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Key points summary 

 It is unclear whether the visual input that accompanies a perturbation of a standing 

person can affect whether a recovery step is taken. 

 Visual motion speeds were manipulated during unexpected forward and backward 

shoulder pulls. 

 Visual motion that appeared slower than actual body motion reduced the initial in-

place resistance to the perturbation. 

 Due to the modulation of the in-place response, less pull force was needed to trigger 

a step when visual velocity appeared slower than normal.  

 The visuomotor postural response occurred earlier and was larger when the full-field 

visual input was paired with a mechanical perturbation.  

Abstract 

The aim of this study was to determine how visual motion evoked by an upper body 

perturbation during standing affects compensatory postural responses. This was 

investigated by rotating the visual field forwards or backwards about the ankle, time-locked 

to a forwards or backwards shoulder pull. Kinematic, kinetic and electromyographic 

responses were recorded to a range of pull forces over 160 trials in 12 healthy adults (mean 

= 31 years, S.D. =5.8). Stepping threshold forces and in-place postural responses were 

compared between conditions. 

When the visual field moved in the same direction as the pull, so that the apparent 

velocity of the body was reduced (SLOW condition), the pull-force required to induce a step 

was less than when the visual field either rotated in the opposite direction (FAST) or was 

unaltered (NATURAL). For in-place responses, the body was displaced further in the 

direction of the pull in the SLOW condition. This was due to a reduction in the resistive force 

from lower leg muscles 130ms after the visual motion onset. In trials with no pull, the visual 

motion induced postural responses that were later (290ms) and had smaller amplitudes 

compared to when visual motion is paired with an unexpected perturbation of the body. 
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  The results suggest that the apparent speed of the visual environment during a 

perturbation does influence whether a compensatory step is taken, not via a direct effect on 

the decision to step but by modulating the initial in-place response.  

Introduction 

When a standing person is pushed, a postural response is triggered to counter the 

perturbing force in order to maintain stability. Generally, there will be an initial in-place 

response — where the feet do not move and the perturbing force is resisted. In some cases, 

a stepping response will follow — where the base of support is adjusted. A critical role of 

somatosensory, proprioceptive and vestibular input in shaping the postural response has 

been established (Do et al., 1990; Allum et al., 1994; Inglis et al., 1994; Bloem et al., 2000). 

However, it is unclear whether visual information is used in the postural response to recover 

from a perturbation that threatens stability. As dependence on vision increases with age 

and sensorimotor impairment (Bugnariu & Fung, 2007; Slaboda et al., 2011) it is important 

to understand how visual input contributes to compensatory postural responses. 

A mechanical perturbation to the body that moves the head in space inevitably 

produces relative visual motion. This may induce optic flow of the visual scene on the retina, 

evoke compensatory eye movement to keep the image stabilised, or a combination of the 

two. Thus, the direction and speed of the visual motion provides information about head 

motion, from which body motion in space can be inferred. Prior literature suggests that the 

level of visual involvement in postural responses depends on the size and frequency of the 

perturbation. For example, in quiet standing when there are no external perturbations, the 

body leans in the direction of full-field visual motion with ground reactive force latencies of 

190-300ms (Bronstein & Buckwell, 1997; Guerraz et al., 2001; Day et al., 2016). When the 
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standing surface tilts about the ankle joint at low perturbation frequencies, manipulating 

visual motion has been found to modulate the in-place postural response (Diener et al., 

1986; Slaboda et al., 2011; Slaboda & Keshner, 2012).  However, for higher frequency 

transitory tilts of the standing surface, visual input has not been found to have any effect on 

the in-place response (Vidal et al., 1982; Diener et al., 1986). These findings suggest that 

postural responses to higher perturbing forces are driven by mechanisms largely dependent 

on non-visual sensory inputs. 

However, the role of visual input in larger perturbations may not be so 

straightforward. Perturbing upright stance with a tilt of the floor about the ankle joint is 

unusual to encounter in daily life and is a perturbation that directly triggers lower-limb 

proprioceptive reflexes. Although there are brief vertical accelerations of the head soon 

after tilts of the floor, their high frequency nature makes them more a vestibular stimulus 

than a visual one (Carpenter et al., 1999). In contrast, a push at the shoulder is not an 

uncommon experience and may evoke earlier and greater head motion (thus more visual 

motion). Furthermore, no prior study in humans has manipulated visual input during 

perturbations that are strong enough to threaten in-place stability requiring a stepping 

response. As there is some evidence in primates that visuomotor responses can be hastened 

in situations where stability is threatened (Vidal et al., 1979; Lacour et al., 1981), visual input 

may be more involved in the postural response when perturbations are strong enough to 

trigger a stepping response. This study aimed to determine whether full-field visual motion 

associated with a perturbation to the upper body could alter the trigger for a stepping 

response. We investigated this by manipulating the apparent velocity of the visual scene 

during unexpected shoulder pulls at forces high enough to evoke a step. 
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Although a stepping response tends to occur at higher perturbation forces, previous 

work has shown that the pull force per se does not trigger this transition from in-place to 

stepping response. Rather it is the position and velocity of the body’s centre of mass (CoM) 

during the initial phase of the perturbation that predicts whether, or not, a step is 

subsequently taken (Pai et al., 1998; Pai et al., 2000; Hof et al., 2005; Hasson et al., 2008). 

