
slowly and tends to be stable. In the case of the same capillary critical tube radius, the increase in
the maximum capillary radius leads to a decrease in irreducible water saturation. The water flow
is enhanced by the increase of capillary tube radius rather than being sealed in the capillary tube.
When the critical capillary tube radius is small relative to the capillary tube size, the difference is not
obvious. However, the irreducible water saturation changes from 0.2 to 0.4 when the critical capillary
tube radius is 10 nm.
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2.5. Fractal Distribution of Pores

Porous media have numerous capillary tubes with different pore sizes and tortuous lengths.
These inter-pore structures are of self-similarity and can be described by fractal theory. The number of
pore sizes greater than r can be expressed as

N(δ ≥ r) =
( rmax

r

)D f
(10)

where δ represents the scale of length, rmax and r are the maximum pore radius and pore radius,
respectively, and D f is the pore-size distribution (PSD) fractal dimension and in the range of 0 < D f < 2
in two dimensions. Yu and Li [31] found that this fractal dimension is related to the porosity φ and the
radius ratio rmin/rmax.

D f = d−
lnφ

ln(rmin/rmax)
(11)

where d represents the Euclidean dimension.
Differentiating Equation (10) with respect to r obtains the following expression:

− dN = D f r
D f
maxr−(D f +1)dr (12)

Thus, the probability density function of pore-size distribution is expressed as

f (r) = D f r
D f
maxr−(D f +1) (13)

Due to the tortuosity, the length of the capillary tube is higher than the straight capillary tube in
complex porous media. Capillary length is related to the radius size with following fractal law [31]:

L(r) = (2r)1−Dt LDt
0 (14)
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where L and L0 represent the actual capillary length and representative capillary length, respectively.
Dt is the fractal dimension of the tortuosity, and its range is between 1 and 2 in two-dimensional space.
Therefore, the cross-sectional area of all pores could be written as [20]

A =
(1−φ)
φ

D fπr2
max

2−D f
(15)

Thus, the representative capillary length can be expressed as

L0 = rmax

√
(1−φ)
φ

D fπ

2−D f
(16)

2.6. Two-Phase Flow Model in Nanopores

2.6.1. Flow Rate of Gas

The flow channels in Figure 6 were assumed to be capillary tubes with tortuosity. SEM images
showed that the pore shape was not only circular, but also slit. Ignoring the influence of pore shape
will affect the understanding of the fluid flow mechanism in complex porous media. Mortensen
et al. [32] stated that the capillary channel with a circular cross-section does not reflect the complexity
of various cross-sectional shapes, such as elliptic, rectangular, triangular, and harmonic-perturbed
circles. We introduced a geometrical correction factor to describe different cross-sectional shapes in a
unified form.Water 2020, 12, 27 10 of 26 
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Figure 6. Conceptual model of pore shape distribution. SEM images (A1 and A2) are from Tang
et al. [33]. SEM image (B) is from Ambrose et al. [34].

When a steady-state laminar flow occurs within capillary tubes, Figure 7 gives the flow distribution
of the gas and water phases. This conceptual model has three different regions: The gas flow region,
the typical viscosity water flow region, and a high-viscosity water film region. The fluid flow in these
three regions has different flow mechanisms. They are mathematically described below.
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Based on the Hagen–Poiseuille equation, the gas flow rate in a capillary tube is obtained below if
slip flow and free molecular flow are considered in the continuum flow regime.

qg =
πr4

128µg
(1 + βK∗n)

(
1 +

4K∗n
1− αK∗n

)
∆p
L

(17)

where r and L are the capillary tube radius and capillary tube length, respectively, ∆p is the pressure
difference applied to the external capillary tube, µg is the gas viscosity, and β represents a dimensionless
rarefaction coefficient. When β changes from 0 to 64

3π(1−4/α) , a slip flow regime transforms into a
free molecular flow regime. α represents the slip coefficient and can be obtained from the linearized
Boltzmann solution or velocity distribution given by the Poiseuille flow in a cylindrical tube [35]. K∗n is
the modified Knudsen number, which is the ratio of the mean free path of gas flow to the characteristic
size of gas flow channel. Details are provided in the next section.

2.6.2. Geometrical Correction Factor and Real Gas Effect

Shale formation has various shapes of pores. This study introduced a geometric correction factor
to express the deviation of pore shape from a circular pore channel [36,37].

K∗n =
η

2γr
(18)

where γ is the geometric correction factor. The γ is 1 for the circular pore, 1.094 for the square pore,
and is 1.1186 for the equilateral triangle pore [18]. η is the gas mean free path.

η =
µg

pg

√
πZRT

2M
(19)

where pg is the gas pressure, R is the universal gas constant, T is the reservoir temperature, M is the gas
molecule mass, and Z is the gas compressible factor, which expresses the real gas effect on gas density
and viscosity. It was noted that previous models usually neglected this real gas effect (that is Z = 1),
but this effect becomes more notable at high pressure and temperature. Z can be expressed as [38]:

Z = 1 + A1pr + A2p2
r +

A3p
A4
r

T
A5
r

+
A6p

(A4+1)
r

TA7
r

+
A8p

(A4+2)
r

T(A7+1)
r

pr = p/pgc, Tr = T/Tgc

(20)
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where pgc and Tgc are the gas critical pressure and temperature, respectively, and A1–A8 are tuned
coefficients.

Jarrahian and Heidaryan [39] developed a generalized gas viscosity model with a range of
pressures (0.1–137.8 MPa) and temperatures (241–473 K). This study described their expression of gas
viscosity as

µg = µa

[
1 +

A11

T5
r

(
p4

r

T20
r + P4

r

)
+ A12

(Pr

Tr

)2
+ A13

(Pr

Tr

)]
(21)

where µa is the gas viscosity under the standard condition, and A11, A12, and A13 are temperature,
pressure, and molar weight independently tuned coefficients, respectively.

