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Abstract 

Event-based prospective memory (PM) refers to the cognitive processes required to perform a 

planned action upon encountering a future event. Event-based PM studies engage participants in 

an ongoing task (e.g., lexical decision making) with an instruction to make an alternative PM 

response to certain items (e.g., items containing ‘tor’). The Prospective Memory Decision 

Control model (PMDC), which provides a quantitative process account of ongoing task and PM 

decisions, proposes that PM and ongoing-task processes compete in a race to threshold. We use 

PMDC to test whether, as proposed by the Delay Theory of PM costs, PM can be improved by 

biasing decision making against a specific ongoing-task choice, so that the PM process is more 

likely to win the race. We manipulated bias in a lexical decision task with an accompanying PM 

intention. In one condition, a bias was induced against deciding items were words, and in another 

a bias was induced against deciding items were non-words. The bias manipulation had little 

effect on PM accuracy but did affect the types of ongoing-task responses made on missed PM 

trials. PMDC fit the observed data well and verified that the bias manipulation had the intended 

effect on ongoing-task processes. Further, although simulations from PMDC could produce an 

improvement in PM accuracy due to ongoing task bias, this required implausible parameter 

values. These results illustrate the importance of understanding event-based PM in terms of a 

comprehensive model of the processes that interact to determine all aspects of task performance.    
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Prospective Memory (PM) refers to the cognitive processes that allow humans to 

remember to perform planned actions in the future. PM tasks are prevalent in everyday life, as 

well as in safety-critical workplace settings such as aviation (Dismukes, 2012; Loft, Dismukes, 

& Grundgeiger, 2019) and healthcare (Rothschild et al., 2005). Einstein and McDaniel (1990) 

devised a paradigm to study PM in the laboratory, which is now the basis of a large body of 

research. The Einstein and McDaniel (1990) paradigm engages participants in an ongoing task 

such as a lexical decision task (indicate whether letter strings are words or non-words). The PM 

task is to remember to perform an atypical action at some point during the ongoing task. Many 

studies examine event-based PM, in which participants must remember to perform the planned 

action in response to a target event embedded in the ongoing task (e.g., make an alternative 

response if a presented letter string contains ‘tor’). 

Typically, in PM paradigms participants must either substitute their PM response for an 

ongoing task response (e.g., press the PM key instead of the ongoing task key if you see a letter 

string containing ‘tor’), and/or their ongoing task response removes the ongoing task stimulus 

from the screen, ending the opportunity for the PM item to cue the PM response. In either case, 

ongoing task response selection could interfere with the PM process. Consistent with ongoing 

and PM processes competing in a race for response selection, Loft and Remington (2013) found 

that PM performance could be improved by delaying when participants could make their 

ongoing-task response. Heathcote, Loft, and Remington (2015) elaborated this idea into “Delay 

Theory”, which explained PM costs – slower ongoing-task performance with than without PM 

demands – as due to participants strategically slowing ongoing-task performance. Delay theory 

was supported by evidence-accumulation modeling, which found that PM costs were due to an 

increase in the threshold amount of evidence required to trigger an ongoing-task response. 
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Heathcote et al., (2015) also found that when PM target stimuli corresponded to only one of two 

ongoing-task choices (all PM items were words in an ongoing lexical decision task) participants 

biased responding against that choice by raising its threshold more than the threshold for the 

other choice (thresholds to make a ‘word’ decision were elevated more than thresholds to make a 

‘non-word’ decision). They argued that this was consistent with participants using a selective 

bias strategy in order to improve PM responding. Their idea was that biasing ongoing-task 

thresholds against a specific ongoing-task choice could improve PM performance to target 

stimuli associated with that choice (Heathcote et al., 2015). For example, a bias against 

responding ‘word’ in a lexical decision task would be expected to improve PM accuracy to word 

targets.  However, Heathcote et al. did not test this proposition empirically and could not show 

that it worked theoretically because their modeling was limited to the ongoing task (i.e., the PM 

decision process was not modelled).    

Recently, Strickland, Loft, Remington, and Heathcote (2018) developed an evidence-

accumulation theory of both ongoing-task and event-based PM decision processes, ‘Prospective 

Memory Decision Control’ (PMDC), that provides a comprehensive account for ongoing-task 

and PM response choices and response times (RTs). Following Loft and Remington (2013), 

PMDC proposes that parallel PM and ongoing-task decision processes, as modelled by linear 

ballistic accumulators (LBA; Brown & Heathcote, 2008), race to accumulate evidence towards 

their respective thresholds. Consistent with Delay Theory, simulations from Strickland et al.’s 

model indicated that globally increasing ongoing-task decision thresholds (e.g., increasing both 

word and non-word thresholds) improved PM performance, by reducing the probability that 

ongoing-task decisions would pre-empt PM processes.  

It is difficult to experimentally test delay theory’s claim that increased ongoing task 
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caution improves PM accuracy, because manipulations targeted at ongoing task caution may 

affect the perceived importance of the PM task, with potentially confounding effects on PM 

processes. Instead, this study tests the other key claim of delay theory: that biases in ongoing task 

thresholds can affect PM. If such biases affect PM accuracy, they could provide an efficient 

strategy to improve PM when PM events only conflict with a specific type of response. For 

example, suppose one usually turns left at a specific round-a-bout on the way home from work, 

but one day they must turn right to go shopping. Their success at this PM task may be improved 

by selectively increasing caution towards turning left at future roundabouts (but not necessarily 

increasing caution to go straight or in other directions), as this would increase the time available 

to retrieve their intent to turn right at that specific roundabout in order to go shopping.  

In PMDC, selectively raising the threshold to an ongoing-task choice (e.g., raising the 

threshold to respond ‘word’) could allow the PM process time to reach threshold on relevant 

trials (following the example, PM would be less likely to be pre-empted by ‘word’ decisions on 

word PM trials). However, although Strickland et al., (2018) found that globally raised ongoing-

task thresholds contributed to PM accuracy, PMDC modelling indicated that other processes, 

including proactive control of PM thresholds and reactive control of evidence accumulation, 

were more important in determining PM accuracy. Thus, it is not a given that ongoing-task 

biases can substantially affect PM accuracy. We apply PMDC to our study to test whether it can 

account for the effects of our bias manipulation. Applying PMDC also allows us to assess how 

our manipulation affects cognitive processes (e.g., test whether the bias manipulation affects 

ongoing task thresholds), and how shifts in cognitive processes map to shifts in performance 

(e.g., determine to what degree shifts in PM accuracy are caused by shifts in ongoing task 

thresholds). Before reporting the experiment, we introduce PMDC in more detail.  
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Prospective Memory Decision Control 

PMDC assumes that parallel PM and ongoing LBA processes compete in a race to 

threshold (Figure 1). Each accumulator begins a trial at some start point drawn from a uniform 

distribution U [0, A], and evidence for each accumulator increases at a speed given by the 

accumulation rate (drawn from a normal distribution with mean v, standard deviation sv). The 

first accumulator to reach its threshold, b, decides the overt response. Total RT is determined by 

total decision time plus some non-decision time included to capture processes that occur outside 

of the decision stage, such as stimulus encoding and motor responding. Strickland et al. (2018) 

found that, with these assumptions, PMDC was able to provide a comprehensive account of 

performance. This included accurate fits, at the level of individual participants, to response 

choices, mean RTs, as well as variance and skew in RTs on both PM and ongoing-task trials. 

PMDC has provided insights into a range of cognitive processes that support PM, 

including capacity allocation between PM and ongoing tasks, as well as proactive control 

(Braver, 2012) and reactive control (Braver, 2012) over PM and ongoing-task processes. Below 

we review PMDC’s mechanisms, and existing evidence for each. It is worth noting that PMDC 

differs from previous verbal theory integrating cognitive control and PM (e.g., Bugg, McDaniel, 

& Einstein, 2013) in that PMDC provides specific quantitative instantiations of how control 

processes affect decision making.  
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Capacity sharing. Many PM studies find that PM demands increase ongoing-task RTs, 

even on “non-PM trials” where no PM item is presented (Marsh, Hicks, Cook, Hansen, & Pallos, 

2003; Smith, 2003). This effect is referred to as PM cost. PM theories assumed that cost results 

from capacity sharing between PM and ongoing-task processes (e.g., Einstein et al., 2005; 

Smith, 2003). The idea is that monitoring for PM items usurps resources from ongoing-task 

processes, increasing RTs. PMDC measures information-processing capacity with its 

accumulation rate parameters, making it possible to test the capacity-sharing hypothesis.  