This early trigger is reflected in the finding that step preparation (as indicated by a lateral 

weight shift) is often initiated well before the vertical projection of the body’s CoM is at the 

limits of the base of support (McIlroy & Maki, 1993). Thus, the decision to step is based on a 

predicted future state of the CoM formed from the current state of the CoM. However, the 

brain does not have direct knowledge of the body’s CoM position or velocity; it must 

generate an estimate from the sensory signals evoked by the perturbation and the body’s 

subsequent behaviour. Somatosensory, proprioceptive, vestibular signals as well as vision all 

contribute to the internal representation of body motion (DeAngelis & Angelaki, 2012; 

Britton & Arshad, 2019). 

Here we hypothesised that the visual motion evoked during an upper-body 

perturbing force would inform the brain’s estimate of body motion and would impact the 

postural response. Thus, visual motion that is artificially made slower than actual body 

motion would reduce the estimate of body velocity, whereas visual motion that is made 

faster would do the opposite. The effects of such visually-based body velocity estimates on 

the in-place and stepping responses will depend on whether visual input is used by these 

compensatory mechanisms and how they interact. Consider the outcome if the in-place 

mechanism uses visual input to shape its response. If, for example, the apparent body 

velocity were artificially reduced, one would expect less initial in-place resistance. This, in 
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turn, would lead to greater body motion and so an increased likelihood of a step being 

required. Alternatively, if artificially reduced visual motion does not influence the initial in-

place response, but nonetheless is incorporated into body velocity estimates that informs 

the decision to step, then a decreased likelihood of a step being triggered would be 

expected. Opposite effects would be expected if the apparent body velocity was increased 

by artificially increasing visual motion during a perturbation.  

 

Methods 

Ethical Approval 

Twelve healthy volunteers (7 female) with an average age of 31 years (S.D. = 5.8) gave 

written informed consent to participate in this study. All participants had normal or 

corrected-to-normal vision and did not suffer from any known neurological or orthopaedic 

problems. All experimental protocols were approved by the UCL Research Ethics Committee 

(#5454/001) and conformed to the Declaration of Helsinki (except for registration in a 

database). 

Equipment 

Participants stood at a comfortable foot-width, with each foot on a separate force plate, at a 

distance of 60cm from a screen to their right that was suspended from floor to ceiling 

(Figure 1A). Four inextensible strings were connected to the body harness worn by subjects 

at the front and back of each shoulder. These cables were attached to two rotatory 

servomotors (Kollmorgen, Radford, VA, USA) that were operated in torque feedback mode. 

One motor was in front, and one motor was behind the participant. To ensure a smooth 



7 

This article is protected by copyright. All rights reserved. 
7 

resistance, even at low torques, the motors were outfitted with anti-cogging features. The 

subject performed the experiment in a harness that was attached to an overhead wire that 

allowed unrestricted movement of a few steps forward or backward, yet prevented impact 

with the ground.  

A projector (InFocus SP8600, 24 fps, 1920x1080 resolution) was positioned 6.6 

metres from the large (2.43 x 2.2m) rear projection screen. A visual pattern was projected 

onto this screen which filled subjects’ field of view when their head was rotated 90 degrees 

to the right. The laboratory was otherwise in darkness. The projected visual pattern 

consisted of coloured dots (18 mm diameter) randomly positioned with a density of 300 

dots/m2.  

Wireless surface electromyography (EMG, Delsys, Inc., Boston, MA, USA) were 

recorded bilaterally from the tibialis anterior (TA) and medial gastrocnemius (GAS) muscles. 

The 3-D positions of infrared emitting diode markers were recorded from the 7th cervical 

vertebra; and bilaterally from: the metatarsal heads, heels, malleoli, femoral epicondyles, 

acromions, posterior skull, posterior superior iliac spine and the wrists. Kinematic data were 

sampled at 200Hz. The EMG, ground reaction 3-D forces (Kistler, Winterthur, Germany), 

output from force transducers in serial connection to the puller motors, analogue output 

from the motors, and the visual motion start and stop events were recorded synchronously 

at 1000Hz with a CODA motion-capture system (Charnwood Dynamics, Rothley, UK). 