Beskok and Karniadakis [40] found that gas flow is in the slip flow regime when β = 0, α = −1.
Combining Equations (17)–(21), we extended the gas flow rate to consider the geometric correction
factor and real gas effect in a capillary tube and obtain the flow rate as

qg =
πr4

wg

8µg

(
1 +

4K∗n
1 + K∗n

)
∆p
L

(22)

Integrating Equation (22), the total gas volumetric flow rate is expressed as

Qg = D f r
D f
max

∫ rmax

rc

πr4
wg

8µg

(
1 + 4K∗n

1+K∗n

)∆p
L · r

−(D f +1)dr

= εg
∫ rmax

rc
r4

wg · r
Dt−D f−2(1 + 4K∗n)dr

(23)

where rwg is the distance from the center of the circular pore to the gas-water interface and rc is the

critical capillary tube radius. εg = D f r
D f
max

π∆p

24−DtµgLDt
o

.

2.6.3. Water Film Effect

The water with normal viscosity occupies the most of capillary channels. Due to influences of the
hydrophilicity of the matrix, the high-viscosity water forms a water film on the surface of capillary
tubes. For the flow region of normal viscosity water, the governing equation can be obtained based on
the Hagen–Poiseuille equation.

µw
1
r

d
dr

(
r

dvw

dr

)
=

∆p
L

r ∈
[
rwg, rw f

]
(24)

The governing equation of water film region is

µw f
1
r

d
dr

r
d
(
vw f + ζvv

)
dr

 = ∆p
L

r ∈
[
rw f , r0

]
(25)

where µw and µw f are the water viscosity for the typical viscosity water region and water film region,
respectively, ζ is the correction factor of the vapor flow rate, and vv represents the vapor flow rate.

The ratio of these two viscosities is related to the contact angle θ [41]:

µw

µw f
= −0.018θ+ 3.25 (26)

With the combined effects of temperature, pressure, and gas flow rate, the water film adhering
to the surface of the channel will diffuse into the gas under evaporation reaction and be extracted
with the gas. The influence of water vapor on the pressure of the gas is small and was thus ignored.
However, the evaporation of the water film directly affects the flow rate of the water film. If the effect



Water 2020, 12, 27 12 of 24

of water vapor flow rate on the water film flow rate is not considered, the water film flow rate will be
overestimated. This vapor flow rate could be calculated as [42]

vv =
πMvDva

RT
∆pv

L
(27)

where Mv is the molecule mass of vapor, Dva is the diffusion coefficient, and ∆pv is the pressure
difference of vapor.

The boundary conditions for water flow and water film regions are as follows:
vw

∣∣∣∣r=rw f = vw f

∣∣∣∣r=rw f

vw
∂vw
∂r

∣∣∣∣∣r=rw f = vw f
∂vw f
∂r

∣∣∣∣r=rw f

vw f
∣∣∣r=r0 = 0

(28)

By substituting Equations (26)–(28) into Equations (24) and (25), the final flow velocities are
obtained as

vw =

(
r2

w f − r2
)

4µw

∆p
L

+

(
r2

0 − rw f
2
)

4µw f

∆p
L

r ∈
[
rwg, rw f

]
(29)

vw f =

(
r2

0 − r2
)

4µw f

∆p
L

r ∈
[
rw f , r0

]
(30)

By integrating Equations (29) and (30) on the cross-section of the circular tube, the volumetric
flow rate of the water are obtained as

qw =
∫ rw f

rwg
vwdA +

∫ r0

rw f
vw f dA

= π
8µw

∆p
L

(
r2

w f − r2
wg

)2
+ π

4µw f

∆p
L

(
r2

w f − r2
wg

)(
r2

0 − r2
w f

)
+ π

8µw f

∆p
L

(
r2

0 − r2
w f

)2 (31)

When only water flows in the capillary tube (rwg = 0), the volumetric flow rate of water can be
simplified as

qw−sin gle =
π∆p
8µwL

r4
w f +

π∆p
8µw f L

(
r2

0 − r2
w f

)(
r2

0 + r2
w f

)
(32)

Similarly, combining with fractal theory obtains the volumetric flow rate of water as

Qw = D f r
D f
max

∫ rc

rmin

[
π

8µw

∆p
L

(
r2

w f − r2
wg

)2
+ π

4µw f

∆p
L

(
r2

w f − r2
wg

)(
r2

0 − r2
w f

)]
+D f r

D f
max

∫ rmax

rc

[
π

8µw

∆p
L

(
r2

w f − r2
wg

)2
+ π

4µw f

∆p
L

(
r2

w f − r2
wg

)(
r2

0 − r2
w f

)
+ π

8µw f

∆p
L

(
r2

0 − r2
w f

)2
]

= εw

[∫ rmax

rmin

(
r2

w f − r2
wg

)(
r2
− r2

wg

)
· rDt−D f−2dr +

∫ rmax

rc

(
r2
− r2

wg

)2
· rDt−D f−2dr

] (33)

where εw = D f r
D f
max

π∆p

24−DtµwLDt
0

.