Ongoing task accumulation rates can be associated with either the ‘match’ or ‘mismatch’ 

accumulator. The match accumulation rate measures evidence accumulation in the accumulator 

corresponding to the correct decision. The mismatch accumulation rate refers to evidence in the 

Figure 1. The PMDC model (Strickland et al., 2018). Evidence for each accumulator begins each trial at some start 

point drawn from the uniform distribution U[0, A]. Evidence then accumulates towards each accumulators’ 

respective threshold, b, at an accumulation rate drawn from a normal distribution with mean v, standard deviation 

sv. The first accumulator to reach threshold determines the observed response. Total response time is determined by 

total time for the first accumulator to reach threshold plus a non-decision time parameter.  
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accumulator corresponding to the incorrect decision. In Figure 1, for example, the evidence 

accumulation rate for the ‘word’ accumulator corresponds to ‘match’ accumulation on word 

trials and ‘mismatch’ accumulation on non-word trials. Similarly, the ‘non-word’ accumulation 

rate corresponds to ‘match’ accumulation on non-word trials and ‘mismatch’ accumulation on 

word trials. Evidence accumulation models generally indicate that PM demands do not cost 

ongoing-task capacity in standard paradigms (e.g., Heathcote et al. 2015; Horn & Bayen, 2015; 

Strickland, Heathcote, Remington, & Loft, 2017), but that capacity sharing can occur in more 

demanding paradigms, such as in simulations of air traffic control (Boag, Strickland, Heathcote, 

Neal, & Loft, 2019; Boag, Strickland, Loft, & Heathcote, 2019) and maritime surveillance 

(Strickland et al., 2019). 

Proactive control. Proactive control refers to cognitive control applied in advance of 

cognitively demanding events, to prepare for their occurrence. Proactive control is applied over 

PMDC’s response thresholds, as thresholds are the locus of a priori strategy. Prior to the 

development of PMDC, the delay theory of PM cost (Heathcote et al., 2015) suggested that 

participants raise ongoing-task thresholds so that ongoing-task response selection does not pre-

empt PM response selection, improving PM. For example, in Figure 1 a high threshold to 

respond word is depicted. Thus, on PM trials that require a ‘word’ ongoing-task response, the 

‘word’ accumulator will take a relatively longer time to reach threshold than if the threshold was 

lower, and so there would be more time for the PM accumulator to accrue evidence, increasing 

the probability that it reaches its threshold first. Consistent with delay theory, elevated ongoing 

task thresholds have been found to underlie PM costs in many applications of evidence 

accumulation models to PM cost data (e.g., Heathcote et al., 2015; Horn & Bayen, 2015; 

Strickland et al., 2017; Strickland et al., 2018). Thus, PMDC includes proactive control over 
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ongoing task thresholds as a possible mechanism for improving PM accuracy. 

Delay theory and PMDC are similar in that both propose a race to response selection 

between PM and ongoing task processes that could potentially be supported by increases in 

ongoing task thresholds. A key difference is that PMDC quantitatively instantiates the PM 

process as an LBA accumulator, whereas delay theory provided only a verbal description of the 

PM process. In fact, simulations reveal that, given PMDC’s assumptions, ongoing task 

thresholds have only a weak effect on PM accuracy (Strickland et al., 2018). Furthermore, delay 

theory proposes only a single mechanism that supports PM, whereas PMDC proposes a range of 

mechanisms other than ongoing task threshold delays that could improve PM accuracy. For 

example, under PMDC proactive control can also apply over the PM threshold. Indeed, when the 

importance of PM is emphasized, it has been found that the PM threshold can be decreased to 

increase the probability of a PM decision (Strickland et al., 2018), and that this form of proactive 

control is critical to supporting PM accuracy. 

Reactive control. Reactive control refers to cognitive control that occurs “just in time”, 

that is when PM event is processed. PMDC’s reactive control structure is depicted in Figure 2. 

Upon processing a PM item, encoding PM stimulus inputs may cause participants to accrue 

evidence towards the PM decision (reactive excitation), but to inhibit (i.e., slow down) 

accumulation to competing ongoing-task decisions (reactive inhibition). In Strickland et al., 

(2018), both forms of reactive control were critical to explaining variation in PM accuracy. 
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Testing Delay Theory 

Recently, Anderson, Rummel and McDaniel (2018) attempted to isolate, and manipulate, 

the effect of ongoing-task decision thresholds on PM accuracy. They compared ‘standard’ event-

based PM conditions with a ‘delay’ condition that instructed participants to be cautious to make 

ongoing-task decisions and not to monitor for PM targets. They found that the latter did not 

improve PM performance, and argued that, therefore, proactive control over ongoing-task 

decisions does not support PM. However, it is not clear that their manipulation selectively affected 

ongoing-task decision thresholds. Their instruction not to monitor for PM targets may have caused 

at least some participants to increase their PM threshold, counteracting possible benefits of 

increased ongoing-task caution. Indeed, PMDC indicates that much of the improvement to PM 

accuracy under PM importance emphasis is driven by control of the PM threshold (Strickland et 

al., 2018). In Anderson et al.’s study, the PM threshold was not estimated because too few PM 

Figure 2. PMDC’s reactive control (Strickland et al., 2018). The boxes represent stimulus input detectors. 

The solid lines represent excitatory connections to the accumulators, and the dashed lines inhibitory 

connections. Encoding stimulus inputs activates the detectors (e.g., PM-like stimulus inputs activate the PM 

detector). In turn this excites the relevant accumulator (e.g., the PM accumulator via connection A1), and 

inhibits competing accumulators (e.g. ongoing-task accumulation via connections B1 and B2).  
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trials were observed.  

Even if Anderson et al.’s (2018) experiment were repeated with no explicit emphasis 

instruction for the PM task, manipulating ongoing-task caution could still affect PM processes. 

For example, emphasizing caution on the ongoing task could make the PM task appear less 

important, leading to a similar confound. Alternatively, if participants try to conserve their overall 

threshold levels then increasing ongoing task caution could lead to a decrease in the PM threshold. 

Thus, delay theory cannot be decisively tested by manipulating ongoing task caution. To 

experimentally test delay theory, it is crucial to manipulate ongoing task thresholds in isolation, 

without affecting PM processes. In the current study, we attempt such a test. Rather than 

manipulating overall caution, we manipulate another factor that delay theory claims is important 

for supporting PM accuracy: bias in ongoing task thresholds (Heathcote et al., 2015).  

Bias in ongoing task thresholds refers to threshold levels that advantage one ongoing task 

decision over another. For example, a bias against word decisions could be implemented by 

shifting the word threshold up and non-word threshold down. On average, the ongoing-task 

‘match’ accumulator will be faster than the ‘mismatch’ accumulator, to support better than chance 

accuracy on the ongoing-task. As a result, delay theory proposes that bias against an ongoing-task 

choice could potentially improve PM performance to items matching that choice – for example, a 

bias against ‘word’ decisions could improve performance to PM items that are words – because it 

would slow down participants making word responses and thus allow the PM response more time 

to reach threshold (Heathcote et al., 2015). This claim has been supported by analysis of “stimulus-

specific” PM tasks (Lourenço, White, & Maylor, 2013), in which PM is associated with a specific 

event (e.g., PM items are always words). Under such conditions implementing ongoing-task biases 

could be an efficient way to improve PM performance without globally slowing down responding. 
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Importantly, this strategy can be implemented proactively and does not require the participant to 

make any changes in task strategy on a stimulus-by-stimulus basis, as the strategy differs between 

accumulators but is the same for all stimuli. Consistent with this, in stimulus-specific tasks 

participants do implement a bias against the decision that competes with PM (e.g., Heathcote et 

al., 2015; Strickland et al., 2018).  