A central computer communicated with the computer giving commands to the 

motors, the computer presenting the visual stimulus and the computer collecting the data. 

To approximate the visual motion that occurs when a standing person is pulled at the 

shoulder, the visual scene was rotated about an axis coincident with the subject’s ankle 
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joint. Furthermore, the onset of visual scene motion was triggered to occur at a time when 

the head would naturally start moving from a mechanical pull. Pilot testing of pulls that 

were strong enough to evoke a step revealed the peak angular velocity of the head was of 

the order of 12.0 deg/s (S.D. =2.3), and the onset time of head motion was 132.4ms (S.D. = 

34.1ms) after the central control computer ‘go’ command. Measurements with a 

photodiode showed there was a mean time delay of 30.8ms (S.D. = 8.9ms) from the 

computer ‘go’ command to the actual movement of the visual scene (for more information 

see (Day et al., 2016). Therefore, in order to present the moving visual stimulus in the 

earliest phase of head motion (approximately 1 S.D. faster than the mean onset), a 70ms 

delay was imposed between the computer ‘go’ command to the pulling motors and the ‘go’ 

command to start visual motion. The angular velocity of the projected visual scene reached 

a peak of 12 deg/s and was applied over the same time scale as the pull force, 1.5 seconds 

total including 0.5 second on and off ramp profiles (Figure 1B). The visual scene was 

controlled by software written in Matlab R2012B (The Mathworks, Inc., Natick, MA, USA) 

using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 

 [Figure 1 about here] 

Procedure 

Subjects were told to remain standing to the best of their ability during the trials and only to 

step if required. Subjects were asked to rotate their head to the right just before trial onset 

and to keep their head in this orientation for the trial duration (6 seconds) so that the 

screen filled their field of view (FOV).  Perturbations were applied precisely 2 seconds after 

the experimenter pressed the trial start command. When comparing the head yaw position 

within the first 500ms of the pull there tended to be a small backward deviation of the head 
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for forward pull conditions (1.3o, 95% CI [0.80,1.80]) and a forward rotation of the head for 

backward pulls (4.2o, 95% CI [2.7, 6.1]). Even with these changes in head yaw, the FOV 

(assuming 120o of arc) remained inside the bounds of the projection screen (average FOV 

limit= 0.26m, 95% CI [0.21, 0.31] and FOV limit= 0.18m, 95% CI [0.08, 0.28] inside the 

bounds of the screen for forward and backward pulls respectively). Subjects were 

encouraged to rotate and stretch their neck at the end of each trial to prevent neck strain or 

adaptation. To keep subjects alert and minimise fatigue, sit-down rest breaks were every 20 

trials. 

Phase 1 of the procedure estimated force thresholds for stepping by testing subjects 

over a 20N pull force window at 2N even-integer increments for each of the 3 randomly 

presented visual field conditions; visual field forward, visual field backward and visual field 

stationary (NATURAL) and 2 randomly presented pull directions; pull forward and pull 

backward. The 20N window was initially estimated based on subject height and weight. If 

the initial estimate was incorrect and the subject was able to resist stepping at the highest 

pull force, or stepped at the lowest pull force, the window was shifted higher or lower 

respectively by 10N, and Phase 1 testing began again. Based on Phase 1 stepping data (60-

80 trials) a stepping threshold was estimated. 

In Phase 2 there were more pulls spanning the stepping threshold estimate 

randomized with pulls that required an in-place response. The threshold honing pulls were 

selected over a 7N window, spanning the stepping threshold estimate from Phase 1 at 2N 

odd-integer increments for the three visual conditions. When combined with Phase 1 data, 

subjects were tested at 1N force increments over the critical threshold window for each of 

the three visual conditions in the two pull directions. In-place trials were achieved by pulling 
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subjects with a force set at two-thirds of their Phase 1 stepping threshold estimate in the 

NATURAL condition. These in-place pulls were repeated 7 times for each of 9 conditions: 

visual field (forward, backward, NATURAL) x pull direction (forward, backward, none). The 

number of Phase 2 trials was the sum of threshold pulls (4 pull forces x3 visual conditions x2 

pull directions) plus in-place pulls (7 repeated pull forces x 3 visual conditions x3 pull 

conditions) giving 87 trials. The average number of total trials across Phase 1 and Phase 2 

was 160. 

Data Analysis  

Stepping trials 

A step was identified when there was a reduction of vertical force to less than 5N on one of 

the force plates coupled with an anterior/posterior displacement of the foot in the direction 

of the pull. Force thresholds for stepping were found in each condition by plotting a data 

point for each trial pull force on the abscissa versus step (stance=0, step=1) on the ordinate 

axis (Figure 1C). A sigmoidal curve was fitted to the data. The value at 50% of the amplitude 

was taken as the step threshold.  