2.7. Intrinsic Permeability

Intrinsic permeability is an inherent property of rock. It is only related to the rock microstructures
and is thus independent of fluid type. For two-phase flow, the effective permeability of each phase
depends on its saturation and intrinsic permeability. Experimental results have suggested that the
effective permeability of non-wetting phase tends to be higher than the effective permeability of wetting
phase [43]. Relevant literature has summarized following reasons [44]: (1) The rock is rich in swelling
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clay minerals. When the effective permeability of the wetting phase is measured, the clay mineral
in the matrix absorbs water and swells. This leads to the reduction of the flow channel of fractures;
(2) The existence of a water film on the structure surface reduces the effective radius of the flow channel;
(3) The high viscosity of the movable water film zone increases the viscous force of normal flowing
water. Thus, higher shear stress is required to start the water flow. Figure 8 compares several sets of
experimental data on the relationship between water and gas permeability. These experimental data
were obtained from Busch and Hildenbrand [43]. These data showed that the gas effective permeability
is slightly higher than the water effective permeability. This is related to the complex micropore
structure and the flow mechanism of two-phase flow.
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Two mainstream methods are usually used to calculate the intrinsic permeability of rock. The first
is the Kozeny–Carman equation or its modified form. The intrinsic permeability of rocks, especially
with high permeability, is expressed as

k =
Br2

mean
K

φ3

1−φ2 (34)

where B is a constant, rmean is the average radius of grains. K represents the Kozeny–Carman constant
and has

K = cKτ (35)

where cK is the dimensionless Kozeny constant and τ is the tortuosity of rock.
Another method was proposed by Yang and Aplin. This method does not only consider the pore

size and porosity, but also includes the effect of mineral composition (clay content) in the intrinsic
permeability:

k = 2.2446× 10−17 J1.18
v r1.074

mean (36)
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where
Jv = 9

8φ(sin)2 J3
1

(1+J1+J2
1)

2

J1 = 2.371− 1.626χ2 + 153.8φ4

= 45
◦

− 10.24
◦

(e100 − e)

e100 = 0.3024 + 1.687χ+ 1.951χ2

e = φ/(1−φ)

(37)

e is the volume ratio of pores to matrix and e100 is the volume ratio of pores to matrix at the effective
stress of 0.1 MPa, χ is the clay mineral content, and represents the angle between the average pore
alignment angle and bedding direction.

2.8. Gas-Water Relative Permeability Model

The water flow velocity is expressed in Darcy’s law:

Qw =
kwφ

µwSw

∆p
L

(38)

By substituting Equation (33) into Equation (38), the effective permeability of water is obtained as

kw = −
µwSwL0εw

A∆p

[∫ rmax

rmin

(
r2

w f − r2
wg

)(
r2
− r2

wg

)
· rDt−D f−2dr +

∫ rmax

rc

(
r2
− r2

wg

)2
· rDt−D f−2dr

]
(39)

Similarly, the effective permeability of gas is

kg = −
µg(1− Sw)L0

A∆p
εg

∫ rmax

rc

r4
wg · r

Dt−D f−2(1 + 4K∗n)dr (40)

Thus, the relative permeability for water is

krw =
−
µwSwL0εw

A∆p

[∫ rmax

rmin

(
r2

w f − r2
wg

)(
r2
− r2

wg

)
· rDt−D f−2dr +

∫ rmax

rc

(
r2
− r2

wg

)2
· rDt−D f−2dr

]
k

(41)

and the relative permeability for gas is

krg =
−
µg(1−Sw)L0

A∆p εg
∫ rmax

rc
r4

wg · r
Dt−D f−2(1 + 4K∗n)dr

k
(42)

In this study, our intrinsic permeability was calculated by Yang and Aplin’s method. The clay
content was 0.1 and the porosity of rock was 0.2.

3. Model Validation

The above-improved fractal relative permeability model for gas and water was compared with
the classic Brooks–Corey model and viscous coupling model. Our fractal model was further verified
against experimental data. The parameters used in this validation are listed in Table 1.

The comparison of our fractal model with the classic Brooks–Corey model and the viscous coupling
model is presented in Figure 9. The residual water saturation of the Brooks–Corey model was 0.2, and
the pore-size distribution index was infinite.



Water 2020, 12, 27 15 of 24

Water 2020, 12, 27 16 of 26 

 

 
Figure 9. Comparison with classical relative permeability models. 

The viscous coupling model takes the viscosity ratio of the gas and water phase into account. 
When the viscosity difference between the gas and liquid phase is significant, the viscous coupling 
model is similar to the Brooks–Corey model. Our fractal model had similar trends to the two classic 
models. However, our fractal model had some features that the classic models missed: (1) The pore-
size distribution index in the classical model is constant and difficult to measure. However, pore-size 
distribution fractal dimension and tortuosity fractal dimension can be calculated by the capillary pore 
distribution and pore size. Through fractal dimensions, complex porous media can be better 
expressed; and (2) The real gas effect and water film flow are not considered in the classical models. 
These factors are particularly important in high-temperature, pressure, and humidity formations. 
Further, our fractal model was compared with experimental data, and the results are presented in 
Figure 10. These experimental data were measured by Mahiya [45] for the relative permeability of 
water and vapor at 120 °C. The permeability and porosity of Berea core samples used in this 
experiment were 1200 md and 0.24. Subsequently, the relative permeability of nitrogen and water 
were measured by Li and Horne [46]. Diomampo et al. [47] conducted drainage experiments for the 
rough-walled fractures, and relative permeability data of nitrogen and water were obtained. In their 
experiments, the fracture was initially saturated with water, and the non-wetting phase was injected 
with a constant flow rate. Wang et al. [48] measured the relative permeability of oil and water in 
carbonate core samples. The permeability and porosity of this sample were 33.9 md and 0.18. Our 
fractal relative permeability model is in a good agreement with these experimental data. This 
indicates that this improved fractal model can describe the evolution of gas-water relative 
permeability in complex porous media. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
pe

rm
ea

bi
lit

y

Water saturation

 Proposed model
 Viscous coupling model
 Brooks-Corey model

Figure 9. Comparison with classical relative permeability models.