The findings that stimulus-specific PM tasks induce shifts in ongoing task bias are key to 

the case for delay theory. They favor delay theory over an alternative theory of ongoing task 

threshold increases – that PM instructions increase overall perceptions of task complexity (Horn 

& Bayen, 2015). Although it is plausible that an increase in perceived task complexity would 

induce a shift in caution, there is no reason to expect it would induce a bias. In contrast, delay 

theory clearly predicts the shifts in bias, and crucially it makes the claim that such shifts in bias 

are functional to PM (Heathcote et al., 2015). The claim that bias affects PM performance can be 

directly tested experimentally because, unlike overall caution, ongoing task bias can be 

manipulated without confounding from unintended effects on PM processes. Here we present an 

experiment to test the key claim of delay theory that bias in ongoing-task thresholds affects PM 

performance. We apply the PMDC model to our experiment, both to contrast it with delay theory 

and to validate our inferences about latent psychological processes.  

The Current Study 

Participants performed a lexical decision task with an accompanying PM task to detect 

items containing a target syllable (e.g., any letter string containing ‘tor’). We include a within-

subject blocked manipulation of ongoing-task bias. In some blocks we induce a bias against 

making word decisions, and in the others induce a bias against making non-word decisions.  We 

manipulate bias by discouraging certain types of errors – for example, to induce a bias against 
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‘word’ responding, we strongly discourage making ‘word’ responses on non-word trials. With 

this manipulation, there is no obvious reason that the relative importance of the PM or ongoing 

tasks would differ across bias conditions. Thus, the design is suitable to test delay theory without 

confounding from differences in the perceived relative importance of the ongoing and PM tasks. 

Word and non-word PM targets are included in both blocks. Thus, we can assess the degree to 

which bias against word responding benefits PM accuracy to words, and the degree to which bias 

against non-word responding benefits PM accuracy to non-words. To examine the effects of 

ongoing-task bias on PM performance, we examine PM performance across our manipulation of 

PM stimulus type (PM word, PM non-word), and our blocked bias manipulation (bias against 

word, bias against non-word). In addition to standard analyses, we apply the PMDC model to 

determine whether it can fit to the effects of this new manipulation. PMDC is also critical to 

determining whether our bias manipulation is successful in affecting thresholds.  

According to the delay theory, we would expect to observe increased PM accuracy to word 

PM targets when bias is induced against word decisions, and increased PM accuracy to non-word 

PM targets with bias against non-word decisions. This would occur because bias extends the 

completion time of the matching ongoing-task accumulator, allowing the PM accumulator more 

time to reach threshold (Heathcote et al., 2015). Although such a mechanism may be possible 

under PMDC, previous simulations from the model suggest only a minor role for ongoing task 

threshold elevation in supporting PM accuracy (Strickland et al., 2018). In addition, alternative 

mechanisms could reduce the potential benefits to PM accuracy of bias against the matching 

accumulator. For example, although the matching accumulator is faster on average than the 

mismatching accumulator in the PMDC model, the mismatching accumulator will not always be 

at a disadvantage, because rates vary from trial to trial. Thus, bias against the correct ongoing-
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task decision may allow the incorrect ongoing-task decision to become competitive with the PM 

process, at least on some trials, in which case bias might not improve PM performance but 

instead increase the proportion of incorrect ongoing-task responses submitted on PM trials.  

Method 

Participants 

The upper age limit for participation was 35, and English as a first language (the language 

spoken in the childhood home) was required. Participants performed two 2 hour sessions, each 

on a separate day. The data of three participants was excluded and replaced: two because they 

made many very fast (<0.2s) responses in at least one block (one participant had a block with 

72% fast responses, the other had a block with 35% fast responses), and one because they made 

many slow RTs in a block (9% of responses were over 5 seconds). Remaining were 32 

participants (23 females) aging from 17-34 (average = 19.84 years).   

Materials 

The lexical decision task was programmed in E-prime. 1236 words and 1236 non-words 

were randomly selected from Strickland et al. (2018)’s second experiment. Word stimuli 

occurred 1-7 times per million in the TMSH database (Dennis, 1995) (low frequency). Non-word 

stimuli were created using the Wuggy algorithm (Keuleers & Brysbaert, 2010). Wuggy was set 

to replace two out of three subsyllabic segments of the words, while matching segment lengths 

and transition frequencies. The PM task was to detect a target substring (either tor or ver). 28 

word PM targets and 28 non-word PM targets containing tor were taken from Strickland et al. 

(2018), and the same for PM targets containing ver. An additional 14 PM words and 14 PM non-

words were obtained for each of the two substrings (using the same stimulus selection methods). 

Thus, the total list of the study’s PM targets included 42 word PM targets and 42 non-word PM 
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targets containing tor and another 42 word PM targets and 42 non-word PM targets containing 

ver. Each stimulus was presented once each to all participants.  

Participants performed 4 blocks of 660 trials over 2 days (day one, day two). This included 

one block of each two bias conditions on each day. As explained in detail in the procedure 

section, we manipulated bias by instructing participants either to be cautious to make word 

responses (word caution condition, Wc), or cautious to make non-word responses (non-word 

caution condition, Nc). The bias condition order used in day 1 was reversed for day 2, e.g. if the 

Wc condition was block one of day one then it would be block 2 of day 2. For each day of the 

experiment for each participant, one substring (tor, ver) was the PM target for the Wc block and 

the other substring was the PM target for the Nc block. The assignment of PM target substring to 

condition was reversed for each participant between day 1 and day 2. As condition block order 

was also reversed for each participant between day 1 and day 2, substring block order was the 

same for days 1 and 2, i.e. if tor was the target in the first block on day one (e.g., a Wc block) 

then tor had to also be the target in the first block of day two (following the example, it would be 

a Nc block). The four different ways in which the block order and PM target substrings could be 

matched (while satisfying the above conditions) were counterbalanced across the 32 participants. 

In each block participants were presented with 309 non-target non-words and 309 non-

target words, as well as 21 PM target non-words and 21 PM target words. For each participant, 

the 21 PM target words and 21 non-words used for the Wc condition for a given substring were 

drawn randomly, without replacement, from the total 42 words and 42 non-words which 

contained that substring. The other 21-word PM targets and 21 non-word PM targets were used 

for the Nc condition. The order in which participants were presented their non-target stimuli was 

random within each block. In order to reduce fatigue effects participants were given five 1-
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minute breaks within each 660 trial block. The breaks occurred after participants completed each 

110 trial segment, so after trials 110, 220, 330, 440 and 550. Thus, blocks were divided into 

sixths. PM targets (in both Wc and Nc blocks) were presented 42 times per 660 trial block; 

randomly between trials 6-20, 21-35, 36-50, 51-65, 66-80, 81-95, 96-110 of each sixth of a 

block. Therefore, the ratio of PM trials to nontarget trials was 1:14. Target trials were separated 

by at least 4 lexical decision trials. The order in which the PM targets filled the chosen positions 

was random.  

Procedure 

Participants first performed practice lexical decision trials. They were instructed that they 

would be presented with letter strings and that they should press a key to indicate whether strings 

were words or non-words (e.g. press ‘s’ for word, ‘d’ for non-word’). They were asked to make 

their responses as quickly and accurately as possible. For the experimental blocks (the PM 

blocks, both Wc and Nc), participants were additionally instructed to press an alternative key 

instead of their word or non-word response when they encountered items containing a target 

substring, e.g. “In the next block of lexical decision trials, if you see ANY item that contains 'tor' 

then press 'j' INSTEAD of 's' or 'd'. For example, if you see 'indicator' then press 'j' instead of 's' 

or if you see 'botoraty' then press 'j' instead of 'd'.  Four response key assignments were 

counterbalanced across participants; 1) s = word, d = non-word, j = PM, 2) d = word, s = non-

word, j = PM, 3) k = word, j = non-word, d = PM, and 4) j = word, k = non-word, d = PM). The 

four response key orders were also counterbalanced with bias condition block order and PM 

target substring block order, so that each combination was used for two of the 32 participants. 

Participants were instructed before the commencement of each sixth of a block to rest their 

fingers on their assigned response key combination: one hand resting the index and middle finger 
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on the lexical decision keys (e.g. left hand index on d, left hand middle on s), and the other hand 

resting the index finger on the PM key (following the example, right hand index on j). 