Trials in which the relative visual motion was slower than in the NATURAL condition 

were categorised as the SLOW condition. This occurred when the pull direction and the 

visual field motion were in the same direction i.e. pull forward and visual field forward, or 

pull backward and visual field backward. Trials were assigned to the FAST condition when 

the relative visual motion was faster than the NATURAL condition due to the pull direction 

and the visual field motion occurring in opposite directions, i.e. a pull forward and visual 

field backwards, or a pull backwards and visual field forwards. Significant effects of the 

visual field motion on the step threshold were tested with a repeated measures ANOVA 
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with visual motion (SLOW/NATURAL/FAST) and pull direction (forward/backward) as the 

fixed factors. Contrast tests investigated between-level effects. 

In-place trials 

Ankle, knee and hip flexion/extension joint angles and change in head angle with respect to 

the ankle were calculated from the kinematic data using Visual3D software (C-Motion, Inc). 

To investigate kinematic differences between visual conditions, the area under the curve 

(AUC) of head, hip, knee and ankle angle in the AP direction over a 2.5 second window after 

the pull onset was determined for each participant. Differences in kinematic traces in angles 

were calculated to determine the latency when a change in visual condition caused a change 

in a kinematic variable. The latency was defined as the time when the difference trace 

deviated more than three standard deviations of the pre-pull baseline fluctuations. Area 

under the curve of AP horizontal shear forces (Fy) in a window 130-270ms after the visual 

field motion were calculated. This window corresponded to the first significant divergence 

between visual conditions.  

EMG signals were zero offset by subtraction of the mean over the two-second 

baseline period, rectified and low-pass filtered at 50Hz with a zero phase, 4th order 

Butterworth filter. EMG traces were normalized for each participant by dividing by the area 

under the mean agonist EMG response during the period of peak perturbing force in the 

NATURAL condition. Thus, activity in the TA muscles in each trial was divided by the area 

under the mean TA trace from 2.5-3 seconds obtained during NATURAL backward pulls, 

whereas the GAS data were normalized in each trial by dividing by the area under the mean 

GAS trace from 2.5-3 seconds obtained in the NATURAL pull forward condition. 
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Within-subject changes in the EMG response to the different visual field conditions 

were determined from the integrated area under the normalised rectified traces. As the 

centre of pressure (CoP) traces diverged between visual conditions 130ms after the onset of 

visual motion, we selected the EMG window 60 to 120ms after onset of the visual field 

motion to allow time for the electromechanical coupling delay. This window corresponded 

to the earliest time of supraspinal influence in the legs (Corden et al., 2000). 

Parameters calculated from the in-place trials were the dependent variables in 

repeated measures ANOVAs, with pull direction (forwards/backwards) and visual motion 

(NATURAL/ SLOW/FAST) as factors. Contrast tests analysed differences between levels 

within the factors. During quiet standing with no pull a repeated-measures ANOVA 

investigated differences in postural variables between visual motion conditions. 

In all trials, lateral weight shifts that were indicative of step preparation were 

identified when there was a lateral shear force (Fx) after the pull of over 5N that lasted 

more than 50ms occurring concurrently with diverging vertical forces (Fz) under the two 

feet. The latency and peak of lateral Fx, of the first lateral shift and the lateral shift prior to 

the step were recorded. The percentage of trials with lateral weight shifts, latency, CoP 

position, CoP velocity and Fx magnitude at lateral weight shift onset and peak were 

compared between visual conditions with repeated measures ANOVAs. All data were 

processed in Matlab (R2018a, MathWorks, Inc., MA, USA) and statistical analysis was 

performed with SPSS (IBM SPSS version 20). 
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Results 

Stepping Thresholds 

Mean stepping threshold force was significantly higher for forward pulls (75.9N, S.D.=22.0) 

than backward pulls (49.1N, S.D.=8.8, p<0.001). The applied visual field motion during the 

pull had a significant main effect on stepping threshold (p<0.001). Figure 2 shows the 

relative changes in group and individual step thresholds between visual conditions. During 

forward pulls, the stepping threshold was on average 2.4N (SD=2.7) lower in the visual field 

forward (SLOW) compared to NATURAL condition, and 1.1N (SD=2.1) higher in the visual 

field backward (FAST) compared to NATURAL condition. Whereas, for backward pulls, the 

stepping threshold was 1.6N lower (SD=2.5) in the visual field backward (SLOW) compared 

to NATURAL condition, and 0.6N (SD=1.2) higher in the visual field forward (FAST) condition 

compared to NATURAL. Contrast tests showed that when the visual field was moving in the 

same direction as the pull (SLOW) the stepping threshold was significantly reduced 

compared to the NATURAL condition (p=0.002). When the visual field was moving in the 

opposite direction to the pull (FAST) the threshold was slightly elevated but was not 

significantly different to the NATURAL condition (p=0.146). There was not a significant visual 

motion by pull direction interaction (p=0.363). 