The viscous coupling model takes the viscosity ratio of the gas and water phase into account.
When the viscosity difference between the gas and liquid phase is significant, the viscous coupling
model is similar to the Brooks–Corey model. Our fractal model had similar trends to the two classic
models. However, our fractal model had some features that the classic models missed: (1) The pore-size
distribution index in the classical model is constant and difficult to measure. However, pore-size
distribution fractal dimension and tortuosity fractal dimension can be calculated by the capillary
pore distribution and pore size. Through fractal dimensions, complex porous media can be better
expressed; and (2) The real gas effect and water film flow are not considered in the classical models.
These factors are particularly important in high-temperature, pressure, and humidity formations.
Further, our fractal model was compared with experimental data, and the results are presented in
Figure 10. These experimental data were measured by Mahiya [45] for the relative permeability of
water and vapor at 120 ◦C. The permeability and porosity of Berea core samples used in this experiment
were 1200 md and 0.24. Subsequently, the relative permeability of nitrogen and water were measured
by Li and Horne [46]. Diomampo et al. [47] conducted drainage experiments for the rough-walled
fractures, and relative permeability data of nitrogen and water were obtained. In their experiments, the
fracture was initially saturated with water, and the non-wetting phase was injected with a constant flow
rate. Wang et al. [48] measured the relative permeability of oil and water in carbonate core samples.
The permeability and porosity of this sample were 33.9 md and 0.18. Our fractal relative permeability
model is in a good agreement with these experimental data. This indicates that this improved fractal
model can describe the evolution of gas-water relative permeability in complex porous media.
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Table 1. Parameters for model validation. 

Parameters Unit Value Physical Meanings Reference 

minr  m 910−
 Maximum pore radius Zhang et al. [49] 

maxr  m 710−  Minimum pore radius Zhang et al. [49] 

R  J/(mol*K) 8.314 Universal gas constant Given 
M  Kg/mol 0.016 Methane molecular weight Given 
T  K 298.15 Temperature Given 

wfμ  Pa*s 32.6811 10 −×  Water film viscosity Wu et al. [41] 

wμ  Pa*s 48 .937 10 −×  Water viscosity Wu et al. [41] 
γ   1 Geometric correction factor Geng et al. [18] 

gp  MPa 1 Gas pressure Given 

φ   0.2 Porosity Zhang et al. [49] 
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3A   −0.467212 Tuned coefficient Sanjari and Lay [38] 
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Table 1. Parameters for model validation.

Parameters Unit Value Physical Meanings Reference

rmin m 10−9 Maximum pore radius Zhang et al. [49]
rmax m 10−7 Minimum pore radius Zhang et al. [49]

R J/(mol·K) 8.314 Universal gas constant Given
M Kg/mol 0.016 Methane molecular weight Given
T K 298.15 Temperature Given
µw f Pa·s 2.6811× 10−3 Water film viscosity Wu et al. [41]
µw Pa·s 8.937× 10−4 Water viscosity Wu et al. [41]
γ 1 Geometric correction factor Geng et al. [18]
pg MPa 1 Gas pressure Given
φ 0.2 Porosity Zhang et al. [49]

A1 0.007698 Tuned coefficient Sanjari and Lay [38]
A2 0.003839 Tuned coefficient Sanjari and Lay [38]
A3 −0.467212 Tuned coefficient Sanjari and Lay [38]
A4 1.018801 Tuned coefficient Sanjari and Lay [38]
A5 3.805723 Tuned coefficient Sanjari and Lay [38]
A6 −0.087361 Tuned coefficient Sanjari and Lay [38]
A7 7.138305 Tuned coefficient Sanjari and Lay [38]
A8 0.083440 Tuned coefficient Sanjari and Lay [38]
A11 7.9 Temperature tuned coefficient Jarrahian and Heidaryan [39]
A12 9× 10−6 Pressure tuned coefficient Jarrahian and Heidaryan [39]
A13 0.28 Molar weight tuned coefficient Jarrahian and Heidaryan [39]

4. Discussions

4.1. Effects of Pore-Size Distribution and Tortuosity Fractal Dimension

The structural parameters, pore-size distribution (PSD) fractal dimension, and tortuosity fractal
dimension can be used to describe the structural complexity of porous media. Porous media have
multiscale capillary structures from micron to nanoscale. The distribution and heterogeneity of the
pore structure can be described by the PSD fractal dimension. Figure 11 shows that the effective
permeability of gas and water decreased significantly as the PSD fractal dimension increased from
1.2 to 1.8. When the tortuosity fractal dimension was constant at 1.48, the increase of the PSD fractal
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dimension increased the complexity of the pore-size distribution and resulted in a decrease of effective
permeability for both gas and water.

Water 2020, 12, 27 18 of 26 

 

4. Discussions 

4.1. Effects of Pore-Size Distribution and Tortuosity Fractal Dimension 

The structural parameters, pore-size distribution (PSD) fractal dimension, and tortuosity fractal 
dimension can be used to describe the structural complexity of porous media. Porous media have 
multiscale capillary structures from micron to nanoscale. The distribution and heterogeneity of the 
pore structure can be described by the PSD fractal dimension. Figure 11 shows that the effective 
permeability of gas and water decreased significantly as the PSD fractal dimension increased from 
1.2 to 1.8. When the tortuosity fractal dimension was constant at 1.48, the increase of the PSD fractal 
dimension increased the complexity of the pore-size distribution and resulted in a decrease of 
effective permeability for both gas and water. 