Each day, participants first completed their 24 practice lexical decision trials and received 

percentage feedback on their accuracy (e.g., “87.50% correct”). They then proceeded to the 

experimental blocks and were presented with either Wc or Nc instructions. For the Wc blocks, 

participants were instructed to be careful about making word responses, e.g. “In the next block of 

trials try to respond quickly and accurately to all items, but note that it is extra important to 

avoid errors where you incorrectly respond WORD ('s') to non-word items. That is, only press 

the 's' key when you are absolutely sure an item is a word.  If you do incorrectly classify an item 

as a word, you will be presented a special 'incorrect' message which delays the task more than if 

you incorrectly classify an item as a non-word.” For the Nc blocks, the opposite instruction was 

presented (in the example substitute non-word for word and word for non-word).  Each time 

participants received a bias instruction, they repeated the instruction to the experimenter. After 

receiving the bias instructions, participants were given their PM instruction to make an 

alternative response to target substrings (see example from the paragraph above) and repeated 

the instruction to the experimenter. Participants next completed a three minute distractor puzzle, 

after which they began the first block of experimental trials. After completion of each sixth of a 

block, participants were presented feedback on the accuracy of their responses (%) to the lexical 

decision task. After completing their first bias condition for the day (e.g., the Wc condition), 

participants were instructed that their bias and PM instructions no longer applied, e.g. “Please 

note that the instruction you received to prioritize avoiding incorrectly making word responses 

to non-words no longer applies. These errors will not trigger a longer 'incorrect' message 

anymore. You also do not need to make a special response to items containing 'ver' in the next 
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block of trials. In fact, no item containing 'ver' will be presented.” When participants received 

their second block’s PM instructions (after they had already received their new caution 

instructions), they were again reminded that their old PM target was no longer relevant, e.g. 

“Please be reminded that you no longer need to press 'j' if you see an item containing 'ver'. In 

fact, no item containing 'ver' will be presented in the next block of trials.” In addition to the 

breaks within blocks, participants were instructed to rest for 2 minutes between blocks. 

Each trial began with a fixation cross ‘+’, displayed in white on a black background for 

0.5s. The fixation cross was then replaced by a blank screen for 0.25s, which was followed by 

the presentation of a white letter string (size 18 courier new font) which remained on the black 

screen until the participant made a response. If the participant made a correct word/non-word 

response (including on PM trials), or a correct PM response, the subsequent trial immediately 

began (next fixation cross). If the participant made an incorrect response, the feedback they 

received varied depending on bias condition, with longer delays for the discouraged ongoing-

task errors (e.g., for word responses to non-word trials in the Wc condition). This was included 

to increase the strength of the bias manipulation1. In the Wc condition, word responses to non-

word trials triggered a screen which displayed ‘INCORRECT!!! ’ in size 44 courier new font for 

15 seconds. Non-word responses to word trials in the Wc condition triggered a screen which 

displayed ‘INCORRECT’ in size 18 courier new font for 1 second. In Nc blocks the reverse was 

true, non-word responses to word trials would trigger the 15 second, size 44 ‘INCORRECT!!!’  

whereas word responses to non-word trials would trigger the 1 second, size 18 ‘INCORRECT’ 

                                                 

1 We ran an initial pilot, N = 9, with 5 second timeouts, and found that this failed to affect ongoing-task RTs and 

accuracies. Thus, we extended the timeout to 15 seconds.  
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message. In both conditions, any other incorrect responses (random key presses or PM false 

alarms) triggered the 1 second, size 18 ‘INCORRECT’ screen. Correct lexical decision responses 

to PM trials (PM misses) did not trigger a feedback screen. The subsequent trial would begin 

immediately (next fixation cross) after either feedback screen was displayed. 

Results 

An alpha level of 0.05 was used in all analyses. The first two trials after each rest period 

(1.8% of trials) were excluded from analyses, as were trials where participants responded with a 

key not corresponding to their PM or lexical decision task (0.02% of responses). The two trials 

after each PM target and PM false alarm (12.9% of trials) were excluded, which is common 

practice in PM studies, in order to avoid contamination from post-PM slowing (e.g., Meier & 

Rey-Mermet, 2012). If participants submitted a discouraged lexical decision error (e.g. a ‘word’ 

response to a non-word in the Wc condition), they were presented a 15s feedback screen, during 

which they might become distracted. Thus, we excluded any trials which immediately followed 

this long timeout (2.7% of trials). Following these exclusions, we cut out any remaining trials 

with outlying RTs (< 0.2s or > mean RT plus 3 times the interquartile range / 1.349, 4.82% of 

remaining trials). From the original 2640 trials, this left on average 2086 trials remaining (range 

2005-2152) for data analysis and PMDC modelling, corresponding to an average of 39 out of the 

42 PM trials remaining for each PM stimulus type for each bias condition.  

We conducted mixed effects model analyses using the R programming language (R Core 

Team, 2019) and the ‘lme4’ package (Bates, Mächler, Bolker, & Walker, 2015). These models 

included a random participant intercept term, but not random participant slopes. No other 

random effects were included. To analyse accuracy, we fit generalized linear models to each 

observed response with a probit link function. To analyse RT, we fit linear mixed effects models 
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to participant mean RTs. In addition to stimulus type (non-word, word) and bias condition (Nc, 

Wc), the reported models included a day order factor (day one, day two) to capture effects of 

task repetition. We fit models including all factors and interactions, testing for significance with 

Wald chi-squared tests. The null model for the significance tests of each term included all other 

terms, except for higher order interactions including the term (e.g., the interaction between 

stimulus type and bias condition would be ignored when testing the main effect of stimulus 

type). The outcomes of these tests are tabulated in the supplementary materials. In text, we report 

descriptive statistics broken down by the factors that we found were significant, as well as 

follow-up pair bed samples t-tests. The t-tests were calculated using participant mean RTs and 

accuracies, averaged for each participant over any factors not relevant to the test. Effect sizes are 

reported in terms of Cohen’s d. We report within-subject standard errors calculated with the 

Morey (2008) bias-corrected method. 

Lexical Decision Task 

We first assess whether our bias manipulation had the intended effect on ongoing task 

accuracy. A bias against responding non-word (Nc condition) would be expected to improve 

accuracy to word stimuli, and a bias against responding word (Wc condition) would be expected 

to improve accuracy towards non-word stimuli.  As presented in the first two rows of Table 1, 

we found both these effects. Accuracy to non-word stimuli was higher in the Wc condition than 

the Nc condition, t (31) = 4.84, p <.001, d = 0.86, and accuracy to word stimuli was higher in the 

Nc condition than the Wc condition, t (31) = 6.06, p <.001, d = 1.07. This indicates that we 

successfully manipulated ongoing-task bias. We also found that accuracy was marginally higher 

on day one (M = 91.8%, SE = 1.3%) than day two (M = 91.1%, SE = 1.5%), t (31) = 1.80, p =.08, 

d = 0.32.  
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Table 1. Accuracy and correct RT for the ongoing and prospective memory tasks. The brackets contain within-

subject standard errors, calculated with the Morey (2008) bias-corrected method. 

 

 Bias would also be expected to affect RTs: a bias against responding non-word (Nc) 

should result in slower non-word RTs, and a bias against responding word (Wc) should result in 

slower word RTs. We found that correct RTs were slower to non-word stimuli in the Nc 

condition than the Wc condition, t (31) = 6.46, p <.001, d = 1.14, and slower to word stimuli in 

the Wc condition than the Nc condition, t (31) = 4.37, p <.001, d = 0.77, indicating that our bias 

manipulation was successful. Correct RTs were also slower on day one (M = 0.90s, SE = 0.02s) 

than on day two (M = 0.83s, SE = 0.02s), t (31) = 5.13, p <.001, d = 0.91. Due to our high trial 

numbers, we also analyzed ongoing task error RTs. Error RTs were slower in the Nc (M = 

0.975s, SE = 0.028s) condition than the Wc condition (M = 0.934s, SE = 0.03s), t (31) = 2.26, p 

= .03, d = 0.40,  and slower on day one (M = 0.998s, SE = 0.03s) than on day two (M = 0.910s, 

SE = 0.024s) , t (31) = 6.29, p < .001, d = 1.11. However, there was no interaction between 

stimulus type and bias condition, and thus our bias manipulation appeared not to have a strong 

effect on error RTs. This might owe to relatively poor measurement of error RTs – ongoing task 

accuracy was quite high and so few error RTs were observed.  