[Figure 2 about here] 

In-place postural responses 

When participants were pulled at two-thirds of their NATURAL stepping threshold, there 

were significant main effects of pull direction (p=0.008) and visual motion (p=0.015) on 

displacement of body segments (Figure 3). There was no pull direction x visual motion 
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interaction (p=0.580).   Contrast tests showed significantly greater joint angle displacements 

for the SLOW compared to the NATURAL condition at the ankle (p=0.007), knee (p=0.005), 

hip (p=0.003) and head (p=0.006). Thus, for forward pulls, with a forward visual field, the 

head moved further forward and there was greater hip and ankle flexion and greater knee 

extension compared to NATURAL visual motion. Whereas, for backward pulls with a 

backward visual field the head moved further backwards and there was greater hip and 

ankle extension and greater knee flexion compared to NATURAL vision. These displacements 

were not significantly different for the FAST compared to the NATURAL condition at the 

ankle (p=0.468), knee (p=0.394), hip (p=0.342), or head (p=0.370). Of all of the body 

kinematics recorded, the ankle angle was the first joint to show a divergence between 

NATURAL and SLOW visual conditions; for forward pulls this occurred at 297ms (95% 

CI[225,362), and for backward pulls at 283ms (95% CI[208, 338]) after onset of visual 

motion. When there was no pull, visual field motion still had a significant effect on 

displacements of body segments (p=0.025). Although contrast tests showed only 

displacements at the head and hips for the backward visual field motion were significant 

(p=0.018 and p=0.038 respectively) all other contrasts were not significant (p>0.154, for all 

comparisons). 

[Figure 3 about here] 

When there was no pull, differences in antero-posterior horizontal ground reaction forces 

(Fy) between visual conditions were apparent and occured 290ms (95% CI [272,311]) after 

the onset of the visual motion (Figure 4A). During the pull, Fy forces acted on the body 

initially in the opposite direction to that of the pull in order to remain standing. There was 

no effect of visual motion direction on the Fy onset latency (p=0.75), but the size of the Fy 
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force did differ between visual field conditions 130ms, 95% CI[119,143] after visual motion 

onset (Figure 4). There was a signficant main effect of relative visual motion on AUC of Fy 

traces in the time window 130-270ms after visual field motion in the pull conditions 

(p=0.002) but not in the no pull conditions (p=0.55). For the FAST condition, Fy force over 

this window was not different to the NATURAL condition (p=0.506) (white trace in Fig 4B, 

black trace in Fig 4C). However, for the SLOW condition the initial Fy reacting to the pull was 

less than for the NATURAL condition (p=0.016) (black trace in Fig 4B, white trace in Fig 4C). 

There was no significant pull direction by visual field direction interaction (p=0.431).  

[Figure 4 about here] 

 

The initial onset latency of the EMG agonist muscle in response to a pull was not affected by 

the visual motion (p=0.274). However, in the window 60 to 120ms after visual motion onset 

there was a significant interaction between the visual field motion and the direction of the 

pull in the GAS (p=0.032) and TA muscles (p=0.006)  response (Figure 5). The agonist 

muscles resisting the pull (TA for backward pulls and GAS for forward pulls) were reduced in 

the SLOW visual field condition compared to their activity in the NATURAL visual field 

condition (p=0.001). Furthermore, the antagonist muscle activity (GAS for backward pulls 

and TA for forward pulls) was increased in the SLOW condition compared to the NATURAL 

condition (p=0.005). For the FAST condition, there was no systematic effect of the visual 

motion on EMG activity for agonist (p=0.397) or antagonist muscles (p=0.217). 

[Figure 5 about here] 
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Incidence and latency of step preparation 

A lateral weight shift, as evidence of step preparation, was observed in 52% of trials and 

there was no difference in incidence between visual conditions (p=0.393). The latency of the 

lateral shift occurred earlier for backward pulls (360ms, 95%CI [311,401]) compared to 

forward pulls (486ms, 95% CI [436,536], p=0.026). There were no significant effects of visual 

field condition on the size (p=0.668) or latency (p=0.055) of the lateral weight shift, or the 

position of CoP at the start of the shift (p=0.819). 