0.0 0.2 0.4 0.6 0.8 1.0
0

1x10-17

2x10-17

3x10-17

4x10-17

5x10-17

6x10-17

Ef
fe

ct
iv

e 
pe

rm
ea

bi
lit

y 
(m

2 )

Water saturation

 Dt=1.48,Df=1.2
 Dt=1.48,Df=1.5
 Dt=1.48,Df=1.8

 

Figure 11. Distribution of water-gas effective permeability under different pore-size distribution 
(PSD) fractal dimensions. 

The tortuosity fractal dimension was first introduced into this improved fractal model to reflect 
the variation of capillary tortuosity with pore size. Figure 12 provides the variation of effective 
permeability of gas and water with the increase of PSD fractal dimension. This trend was similar to 
the variation of the PSD fractal dimension, but the degree of decline was not significant. This indicates 
that the influence of the PSD fractal dimension on both gas and water permeability can be greater 
than the tortuosity fractal dimension. 

Figure 11. Distribution of water-gas effective permeability under different pore-size distribution (PSD)
fractal dimensions.

The tortuosity fractal dimension was first introduced into this improved fractal model to reflect the
variation of capillary tortuosity with pore size. Figure 12 provides the variation of effective permeability
of gas and water with the increase of PSD fractal dimension. This trend was similar to the variation
of the PSD fractal dimension, but the degree of decline was not significant. This indicates that the
influence of the PSD fractal dimension on both gas and water permeability can be greater than the
tortuosity fractal dimension.
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4.2. Effect of Nanotube Size

The size of nanotubes is directly related to the gas-water effective permeability. When the
maximum radius of the nanotubes was changed from 100 nm to 50 nm, the gas-water effective
permeability significantly declined, as shown in Figure 13. Because the capillary tube radius was still
very large relative to the size of critical capillary tube radius and water film thickness, residual water
cannot block the capillary tube and single-phase flow did not occur. The effective permeability of the
gas and water decreased at almost the same speed.
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4.3. Effect of Water Film Thickness

Our fractal model has some parameters in the gas or water effective permeability. For example,
the water film adhered to the surface of the capillary tube is an important parameter that can affect
the effective permeability of water. The viscosity of the water film is greater than that of water in the
normal flowing zone. An increase in the water film thickness directly reduces the water flow flux.
Moreover, the water film produces a drag force on the normally flowing water. This can reduce the flow
rate of the wetting phase. Some studies have considered the water film as the non-flowable film, which
absorbs on the surface of the matrix to form residual water in the porous medium. This assumption
exaggerates the effect of water film on the relative permeability of the wetting phase. Equations (29)
and (30) provide the expressions of water flow rate and water film flow rate, respectively. If a capillary
radius is 100 nm, water saturation is 0.5, and a pressure difference is 1 MPa, the effect of water film
thickness on the water and water film flow rates are presented in Figure 14, where the evolution
of water flow rate is plotted under different water film thicknesses. When the water film thickness
increases from 0.7 nm to 7 nm, a significant decrease in water flow rate is observed. In addition, a slight
decrease of the normal water flow zone is observed due to the increase of water film thickness.
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Figure 14. Evolution of water flow rate under different water film thickness.

Figure 15 shows the effect of water film thickness on the water film flow rate. It is worth noting
that the flow rate of the water film is not affected by the change in water film thickness. There are
two reasons: (1) The thickness of the water film is much smaller than the radius of the capillary tube;
and (2) The water film is a high-viscosity water flow zone, which mainly causes dragging force on
the normally flowing water. However, the increase of the water film thickness significantly increases
the zone where the water film flows, and the flow flux of the water film obtained by this integration
increases correspondingly. Finally, Figure 16 is the evolution of gas-water effective permeability with
different water film thickness. The increase of water film thickness has little influence on the effective
permeability of gas, but has a negative influence on the effective permeability of the wetting phase.
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Figure 15. Evolution of water film flow rate under different water film thickness.
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4.4. Effect of Geometric Correction Factor

The pores in porous media have various shapes. In this paper, the relative permeability was
derived based on the circular tube, and the geometric correction factor was introduced to redefine the
Knudsen number (see Equation (18)). The Knudsen number reflects the motion state of gas molecules.
Therefore, the change of the Knudsen number directly affects the gas flow rate, resulting in a change of
the gas effective permeability. Figure 17 provides the variation of Knudsen number with a geometric
correction factor. It states that the shape irregularity of pores reduced the Knudsen number. As the
capillary radius increases, this effect will gradually decrease. When the flow channel is large enough,
the free path of gas molecules is much smaller than the characteristic length, and the shape irregularity
of the pores is no longer significant.
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Figure 18 shows the variation of gas-water effective permeability with the increase of geometric
correction factor. The increase of the geometric correction factor directly reflects the increase of capillary
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irregularity. Therefore, the effective gas permeability decreases when the geometric correction factor
increases. The effective permeability of the wetting phase is not affected by the shape correction factor.
Furthermore, the effect of the geometric correction factor is less than the effect of structural parameters
(PSD fractal dimension and tortuosity fractal dimension). This may be why the capillary is generally
assumed to be a circular tube in many numerical simulations, regardless of its shape variation.
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4.5. Real Gas Effect

The real gas effect refers to the variation of gas compressibility and viscosity relative to ideal
gas. Both temperature and pressure affect the real gas effect and ultimately lead to a change of gas
flow. Figure 19 presents the importance of real gas effect on the effective permeability of water and
gas. The effective permeability of gas is slightly higher after considering the real gas effect. Although
the viscosity of the gas increases, the gas is more compressible when the real gas effect is considered.
In addition, the increase of the Knudsen number means an enhancement of gas slip effect, which is
beneficial to the effective gas permeability. These indicate that the real gas effect cannot be ignored in
the evolution of gas effective permeability. This effect will become more significant in high-pressure
and temperature conditions.
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5. Conclusions