 Wc  Nc 

Stimulus Type Accuracy (%) Correct RT 

(seconds) 

 Accuracy Correct RT 

(seconds) 

Word 88.2 (0.6) 0.846 (0.017)  93.3 (0.8) 0.808 (0.015) 

Non-word 96.1 (0.8) 0.867 (0.019)  88.3 (1.3) 0.948 (0.017) 

PM Word 61.4 (3.8) 0.966 (0.024)  61.4 (3.5) 0.945 (0.021) 

PM Non-word 56.7 (4.2) 0.922 (0.022)  59.8 (3.4) 0.959 (0.025) 
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Prospective Memory Task (Hits) 

PM response false alarms were rare, ranging from 0 to 1.3% of trials, and thus are not 

analyzed further. PM responses were scored as correct (as PM ‘hits’) if the participant pressed 

the PM key instead of a lexical decision key on the target trial. Delay theory predicts that a bias 

against the ‘correct’ ongoing task response to a PM stimulus should improve PM accuracy. Thus, 

PM accuracy would be expected to be higher for non-words in the Nc condition, and higher for 

words in the Wc condition. However, as displayed in Table 1, we did not find that bias 

substantially affected PM accuracy. No effects or interactions regarding the bias manipulation 

reached significance in our model of PM accuracy. However, there was an effect of “day”. PM 

accuracy was lower on day one (M = 53.2%, SE = 4.7%) than on day two (M = 66.5%, SE = 

3.7%), t (31) = 3.99, p <.001, d = 0.71. Our mixed effects model also revealed a small effect of 

PM stimulus type. Accuracy to PM words was marginally larger than accuracy to PM non-

words, t (31) = 1.60, p = 0.12, d = 0.28.  

If ongoing task bias could sufficiently delay the ongoing task to support PM, then slower 

PM processes would be able to complete before the ongoing task does, increasing PM RT due to 

decreased ‘statistical facilitation’ (Raab, 1962) from ongoing task processes. However, as PM 

accuracy was not improved by the bias manipulation, this was not expected. Indeed, we did not 

find any effects of stimulus type or bias condition on PM RT. However, we did find that PM 

responses were slower on day one (M = 1.010s, SE = 0.028s) than on day two (M = 0.893s, SE = 

0.023s), t (31) = 4.33, p <.001, d = 0.77.  

Prospective Memory Task (Misses) 

To further investigate why PM performance was not affected by ongoing-task bias, we 

examined whether bias affected the type of ongoing-task responses submitted on PM trials. We 
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created a PM “miss type” factor that denoted whether PM misses were word or non-word 

responses. We fit a linear mixed effects model to mean response proportions on PM error trials 

that included miss type and all other potentially relevant experimental factors (stimulus type, bias 

condition, day). Note that here we examined response proportion rather than predicting every 

individual response with a generalized linear model because responses are confounded by the 

PM miss type factor (e.g. when the miss type factor is word then the DV will always be equal to 

word). We also examined mean PM error RTs with a linear mixed effects model including all 

potentially relevant factors (miss type, stimulus type, bias condition, day). The supplementary 

materials contain summaries of our mixed model analyses of PM error type and error RTs, and 

the major results are discussed in text along with descriptive statistics and follow-up tests. 

The previous analyses suggest that our bias manipulation successfully affected ongoing 

task bias yet failed to affect PM accuracy. If this is the case, we would expect the type of PM 

error made to change, with fewer ‘word’ responses submitted on PM trials in the Wc condition, 

and fewer ‘non-word’ responses submitted on PM trials in the Nc condition. As displayed in 

Table 2, we did find that there were fewer word responses on PM trials than non-word responses 

in the Wc condition, t (31) = 2.92, p < .01, d = 0.52. In addition, there was a trend in the reverse 

direction in the Nc condition; word responses were more common on PM trials than non-word 

PM responses, t (31) = 1.82, p = .08, d = 0.32.  

A successful manipulation of ongoing task bias would also be expected to influence RTs of 

PM errors, with slower word RTs predicted in the Wc condition and slower non-word RTs in the 

Nc condition. As displayed in Table 2, we found some evidence of such an effect. The effects of 

the bias manipulation and PM stimulus type interacted. Non-word responses were slower than 

word responses on PM trials for both Wc and Nc conditions. Non-word PM error responses were 
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slower in the Nc condition than the Wc condition, t (31) = 2.53, p =.02, d = 0.45. Word 

responses to PM trials were numerically slower in the Wc condition than the Nc condition, but 

this difference was not near statistical significance t (31) = 1.19, p = 0.24, d = 0.21.  

Table 2. PM Miss Type and Miss RT for Experiment Two. The brackets contain standard errors, calculated with the 

Morey (2008) bias-corrected method.  

 

 

 

 

 

 

We now summarize our results thus far. Our analyses of ongoing task performance 

indicate that the bias manipulation was effective in making the discouraged ongoing-task 

response both slower and less common. Under delay theory, the effects of PM stimulus type and 

the bias manipulation on PM accuracy were expected to interact, such that the Wc condition 

would display higher PM accuracy to word PM trials and the Nc condition to non-word PM 

trials. However, no evidence was found for such an effect. Rather than PM accuracy to a 

stimulus (e.g., PM word stimulus) benefitting from bias against the matching ongoing-task 

response (e.g., bias against ‘word’), the type of ongoing-task error observed on PM trials 

changed (e.g., bias against responding word induced more non-word responses on word PM 

trials). Taken together, these results amount to a failed prediction from the delay theory.  

In the next section, we present a PMDC analysis of behavior in our experiment. This 

analysis has several critical goals. One is to determine whether the PMDC model can provide an 

appropriate fit to the effects of our bias manipulation, despite the prediction of delay theory 

Bias Condition PM Miss Type Response 

Proportion 

 RT 

Nc 

 

Word 21.5 (4.70) 0.80 (0.04) 

Non-word 17.9 (4.56) 0.974 (0.03) 

Wc Word 17.8 (4.71) 0.82 (0.04) 

Non-word 23.1 (5.32) 0.881 (0.04) 
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failing. Another is to examine the latent cognitive processes that were affected by our bias 

manipulation. This includes verifying that the bias manipulation did successfully affect 

thresholds and verifying that it did not substantially affect PM processes. A final goal was to 

determine the scope of PMDC’s predictions, and whether the model would have been readily 

compatible with a finding of a strong bias effect, if we had obtained one.    

Model Analysis 

The basic architecture of our model is depicted in Figure 1. We estimated thresholds in terms 

of B, which is b - A. Model parameters could vary over stimulus type (word, non-word, PM 

word, PM non-word), bias condition (Nc, Wc), day (one, two), and accumulator (word, non-

word, PM). To simplify the model, the start-point noise (A) and non-decision time (t0) 

parameters were fixed across all factors2. We estimated one sv for the accumulator matching the 

correct response on all trials (e.g., word accumulator on word trial, PM accumulator on PM trial). 

The sv for the mismatching accumulators (e.g., non-word accumulator on word trial or PM trial) 

was fixed at 1 as a scaling parameter. Thresholds could vary over day, condition and latent 

accumulator, but were fixed across stimulus type, as is conventional. Although we have not 

allowed mean evidence accumulation rates (v) to vary by day in our previous modelling (e.g., 

Strickland et al., 2018), we did in the current case to account for the observed practice effect on 

PM performance. Due to a low number of PM false alarms, we only estimated one PM false 

                                                 

2 A reviewer suggested estimating a separate non-decision time for the second day of the experiment to account for 

practice effects. We tried this model and did not find evidence for such an effect, and so we report the simpler model 

in text. Summaries of the parameter estimates of the model with varying non-decision time over day can be found in 

the supplementary materials.  
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alarm accumulation rate across all design cells. With these constraints, the most flexible model 

we fit had 56 free parameters: one A, one t0, one sv, twelve Bs, and 41 vs.  