 

Discussion 

This is the first study to demonstrate that the motion of the full-field visual environment 

during a perturbation can influence whether or not a step is taken. These findings challenge 

earlier studies in which triggered postural reactions were thought to be stereotyped 

(Nashner et al., 1979; Vidal et al., 1982; Diener et al., 1986)  and visual motion was thought 

to only affect the propensity to step through exposure before the perturbation (Hoshiyama 

et al., 1993). Here we demonstrate that the in-place response and the likelihood of stepping 

may be affected by visual feedback generated during the perturbation.  

We had postulated that changing the relative velocity of the visual motion would 

modulate the perceived body motion and the observed effects on the postural response 

would reveal underlying mechanisms of the visuo-postural system. The results showed that 

the full-field visual motion had an influence on the in-place response. The in-place muscle 

activation response was influenced by vision within the first 60-120ms of visual motion 

(130-190ms after the pull onset). In-place resistance to the pull was initially reduced for the 
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SLOW condition, when visual field motion indicated that the body was moving slower than it 

actually was. Activation of agonist muscles in the lower leg that normally worked to resist 

the pull were reduced, while antagonist activation increased (Figure 5). This reciprocal 

muscle behaviour reduced the forces opposing the pull and so the body was displaced 

further than normal. This increased displacement would then have been detected by 

proprioceptors, vestibular receptors and cutaneous receptors and this feedback triggered a 

step to avoid falling. This heightened veridical feedback appeared to dominate the decision 

to trigger a step and avoid falling.  

When the visual field motion indicated that the body was travelling faster than it 

actually was (FAST), there were no effects on the in-place postural response. Although the 

visual input was distorted, the feedback from non-visual sources would have been 

unaffected. If visual information carried any significant weight in the decision to take a step, 

increased visual motion indicating greater body velocity should have biased the step 

response towards a lower than normal threshold. Given this did not happen (in fact the 

threshold was slightly higher than normal) suggests that the visual channel carries very little, 

if any, weight for the decision to step. Alternatively, the result may reflect the non-linear 

relationship between visual field speed and postural control (Day et al., 2016), as vision 

contributes most to standing stabilization in the low frequency range (Fitzpatrick & 

McCloskey, 1994). Therefore, an increase in visual velocity may have less influence on 

posture than a decrease in visual velocity. This non-linearity may have contributed to the 

reduced modulation of the in-place and stepping response for the FAST condition.  

Faster visuomotor responses 
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Visual field motion alone evoked postural sway in the same direction as the visual motion 

with a mean ground reaction force (GRF) latency of 290ms. This latency is in the range of 

previously reported responses to visual stimuli obtained in quietly standing individuals 

(Bronstein & Buckwell, 1997; Guerraz et al., 2001; Day et al., 2016). However, when the 

same visual motion was presented in conjunction with the pull, GRF responses to the visual 

stimuli were hastened to 130ms. This faster response corresponded to a lower leg EMG 

activation window 60-120ms after visual motion onset. Expediting the response by 160ms 

suggests either different neural pathways are engaged or visual input is gated-in during co-

incident visual and mechanical perturbations. 

When the body is perturbed by an external force the automatic short latency reflex 

(SLR) acting through spinal circuity attempts to counter the perturbation, with lower leg 

muscle activation in the range of 80-120ms (Nashner & Cordo, 1981). The long latency reflex 

(LLR) refers to the epoch following the SLR but before outright voluntary control and it 

reflects the temporal overlap of multiple neural contributors including ongoing input from 

the spinal cord as well as supraspinal contributions (Kurtzer, 2014). LLR responses can be 

modified according to the task and global limb dynamics indicating access to an internal 

body schema (Jacobs & Horak, 2007). In the current study, the latency of the visual 

influence on the postural response (from 130ms after the pull) spans the LLR timescale in 

the lower leg (Friedemann et al., 1987; Corden et al., 2000). Thus, visual input during upper 

body perturbations modulates the neural pathways involved during the LLR time period.  

Larger visuomotor responses 

The visually-evoked postural response was not only earlier but also larger when paired with 

the pull compared to no pull, which demonstrates that it has variable gain depending on the 
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context. A prior study by Soechting and Berthoz (1979) also showed variable gain in the 

postural response to visual motion (Soechting & Berthoz, 1979). They showed that when 

horizontal motion of the visual surround was in conflict with translation of the standing 

surface, the body leaned twice as far in the direction of image velocity during a perturbation 

than when the visual stimulus was in isolation. However, unlike our study, the Soechting and 

Berthoz study found that the postural response to visual motion occurred at approximately 

the same latency in both stationary and perturbed conditions. The response found in their 

study may not have been faster because the surface translation was well below stepping 

threshold and was not a threat to stability. In our study, there was a heightened threat as 

people were forced to step on some trials to avoid falling. Furthermore, by translating the 

standing surface the prior study evoked a lean of the body in the opposite direction to body 

translation so the relative dynamics of the horizontal visual translation may have been more 

complex. An advantage of shoulder-pulls versus platform translation or waist pulls to study 

the fast visuomotor response is that there are fewer degrees of freedom for head motion, 

so the effect of the perturbation and visual motion can be more precisely controlled. 