In this paper, an improved fractal model was developed for the gas-water relative permeability in
porous media to incorporate the structural parameters (PSD fractal dimension and tortuosity fractal
dimension), water film, geometric correction factor, and real gas effect. First, the threshold pressure
gradient was introduced to describe the gas starting flow against viscous forces in two-phase flow.
This threshold pressure gradient was expressed by some macroscopic parameters, such as water
saturation, pore pressure, and permeability. Their linkage with complex pore structures (critical
capillary radius) was explored through a microscopic theoretical model. Then, the gas-water relative
permeability model was derived based on the circular cross-section flow channels and complex fractal
pore structures. The improved fractal model was compared with two classical models and verified
against available experimental data. Finally, the sensitivities of structural parameters, water film,
geometric correction factor, and real gas effect to gas-water effective permeability were investigated.
Based on these investigations, the following conclusions can be drawn:

1. Pore-size distribution fractal dimension and tortuosity fractal dimension can well-describe the
complexity of pore-size distribution and tortuosity distribution of porous media, respectively.
Their higher dimensions cause a decrease of the water-gas effective permeability. It was found
that the pore-size distribution determines the flow pattern: Single-phase flow or two-phase flow
and the pore-size distribution fractal dimension have a more significant influence on gas-water
effective permeability.

2. The water film thickness has a negative effect on the water effective permeability. It increases the
water film zone and loses the space for normal water flows, thus causing a reduction in water
flow rate. Moreover, the high-viscosity water film also applies a viscous force to normal water,
reducing its flow rate. If the water film thickness is much smaller than the pore size, the effect of
water film thickness on the gas effective permeability is negligible.

3. The pore geometry directly affects the mechanism of gas flow. When the irregularity of the pore
geometry increases, the Knudsen number decreases. The collision between gas molecules is
intensified and the gas flow transitions to the continuous medium flow. The geometric correction
factor can well-describe the gas effective permeability for any shape of pores.

4. The gas effective permeability can be slightly higher if the real gas effect is considered. Notably,
this real gas effect on the gas effective permeability becomes obvious at high-temperature and
pressure conditions, and is thus not ignorable.

Author Contributions: H.W. derived the relative permeability model and prepared the draft of manuscript;
J.W. designed and modified the theoretical framework and the structures of manuscript; X.W. improved English
and modified some Figures; B.H. conducted data analysis. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors are grateful to the financial support from the National Natural Science Foundation of China
(Grant No. 51674246) and the Fundamental Research Funds for the Central Universities (Grant No. Z19012).

Acknowledgments: The authors thank the editor and reviewers for their constructive comments. The first author
appreciates the first-class disciplines construction fund of China University of Mining and Technology to pursue
his study in Australia as a joint PhD student.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, T.; Song, H.; Wang, J.; Wang, Y.; Killough, J. An analytical method for modeling and analysis gas-water
relative permeability in nanoscale pores with interfacial effects. Int. J. Coal Geol. 2016, 159, 71–81. [CrossRef]

2. Zhang, Z.; Li, X.; He, J. Numerical study on the permeability of the hydraulic-stimulated fracture network in
naturally-fractured shale gas reservoirs. Water 2016, 8, 393. [CrossRef]

3. Zhao, H.; Chen, M.; Jin, Y.; Ding, Y.; Wang, Y. Rock fracture kinetics of the facture mesh system in shale gas
reservoirs. Pet. Explor. Dev. 2012, 39, 498–503. [CrossRef]

http://dx.doi.org/10.1016/j.coal.2016.03.018
http://dx.doi.org/10.3390/w8090393
http://dx.doi.org/10.1016/S1876-3804(12)60067-6


Water 2020, 12, 27 23 of 24

4. Wang, H.; Wang, J.; Gao, F.; Wang, X. A two-phase flowback model for multiscale diffusion and flow in
fractured shale gas reservoirs. Geofluids 2018, 2018. [CrossRef]

5. Kim, K.; Hamm, S.; Cheong, J.; Kim, S.; Yun, S. A natural analogue approach for discriminating leaks of CO2

stored underground using groundwater geochemistry statistical methods, South Korea. Water 2017, 9, 960.
[CrossRef]

6. Wang, H.; Wang, J.; Wang, X.; Dou, F. Interaction of shale gas recovery and moisture transport in post
two-phase flowback stage. J. Nat. Gas Sci. Eng. 2019, 68, 102897. [CrossRef]

7. Purcell, W. Capillary pressures—their measurement using mercury and the calculation of permeability
therefrom. J. Pet. Technol. 1949, 1, 39–48. [CrossRef]

8. Gates, J.; Lietz, W. Relative permeabilities of California cores by the capillary pressure method. In Drilling
and Production Practice; API-50-285; American Petroleum Institute: Washington, DC, USA, 1950.

9. Burdine, N. Relative permeability calculations from pore-size distribution data. J. Pet. Technol. 1953, 5, 71–79.
[CrossRef]

10. Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour.
Res. 1976, 12, 513–522. [CrossRef]

11. Romm, E. Fluid Flow in Fractured Rocks; (English Translation, W.R. Balke, Bartlesville, OK, 1972); Nedra
Publishing House: Moscow, Russia, 1966. (In Russian)

12. Brooks, R.; Corey, A. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 1966, 92, 61–90.
13. Fourar, M.; Lenormand, R. A viscous coupling model for relative permeabilities in fractures. In SPE Annual

Technical Conference and Exhibition; SPE-49006-MS; Society of Petroleum Engineers: Pittsburgh, PA, USA, 1998.
14. Chima, A.; Geiger, S. An analytical equation to predict gas/water relative permeability curves in fractures.