Sampling 

We applied Bayesian methods to estimate the posterior probability distribution of our model 

parameters. Because we obtained over 2000 trials per participant, we were able to separately 

estimate each individual participants’ parameters. We could have also fit a hierarchical model, 

including a population level distribution, but with our large data sets this posed computational 

difficulties (i.e., model-fitting times of many weeks). Bayesian estimation requires specifying 

prior beliefs about parameter values, in the form of prior distributions. Our priors are displayed 

in Table 3. These relatively uninformative priors are the same as those in Strickland et al. (2018). 

No parameters in the prior vary between the Wc and Nc conditions. Differences between 

matching and mismatching accumulation rates are included in the prior, to accord with our 

expectation that accuracy would be far higher than chance. The prior for the PM false alarm 

mean accumulation rate is set low, to encode our expectation that PM false alarms would be very 

rare in our study, as they generally are. One notable prior setting is the non-decision time lower 

bound of 0.1 seconds and upper bound of 1 second. The lower bound was chosen to avoid non-

decision time estimates that are an implausibly low amount of time to include both stimulus 

encoding and response execution, and the upper bound for implausibly high values. Generally, 

our choice of priors had little influence on the resulting posterior parameter estimates.  
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Table 3. Prior distributions 

Model Parameter Distribution Mean SD Lower Upper 

A Truncated Normal 1 1 0 10 

B Truncated Normal 1 1 0 None 

v (Correct Lexical Response) Normal 1 2 None None 

v (Incorrect Lexical Response) Normal 0 2 None None 

v (Correct PM Response) Normal 1 2 None None 

v (PM false alarm) Normal -1 2 None None 

sv Truncated Normal 1 1 0 None 

t0 Uniform   0.1 1 

 

Our posterior sampling was performed using the Dynamic Models of Choice R suite 

(Heathcote et al., 2019). We applied the differential evolution Markov Chain Monte Carlo 

algorithm (Turner, Sederberg, Brown, & Steyvers, 2013), an effective technique for sampling 

evidence accumulation model parameters. For each sampled model, we ran three times as many 

chains as there were parameters (e.g., for the most flexible model with 56 parameters we ran 168 

chains). To reduce memory requirements, posterior samples were ‘thinned’ such that we only 

retained every 20th sample. We obtained 180 total posterior samples (corresponding to 3600 

iterations). We ran posterior sampling until the samples were adequately stable, and the chains 

converged and mixed. This was confirmed with visual inspection and Gelman’s multivariate 

potential scale reduction factor (<1.1, Gelman et al., 2013) 

Model Assessment 

To determine whether constraining our model further was justified, we compared the most 

flexible model (the ‘top’ model) to simpler models using the deviance information criterion 
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(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). DIC measures model fit while 

punishing model complexity, with lower DIC values indicating a better model. DIC values were 

summed across participants. Various guidelines exist to determine how large of a DIC difference 

is substantial. One interpretation of DIC difference is in terms of model weights, corresponding 

to the probability that the selected model is the best model, analogous to Akaike Information 

Criterion weights (e.g., see Wagenmakers & Farrell, 2004). For a set of two models, a DIC 

difference of greater than 10 corresponds to over a 99% probability that the selected model is the 

best. All DIC differences discussed below all far exceed this, suggesting strong support for the 

selected model in each comparison. The top model, with 56 parameters, had a DIC value of 

13125. We compared the top model with one that fixed thresholds over bias conditions (50 

parameters). We found that the fixed threshold model had a substantially larger DIC than the top 

model (13634), suggesting that shifts in thresholds were necessary to account for the 

manipulation of bias. A model that fixed accumulation rates over bias conditions (36 parameters) 

also had a much larger DIC value (13666) than the top model, suggesting that shifts in 

accumulation rates were also necessary to account for the effects of the bias manipulation. We 

also attempted fixing accumulation rates over the ‘day’ factor, to test whether our choice to allow 

accumulation rates to vary over day was justified. The model with fixed accumulation rates had a 

substantially larger DIC (13704) than the top model, suggesting that varying rates over day was 

necessary.  

We now examine the fit of the selected ‘top’ model. To obtain posterior predictive model 

fit, we simulated data for each participant from each of the observed posterior samples. As 

displayed in Figure 3, PMDC fit the observed non-PM trial performance well, including the 

effects of our bias manipulation. Furthermore, as demonstrated in Figures 4 and 5, the model was 



PROSPECTIVE MEMORY AND ONGOING-TASK BIAS                                                    29 

 

able to accurately fit the effects of our bias manipulation on PM trial performance, including the 

shift in PM error type. Figure 4 depicts some minor miss-fit to the rate of ongoing task errors on 

PM trials, with the model slightly over-estimating the frequency of such errors. Such miss-fit 

may indicate minor discrepancies between the relationship between RT and choice specified by 

our model, and that observed in the data. However, the miss-fit is relatively small, and the model 

captures the effect of the bias manipulation on these error rates well. Thus, overall, despite the 

observed effects of ongoing task bias being unanticipated by delay theory, they fit well with 

PMDC.  As the model provided a good account of the observed trends in our data, we proceed to 

explore the model mechanisms responsible for the fit. 

Model Mechanisms 

In this section, we review how our selected model accounted for observed performance, 

with a focus on the manipulation of ongoing-task bias. To summarize model parameters across 

the group, we averaged each posterior sample across participants. The resulting participants-

averaged distribution was used for data summaries and posterior inference. Throughout this 

section, we report the posterior means (M) and standard deviations (SD) of this group-averaged 

distribution. The posterior mean of the participants-averaged non-decision times (t0) was 0.14s 

(SD = .003s). The posterior mean of the start-point noise parameter (A) was 0.44 (SD = 0.02), 

and the mean of the standard deviation of match accumulation rates (sv) was 0.59 (SD = .006). In 

the sections below, we discuss the estimates of threshold and mean accumulation rate 

parameters. To test for differences across conditions, we constructed difference distributions by 

calculating the difference between the parameters for every posterior sample. To summarize 

these distributions, we report a Z score (mean/SD of the difference distribution) and one tailed 

posterior p value, with lower p values indicating a more substantial probability of a difference 
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between parameters. For the latter we report min (p, 1-p), corresponding to the lowest probability 

of a difference in either direction.  

 

 

Figure 3. Model fits to the non-PM trial response data. The white dots indicate the observed data. The black 

dots indicate the mean prediction of the model. The black bars indicate the 95% credible intervals of the 

posterior predictions. For the purposes of these graphs, we concatenated all participants’ data into a single 

data frame, and posterior predictions for all participants into a single data frame, and then calculated 

summary statistics on these data frames. To demonstrate fit to RTs, the RT graphs illustrate fits to three 

quantiles: the fastest ten percent of RTs, the median RTs and the ten percent of slowest RTs. Nc refers to 

the condition with a bias against non-word decisions, and Wc to bias against word decisions. 
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Figure 4. Model fits to PM trial response proportions. The white dots indicate the observed data. The black 

dots indicate the posterior mean prediction of the model. The black bars indicate the 95% credible intervals 

of the posterior predictions. For the purposes of these graphs, we concatenated all participants’ data into a 

single data frame, and posterior predictions for all participants into a single data frame, and then calculated 

response proportions with these data frames. Nc refers to the condition with a bias against non-word 

decisions, and Wc to bias against word decisions. 
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Thresholds. Thresholds are plotted in Figure 6. Overall, there was a large bias against non-

word responding, with thresholds much higher to respond non-word than to respond word, Z = 

17.88, p <.001. Determining that thresholds were affected by our bias manipulation is a critical 

manipulation check. Consistent with our manipulation affecting threshold bias, non-word 

Figure 5. Model fits to PM trial response times. The white dots indicate the observed data. The black dots 

indicate the mean prediction of the model. The black bars indicate the 95% credible intervals of the 

posterior predictions. For the purposes of these graphs, we concatenated all participants’ data into a single 

data frame, and posterior predictions for all participants into a single data frame, and then calculated 

summary statistics on these data frames. To demonstrate fit to RTs, the graphs illustrate fits to three 

quantiles: the fastest ten percent of RTs, the median RTs and the ten percent of slowest RTs. Nc refers to 

the condition with a bias against non-word decisions, and Wc to bias against word decisions.  
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thresholds were higher in the Nc condition (day one M = 1.34, SD = 0.02; day two M = 1.22, SD 