Neural Pathways 

This is not the first study to demonstrate the existence of fast acting visuomotor pathways 

to the lower leg that respond according to the relative speed of visual motion (Nashner & 

Berthoz, 1978; Lacour et al., 1981; Reynolds & Day, 2005). A series of experiments that 

exposed vertically falling monkeys to variable visual motion and variable falling speeds 

showed that the velocity of the visual surround could modify EMG activity of the lower legs 

60ms after onset of the fall in a directionally specific way (Vidal et al., 1979; Lacour et al., 

1981).  
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Our findings could also use similar mechanisms to the phenomenon of rapid leg 

adjustments during a step to visual target jumps being made even faster when combined 

with a startling auditory input (Reynolds & Day, 2007). Reticulospinal pathways may be 

involved in accelerating the visuomotor response during unexpected or ‘startling’ 

perturbations. The superior colliculus receives input directly from the ocular nerve (Bisti et 

al., 1974), and has fast output pathways for controlling limb movement (Courjon et al., 

2004). It can also integrate multimodal sensory input from visual, vestibular and 

somatosensory inputs (Wallace et al., 1993) so may be involved in body schema 

representation. The reticular formation receives input from the colliculus (Harting, 1977) 

and is activated by vestibular stimulation (Peterson & Abzug, 1975). Startle reflexes are 

mediated by the RF through reticulo-spinal pathways and their EMG responses in lower leg 

muscles during standing are within the time scale seen in our study (Brown et al., 1991). A 

classical startle reflex is unlikely to explain the results in the current study because our 

responses show a specific agonist/antagonist activation pattern dependant on the relative 

visual velocity, indicating access to an internal model rather than a generalized co-

contraction. Also startling stimuli can accelerate planned motor responses (Campbell et al., 

2013), but in the current study, conditions were randomized so a planned response was 

unlikely. Vestibulospinal pathways may also mediate the response, as visual-vestibular 

interactions have been shown in the vestibular nuclei of the brainstem (Waespe & Henn, 

1977), and photic stimuli can activate the vestibular nuclei with latencies of only 28ms 

(Azzena et al., 1978). 

The motor cortex may be involved in modulating the size of the visuomotor response 

as postural LLR scaling is known to be abolished during the TMS-induced silent period 

(Kimura et al., 2006). Corticospinal pathways are influenced by the basal ganglia so it is not 
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surprising that people with Parkinson’s Disease are less able to modulate the size of the LLR 

reflex according to context (Bloem et al., 1995) and have impaired stepping to external 

perturbations (Di Giulio et al., 2016).  

When is the decision to step made? 

It is an enduring notion that stepping responses occur only when the initial in-place 

reactions fail to restore equilibrium: the ankle, hip, step sequence of responses (Horak & 

Nashner, 1986). However, our data suggest that the decision to step is more complex. If we 

assume that the lateral displacement of the centre of pressure toward the stepping foot 

prior to unloading and lifting the foot is when the decision to step occurred (McIlroy & Maki, 

1993), then likelihood of a step appeared to fluctuate moment-to-moment in parallel with 

the in-place response. These preparatory adjustments were often observed in our data even 

when there was no subsequent step, or multiple times before a step was finally taken. 

Therefore, steps were planned during active in-place resistance and often these plans were 

abandoned when in-place resistance was sufficient to maintain stability. This observed 

behaviour supports a compensatory postural response model proposed by McIlroy and Maki 

(McIlroy & Maki, 1993) that has parallel, rather than sequential control of the two types of 

reactions. The cerebellum is likely involved in this parallel processing of the decision to step 

as it predicts future states of the body based on current sensory information and ongoing 

motor commands. The cerebellum also has prominent connections to both the primary 

motor cortex (Middleton & Strick, 1998) and also provides input to the RF and modulates its 

action (Asanuma et al., 1983).  
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Implications 

This study has shown that the relative velocity of visual motion experienced during a 

destabilizing upper body perturbation affects the postural recovery response in young 

healthy participants. Because visual dependency is greater in elderly people (Slaboda et al., 

2011) and in some clinical populations such as cerebral palsy (Slaboda et al., 2013) and 

stroke patients (Marigold & Eng, 2006; Manor et al., 2010) the visual effects on 

compensatory postural responses revealed in the current study may be even larger in 

groups at higher fall risk. Understanding how this visuomotor response is affected by age 

and movements disorders will be a fruitful line of enquiry for future studies and will improve 

our understanding of the pathophysiology of postural instability and falls. 