In SPE Latin America and Caribbean Petroleum Engineering Conference; SPE-152252-MS; Society of Petroleum
Engineersz: Pittsburgh, PA, USA, 2012.

15. Li, Y.; Li, X.; Teng, S.; Xu, D. Improved models to predict gas–water relative permeability in fractures and
porous media. J. Nat. Gas Sci. Eng. 2014, 19, 190–201. [CrossRef]

16. Mandelbrot, B. The Fractal Geometry of Nature. Am. J. Phys. 1982, 51, 286–287. [CrossRef]
17. Lei, G.; Dong, P.; Wu, Z.; Gai, S.; Mo, S.; Li, Z. Multi-scale structures of porous media and the flow prediction.

J. Nat. Gas Sci. Eng. 2014, 21, 986–992. [CrossRef]
18. Geng, L.; Li, G.; Zitha, P.; Tian, S.; Sheng, M. A fractal permeability model for shale gas flow through

heterogeneous matrix systems. J. Nat. Gas Sci. Eng. 2016, 35, 593–604. [CrossRef]
19. Hu, B.; Wang, J.; Wu, D.; Wang, H. Impacts of zone fractal properties on shale gas productivity of a multiple

fractured horizontal well. Fractals 2019, 27, 1950006. [CrossRef]
20. Xu, P.; Qiu, S.; Yu, B.; Jiang, Z. Prediction of relative permeability in unsaturated porous media with a fractal

approach. Int. J. Heat Mass Transf. 2013, 64, 829–837. [CrossRef]
21. Ghanbarian, B.; Ioannidis, M.; Hunt, A. Theoretical insight into the empirical tortuosity-connectivity factor

in the Burdine-Brooks-Corey water relative permeability model. Water Resour. Res. 2017, 53, 10395–10410.
[CrossRef]

22. Chen, L.; Li, D.; Ming, F.; Shi, X.; Chen, X. A fractal model of hydraulic conductivity for saturated frozen soil.
Water 2019, 11, 369. [CrossRef]

23. Li, X.; Yi, L.; Yang, Z.; Chen, Y. A new model for gas–water two-immiscible-phase transport in fractal-like
porous media. J. Appl. Phys. 2015, 118, 224306. [CrossRef]

24. Mo, S.; He, S.; Lei, G.; Gai, S.; Liu, Z. Effect of the drawdown pressure on the relative permeability in tight
gas: a theoretical and experimental study. J. Nat. Gas Sci. Eng. 2015, 24, 264–271. [CrossRef]

25. Huo, D.; Benson, S. Experimental investigation of stress-dependency of relative permeability in rock fractures.
Transp. Porous Media 2016, 113, 567–590. [CrossRef]

26. Lei, G.; Dong, P.; Mo, S.; Gai, S.; Wu, Z. A novel fractal model for two-phase relative permeability in porous
media. Fractals 2015, 23, 1550017. [CrossRef]

27. Wu, W.; Zoback, M.; Kohli, A. The impacts of effective stress and CO2, sorption on the matrix permeability
of shale reservoir rocks. Fuel 2017, 203, 179–186. [CrossRef]

28. Cai, J.; Lin, D.; Singh, H.; Zhou, S.; Meng, Q.; Zhang, Q. A simple permeability model for shale gas and key
insights on relative importance of various transport mechanisms. Fuel 2019, 252, 210–219. [CrossRef]

29. Wang, J.; Song, H.; Rasouli, V.; Killough, J. An integrated approach for gas-water relative permeability
determination in nanoscale porous media. J. Pet. Sci. Eng. 2019, 173, 237–245. [CrossRef]

http://dx.doi.org/10.1155/2018/5910437
http://dx.doi.org/10.3390/w9120960
http://dx.doi.org/10.1016/j.jngse.2019.05.010
http://dx.doi.org/10.2118/949039-G
http://dx.doi.org/10.2118/225-G
http://dx.doi.org/10.1029/WR012i003p00513
http://dx.doi.org/10.1016/j.jngse.2014.05.006
http://dx.doi.org/10.1119/1.13295
http://dx.doi.org/10.1016/j.jngse.2014.10.033
http://dx.doi.org/10.1016/j.jngse.2016.08.033
http://dx.doi.org/10.1142/S0218348X19500063
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.05.003
http://dx.doi.org/10.1002/2017WR021753
http://dx.doi.org/10.3390/w11020369
http://dx.doi.org/10.1063/1.4937405
http://dx.doi.org/10.1016/j.jngse.2015.03.034
http://dx.doi.org/10.1007/s11242-016-0713-z
http://dx.doi.org/10.1142/S0218348X15500176
http://dx.doi.org/10.1016/j.fuel.2017.04.103
http://dx.doi.org/10.1016/j.fuel.2019.04.054
http://dx.doi.org/10.1016/j.petrol.2018.10.017


Water 2020, 12, 27 24 of 24

30. Ding, J.; Yang, S.; Nie, X.; Wang, Z. Dynamic threshold pressure gradient in tight gas reservoir. J. Nat. Gas
Sci. Eng. 2014, 20, 155–160. [CrossRef]

31. Yu, B.; Li, J. Some fractal characters of porous media. Fractals 2001, 9, 365–372. [CrossRef]
32. Mortensen, N.; Okkels, F.; Bruus, H. Reexamination of Hagen-Poiseuille flow: shape dependence of the

hydraulic resistance in microchannels. Phys. Rev. E 2005, 71, 057301. [CrossRef]
33. Ambrose, R.J.; Hartman, R.C.; Campos, M.; Akkutlu, I.Y.; Sondergeld, C. New Pore-Scale Consideration for