= 0.02) than the Wc condition (day one M = 1.27, SD = 0.02; day two M = 1.13, SD = 0.02), Z = 

8.05, p <.001. Similarly, word thresholds were higher in the Wc condition (day one M = 1.19, SD 

= 0.02; day two M = 1.13, SD = 0.02) than the Nc condition (day one M = 1.10, SD = 0.02; day 

two M = 1.04, SD = 0.02), Z = 10.3, p <.001. Thus, the model indicates that our manipulation 

was successful in inducing a threshold bias in the expected directions (higher word thresholds in 

Wc blocks, higher non-word thresholds in Nc blocks). Consistent with our manipulation 

selectively affecting ongoing-task processes, PM thresholds in the Nc condition were not 

substantially different from the Wc condition, Z = 0.67, p = .252. On day one, PM thresholds 

were numerically, but not substantially, higher in the Nc condition (M = 1.76, SD = 0.05) than 

the Wc condition (M = 1.72, SD = 0.05), Z = 0.58, p = 0.28, whereas on day two PM thresholds 

were higher in the Wc condition (M = 1.64, SD = 0.04) than the Nc condition (M = 1.55, SD = 

0.04), Z = 1.7, p = 0.045.  

 

 

 

Figure 6. Participant-averaged thresholds. The symbols correspond to the posterior mean, and the error bars 

correspond to plus and minus one standard deviation from the mean. Nc refers to the condition with a bias 

against non-word decisions, and Wc to bias against word decisions. 
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Accumulation rates (non-PM trials). Although thresholds are the parameter traditionally 

associated with bias, it is possible that bias also affects the speed of evidence accumulation. 

Mean accumulation rates for non-PM trials are plotted in Figure 7. There was some evidence of 

the bias manipulation inducing a bias in accumulation rates. Non-word accumulation to non-

word items was substantially slower in the Nc condition (day one M = 1.97, SD = 0.02; day two 

M = 2.00, SD = 0.02) than the Wc condition (day one M = 2.11, SD = 0.02; day two M = 2.14, 

SD = 0.02), Z = 8.95, p <.001. Similarly, non-word accumulation was slower to word items in 

the Nc condition (day one M = 0.01, SD = 0.05; day two M = 0.15, SD = 0.04) than the Wc 

condition (day one M = 0.21, SD = 0.04; day two M = 0.33, SD = 0.04), Z = 5.58, p <.001. Word 

accumulation to word items was not substantially slower in the Wc (day one M = 2.02, SD = 

0.02; day two M = 2.10, SD = 0.02) condition than the Nc condition (day one M =2.02, SD = 

0.02; day two M = 2.09, SD = 0.02), Z = -0.27, p = .40. However, word accumulation to non-

word items was substantially slower in the Wc condition (day one M = -0.86, SD = 0.06; day two 

M = -0.67, SD = 0.06) than the Nc condition (day one M = -0.41, SD = 0.04; day two M = -0.33, 

SD = 0.05), Z = 8.61, p <.001. In summary, we found three out of four accumulation rate effects 

in line with a bias in accumulation rates consistent with our manipulation, and one indicating 

little difference. We did not anticipate these accumulation rate effects, but particiularly for non-

word, they are consistent with control over stimulus bias (White & Poldrack, 2014), with a 

higher criterion set for what counts as evidence towards discouraged decisions.  

Accumulation rates (PM trials). Reactive control. Our experiment provides another 

opportunity to test for the presence of PMDC’s reactive control mechanisms, by examining the 

differences between PM trial accumulation and non-PM trial accumulation. PM trial 

accumulation rates are plotted in Figure 8. Trivially, PM accumulation rates on PM trials were 
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much higher than the PM accumulation rate on non-PM trials, consistent with reactive excitation. 

Consistent with our bias manipulation selectively affecting ongoing-task processes, accumulation 

towards the PM response on PM non-word trials was not substantially different in the Nc 

condition (day one M = 1.87, SD = 0.07; day two M = 2.06, SD = 0.07) and Wc conditions (day 

one M = 1.84, SD = 0.09; day two M = 2.20, SD = 0.08), Z = -0.76, p = .22. Similarly, PM 

accumulation towards PM words was not substantially different in the Nc condition (day one M 

= 1.97, SD = 0.08; day two M = 2.20, SD = 0.07) and the Wc condition (day one M = 1.88, SD = 

0.08; day two M = 2.36, SD = 0.06), Z = -0.54, p = .30. However, PM accumulation rates did 

increase from day one to day two for both PM word trials, Z = 4.90, p <.001, and PM non-word 

trials, Z = 3.64, p <.001. This increase in PM accumulation is consistent with practice improving 

performance on the PM task. Consistent with reactive inhibition, all ongoing-task accumulation 

rates were far lower on PM trials than on non-PM trials (see contrasts in Table 4). These reactive 

inhibitory control effects were very large, replicating previous findings (Strickland et al. 2018).  
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Figure 7. Participant-averaged non-PM trial accumulation rates for word and non-word stimuli (columns). 

The symbols correspond to the posterior mean, and the error bars correspond to plus and minus one 

standard deviation from the mean. Nc refers to the condition with a bias against non-word decisions, and 

Wc to bias against word decisions. Accumulation to PM decisions on non-PM trials (M = -2.79, SD = 0.11), 

that is PM false alarm accumulation, is not plotted.  
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Table 4. Contrasts relevant to reactive inhibitory control. Z values of the posterior difference distributions ( 

corresponding one-tailed p values in brackets) 

 
Contrast Word Accumulator Non-word Accumulator 

Word trials 

Nc:  non-PM - PM  

Wc:  non-PM - PM  

Non-word trials 

Nc:  non-PM - PM 

Wc:  non-PM - PM 

  

27.12 (<.001) 

26.26 (<.001) 

 

7.87 (<.001) 

5.94 (<.001) 

11.35 (<.001) 

12.38 (<.001) 

 

24.58 (<.001) 

24.91 (<.001) 

Figure 8. Participant-averaged PM trial accumulation rates. The symbols correspond to the posterior mean, 

and the error bars correspond to plus and minus one standard deviation from the mean. Nc refers to the 

condition with a bias against non-word decisions, and Wc to bias against word decisions.  
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Accumulation rates (PM trials). Bias manipulation. The bias manipulation was 

expected to affect ongoing task accumulation rates on PM trials similarly to how it affected non-

PM trials accumulation rates, and it did. Non-word accumulation was substantially slower to PM 

non-words in the Nc condition (day one M = 1.00, SD = 0.06; day two M =0.58, SD = 0.08) 

than in the Wc condition (day one M =1.24, SD = 0.06; day two M = 0.80, SD =0.07), Z = 3.49, 

p < .001. For PM word trials, there was a trend towards non-word accumulation being slower for 

the Nc condition (day one M = -1.21, SD = 0.16; day two M = -1.29, SD = 0.17) than the Wc 

condition (day one M = -0.96, SD = 0.14; day two M = -1.08, SD = 0.15), Z= 1.5, p = 0.07. 

Word accumulation was not substantially slower to PM words in the Wc condition (day one M = 

0.90, SD = 0.07; day two M = 0.82, SD = 0.07) than the Nc condition (day one M = 0.98, SD = 

0.06; day two M = 0.61, SD = 0.08), Z = -0.97, p = .17. However, it was slower towards PM 

non-words in the Wc condition (day one M = -1.43, SD = 0.16; day two M = -1.54, SD = 0.17) 

than the Nc condition (day one M = -1.25, SD = 0.14; day two M = -1.09, SD = 0.14), Z = -2.07, 

p = .02.  