Being pushed or pulled unexpectedly can take place in a static visual environment 

where the visual motion input accurately reports the perception of body motion. However 

unexpected pulls may also occur in environments that are more visually active, potentially 

with visual motion ambiguities such as standing on public transport or being jostled in a 

moving crowd of people. In such cases, visual input may be an inaccurate source of body 

motion and result in inappropriate postural responses. 

Conclusion 

This study has revealed the early and specific influence of visual motion on balance 

mechanisms that respond to external perturbations. The visually-evoked postural response 

was shown to be amplified and expedited to the legs during destabilising perturbations. In 

situations where a person trips, slips or is pushed unexpectedly, the fast visuo-motor 

response identified in this study will play a role in the balance strategy to prevent falling.   
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Authors’ Translational Perspective 

When we are pushed or pulled unexpectedly a fast and effective reaction by the postural 

muscles is required to avoid falling over. This study has shown that the relative speed of the 

full-field visual motion experienced during a destabilizing upper body perturbation is used 

by the nervous system to control the postural response. The effect of visual field motion on 

muscle activity in the legs is earlier and larger when visual field motion occurs together with 
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an external pull. The reliance on visual information for balance increases in older people and 

in people with certain neurological disorders. This study may therefore open a window into 

understanding better the pathophysiology of postural instability and falls in high risk groups. 
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Figure Legends 

Figure 1. Experimental setup and protocol  

A. The experimental setup showing that the projected visual scene rotated about the ankle 
joint. B. Each trial was a combination of one type of pull (forward, back or none) and one 
type of projected visual image motion (forward, back or none). The graph showing head 
velocity is representative data of a participant who remained standing when pulled at their 
stepping threshold. C. Example data showing how the stepping threshold (Th) was 
determined. All stance (0) and step (1) events for each condition were plotted against the 
peak pull force. The step threshold was the force corresponding to the 0.5 value of the fitted 
curve.  
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Figure 2. Stepping thresholds 

The upper panel shows the fitted threshold curves to the combined data points of all 
subjects for the three visual field conditions for forward pulls (A) and backward pulls (B). 
The combined data set was created by subtraction of each person’s threshold force in the 
NATURAL visual condition from all pull forces received by that participant for both the 
forward and backward pull directions. The lower panel shows individual participants’ step 
threshold changes for forward pulls (C), and backward pulls (D). The black lines and circles 
show the group means, grey data points and lines show individual participants’ step 
threshold changes.  
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Figure 3. Kinematic changes of the head, hip, knee and ankle for in-place responses. 

The mean timeseries of each of the three visual field conditions are shown: NATURAL 
(dotted lines), visual field motion forwards (black lines) and visual field motion backwards 
(grey lines) during standing with no pull (left column), pull forward (central column) and pull 
backward (right column). Onset timing of the pull force and the projected visual motion are 
indicated by the vertical lines. Individual data points show the corresponding area under the 
curve of angular body changes for the 2.5 second window following pull onset. For the no 
pull conditions, the data points on the left show backward visual motion (‘back’), data 
points in the middle show no visual motion and data points on the right show forward visual 
motion (‘forward’). For the pull conditions, angular changes to pulls with slower relative 
visual motion are shown on the left (‘slow’), natural visual motion are in the middle and 
angular changes to faster relative visual motion are shown on the right (‘fast’).  
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Figure 4. Ground reactive force differences with in-place responses 

Mean Fy difference traces between the visual field moving conditions and the visual field 
stationary (NATURAL) condition. The black line with grey shading is the mean difference in 
Fy between the visual field rotating backwards and NATURAL conditions. The white line with 
black shading is the mean difference in Fy between the visual field rotating forward and 
NATURAL conditions. A. No external perturbation. B. Backward pulls, where the grey 
shading represents the SLOW condition. C. Forward pulls, where the black shading 
represents the SLOW condition.  The shaded regions show the 95% confidence interval. The 
area under curve (AUC) of the Fy timeseries was calculated 130ms after visual motion onset, 
over a 140ms time window. The AUC of the Fy resistive forces for each of the visual 
conditions are shown to the right of the corresponding timeseries. The size of the resistive 
force against the direction of the pull force are shown in B and D. 
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Figure 5. EMG responses of the ankle extensors (GAS) and flexors (TA).  

The panel on the left shows a single participant’s EMG mean responses in the TA and GAS 
muscles during backward and forward pulls for the three visual field motion conditions. The 
rectangle shows the 60ms window, 60ms after the onset of the visual field motion in which 
AUC of EMG traces was calculated. The panel on the right shows the group mean of AUC 
differences between visual field moving and NATURAL conditions (large diamonds). The 
error bars show the standard deviations. Circular data points show the mean of individual 
participants. 
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