Shale Gas in Place Calculations; SPE-131772-MS; Society of Petroleum Engineers: Pittsburgh, PA, USA, 2010.
34. Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bao, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition

on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the
southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [CrossRef]

35. Loyalka, S.; Hamoodi, S. Poiseuille flow of a rarefied gas in a cylindrical tube: solution of linearized
Boltzmann equation. Phys. Fluids A Fluid Dyn. 1990, 2, 2061–2065. [CrossRef]

36. Cai, J.; Perfect, E.; Cheng, C.; Hu, X. Generalized modeling of spontaneous imbibition based on
Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 2014, 30, 5142–5151.
[CrossRef] [PubMed]

37. Ren, W.; Li, G.; Tian, S.; Sheng, M.; Fan, X. An analytical model for real gas flow in shale nanopores with
non-circular cross-section. AIChE J. 2016, 62, 2893–2901. [CrossRef]

38. Sanjari, E.; Lay, E. An accurate empirical correlation for predicting natural gas compressibility factors. J. Nat.
Gas Sci. Eng. 2012, 21, 184–188. [CrossRef]

39. Jarrahian, A.; Heidaryan, E. A simple correlation to estimate natural gas viscosity. J. Nat. Gas Sci. Eng. 2014,
20, 50–57. [CrossRef]

40. Beskok, A.; Karniadakis, G. Report: A model for flows in channels, pipes, and ducts at micro and nano scales.
Microscale Thermophys. Eng. 1999, 3, 43–77.

41. Wu, K.; Chen, Z.; Li, J.; Li, X.; Xu, J.; Dong, X. Wettability effect on nanoconfined water flow. Proc. Natl. Acad.
Sci. USA 2017, 114, 3358–3363. [CrossRef]

42. Moghaddam, A.; Prat, M.; Tsotsas, E.; Kharaghani, A. Evaporation in capillary porous media at the perfect
piston-like invasion limit: evidence of nonlocal equilibrium effects. Water Resour. Res. 2017, 53, 10433–10449.
[CrossRef]

43. Busch, A.; Hildenbrand, A. Predicting capillarity of mudrocks. Mar. Pet. Geol. 2013, 45, 208–223. [CrossRef]
44. Wang, C.; Elsworth, D.; Fang, Y. Influence of weakening minerals on ensemble strength and slip stability of

faults. J. Geophys. Res. Solid Earth 2017, 122, 7090–7110. [CrossRef]
45. Mahiya, G. Experimental Measurement of Steam-Water Relative Permeability. Master’s Thesis, Stanford

University, Stanford, CA, USA, 1999.
46. Li, K.; Horne, R. Experimental Study of Gas Slippage in Two-Phase Flow; Society of Petroleum Engineers:

Pittsburgh, PA, USA, 2004; pp. 409–415.
47. Diomampo, G.; Chen, C.; Li, K.; Horne, R. Relative permeability through fractures. In Proceedings of the 27th

Workshop on Geothermal Reservoir Engineering; SPE-896520-MS; Stanford University: Stanford, CA, USA, 2001.
48. Wang, F.; Jiao, L.; Lian, P.; Zeng, J. Apparent gas permeability, intrinsic permeability and liquid permeability

of fractal porous media: Carbonate rock study with experiments and mathematical modelling. J. Pet. Sci. Eng.
2019, 173, 1304–1315. [CrossRef]

49. Zhang, T.; Li, X.; Li, J.; Feng, D.; Han, S. A fractal model for gas–water relative permeability in inorganic
shale with nanoscale pores. Transp. Porous Media 2018, 122, 1–27. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jngse.2014.06.019
http://dx.doi.org/10.1142/S0218348X01000804
http://dx.doi.org/10.1103/PhysRevE.71.057301
http://dx.doi.org/10.1016/j.jngse.2015.02.031
http://dx.doi.org/10.1063/1.857681
http://dx.doi.org/10.1021/la5007204
http://www.ncbi.nlm.nih.gov/pubmed/24785579
http://dx.doi.org/10.1002/aic.15254
http://dx.doi.org/10.1016/S1003-9953(11)60352-6
http://dx.doi.org/10.1016/j.jngse.2014.06.004
http://dx.doi.org/10.1073/pnas.1612608114
http://dx.doi.org/10.1002/2017WR021162
http://dx.doi.org/10.1016/j.marpetgeo.2013.05.005
http://dx.doi.org/10.1002/2016JB013687
http://dx.doi.org/10.1016/j.petrol.2018.10.095
http://dx.doi.org/10.1007/s11242-018-1006-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Gas-Water Relative Permeability Model 
	Two Classical Relative Permeability Models 
	Brooks–Corey Model 
	Viscous Coupling Model 

	Gas-Water Displacement and the Variation of Capillary Pressure with Water Saturation 
	Irreducible Water Saturation and Threshold Pressure Gradient 
	Calculation of Water Saturation and Irreducible Water Saturation 
	Fractal Distribution of Pores 
	Two-Phase Flow Model in Nanopores 
	Flow Rate of Gas 
	Geometrical Correction Factor and Real Gas Effect 
	Water Film Effect 

	Intrinsic Permeability 
	Gas-Water Relative Permeability Model 

	Model Validation 
	Discussions 
	Effects of Pore-Size Distribution and Tortuosity Fractal Dimension 
	Effect of Nanotube Size 
	Effect of Water Film Thickness 
	Effect of Geometric Correction Factor 
	Real Gas Effect 

	Conclusions 
	References