Posterior Exploration  

Simulations from PMDC can be useful to understand why the model fitted the observed 

data, and to explore other types of data that the model could potentially fit. In the supplementary 

materials, we report simulations that break down in detail exactly how the bias manipulation 

affected various aspects of ongoing task performance. Here, we report a simulation that answers 

one particularly pertinent question: whether there are conditions under which PMDC would 

predict that ongoing-task bias substantially affects PM accuracy. To do so, we examine predicted 

effects of bias on PM accuracy caused by manipulating some parameters in our model while 

maintaining others at their values estimated from the current study.  
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To calculate an overall measure of the effect of bias condition on PM accuracy, we 

summed the increase in PM accuracy to PM non-words in the Nc condition with the increase in 

PM accuracy to PM words in the Wc condition. We plot detailed posterior predictions of this 

measure in the supplementary materials and summarize here by discussing the posterior mean 

predictions. Bias condition did not induce a substantial shift in PM accuracy across PM word and 

non-word targets in the data (total summed PM accuracy shift = 0.03), and this lack of effect was 

fit closely by the earlier presented full model (0.025). However, we identified two ways in which 

our model could simulate some degree of bias-induced shift in PM accuracy.  For one, 

substantially amplifying the effect that the bias manipulation had on thresholds could produce a 

PM accuracy shift. However, this method was very inefficient in improving PM accuracy. For 

example, when we more than doubled the observed mean bias effects, by adding 0.1 to the word 

threshold in the Wc condition and 0.1 to the non-word threshold in the Nc condition, the 

predicted bias effect on PM accuracy (i.e., the sum of PM word accuracy advantage in Wc over 

Nc and PM non-word advantage in Nc over Wc) was only 0.07 (as compared with 0.03 in the 

data).  Such large shifts in bias could slow performance and potentially impose ongoing-task 

accuracy costs, making it unlikely that participants would be prepared to implement them.  

Another way the model could predict a bias benefit to PM accuracy was by reducing the 

variability in rates effectively to zero. This makes it virtually impossible for the mismatching 

ongoing task accumulator (e.g., the non-word accumulator on a PM word trial) to draw an 

accumulation rate that allows it to compete with the PM accumulator. Reducing rate variability 

this way led to our model predicting a summed bias benefit to PM accuracy of around 0.06. 

However, as rate variability was set to implausible levels, it is unlikely such an effect could be 

induced experimentally. Still, this result is informative about mechanisms in the full model, as it 
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indicates that rate variability reduces the effects of bias on PM accuracy. It appears that rate 

variability allows the ongoing-task mismatch accumulator to become competitive with the PM 

accumulator on some trials, and so the mismatch accumulator can pre-empt PM when favored by 

bias. 

In summary, simulations from PMDC predicted that inducing a bias benefit to PM 

accuracy would require inflating the bias effects on the ongoing task to more than double that 

observed in the data, or removing rate variability from the model, both of which seem unlikely to 

occur in practice.   

Discussion 

We manipulated bias towards word and non-word responding in a lexical decision task 

and examined resulting effects on PM performance to word and non-word PM trials. Our 

manipulation was successful in affecting ongoing-task bias, without substantially influencing 

confounding processes such as PM thresholds or PM accumulation rates across conditions. We 

observed a lower proportion of word responses in the Wc condition, and a lower proportion of 

non-word responses in the Nc condition. Furthermore, RTs increased to word responses in the 

Wc condition and to non-word responses in the Nc condition. However, we did not find that 

ongoing-task bias affected PM accuracy or PM hit RTs. Instead, it affected the type of PM errors 

submitted, with a lower proportion of non-word errors in the Nc condition and a trend towards 

less word PM errors submitted in the Wc condition. Ongoing-task bias also affected the RTs of 

PM errors, with slower PM miss non-word responses in the Nc condition.  

We found that PMDC provided an accurate and informative account of our data. The 

model indicated a threshold bias against word responding in the Wc condition and against non-

word responding in the Nc condition, consistent with response bias. The bias manipulation also 
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affected ongoing-task accumulation rates, such that non-word accumulation rates were reduced 

in the Nc condition and word accumulation rates reduced in the Wc condition. These shifts in 

ongoing-task accumulation, although unanticipated, are consistent with stimulus bias effects 

reported by White and Poldrack (2014) (see also Starns & Ratcliff, 2010), whereby participants 

are more stringent in accepting that a stimulus provides evidence for a choice when biased 

against that choice. In any case, these effects on ongoing-task accumulation were not the focus 

on the study, and do not interfere with our PM-related conclusions.  

Although PMDC indicated clearly that the bias manipulation affected ongoing-task 

thresholds, it also successfully accounted for the fact that the bias manipulation did not affect PM 

accuracy. This is in part because the bias manipulation allowed the ‘mismatching’ lexical-

decision accumulator to compete with the PM accumulator on some PM trials (e.g., the non-

word accumulator became more likely to reach threshold on PM word trials), reducing any 

potential benefits of delaying the matching accumulator. Simulations suggested that threshold 

bias could conceivably affect PM if the effect on threshold was much larger than observed. 

However, to get even a small PM benefit to bias, we simulated bias effects twice as large as 

those observed, which could interfere with performance more generally (e.g., by slowing 

ongoing-task RTs and reducing accuracy). Thus, it seems that participants would be unlikely to 

implement ongoing-task bias increases that could effectively support PM. Our finding that 

ongoing-task bias was not effective in improving PM may shed some light on previous findings 

regarding “stimulus-specific” PM instructions. Under such instructions, in which participants are 

informed that PM targets only appear in one type of ongoing-task item, Heathcote et al. (2015) 

argued in their delay theory that PM could be supported by selectively raising the ongoing-task 

threshold corresponding to a matching response to that item. However, the current findings 
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suggest that such selective biases may not be as effective as they anticipated. This could explain 

the findings of Horn and Bayen (2015), and Strickland et al., (2017, 2018) that participants 

increased both ongoing-task thresholds with PM, even when explicitly informed that their PM 

task was stimulus-specific.   

Our finding that ongoing-task bias does not affect PM accuracy is inconsistent with 

Heathcote et al.’s (2015) prediction based on Delay Theory, underscoring the difficulty with 

anticipating exactly how control processes will influence the output of complex cognitive 

models. They reasoned that bias might improve PM performance because delaying the ongoing-

task accumulator that is most competitive with PM should allow the PM accumulator more time 

to accumulate. However, our simulations from PMDC predict that effects of ongoing-task bias 

on PM are not substantial, in part because the beneficial effects of delays in the matching 

accumulator are offset by the mismatching accumulator competing with the PM accumulator. 

This was not anticipated in Heathcote et al.’s work that focused solely on PM cost because, 

without a full model of both ongoing-task and PM task decision processes, it was not possible to 

directly examine how cost-related mechanisms impacted PM performance. This illustrates how 

researcher’s intuitions cannot be assumed to accord with the function of a cognitive model 

(Farrell & Lewandowsky, 2010), highlighting the importance of directly simulating quantitative 

model predictions where possible. In a similar vein, Anderson et al. (2018)’s finding that 

increased ongoing-task thresholds did not improve PM accuracy was potentially undermined by 

the fact that they did not measure, or account for, shifts in PM accumulator control processes 

such as PM thresholds.  

The current results, and those of Anderson et al.’s (2018) , indicate that ongoing-task 

thresholds play a relatively minor role in supporting PM accuracy, with the potential to be 
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overpowered or nullified by other PM decision processes. Taken together, these findings 

illustrate that delay theory, at least when interpreted in isolation, fails to accurately predict PM 

accuracy. However, ongoing-task thresholds are by far the largest underlying component of PM 

cost in a range of studies. Thus, delay theory provides a compelling account of PM costs, but a 

poor account of PM accuracy, illustrating an important distinction between these measures.  

 Given that increased ongoing-task thresholds underlie a large part of PM cost, and are 

largely comprised of threshold elevations that appear to have little effect on PM accuracy, we 

believe the PM cost measure deserves less focus than it has had in the literature. In the past, 

influential PM theories such as the Preparatory Attentional and Memory processes theory 

(Smith, 2003), and the Multi-process view (Einstein et al. 2005), have used costs to infer the PM 

processes responsible for variation in PM accuracy. For example, they assume that non-focal PM 

accuracy is poorer than focal PM accuracy because it is reliant on PM monitoring that shares 

capacity with the ongoing task, whereas focal PM is less reliant (and in the case of the Multi-

process view, is fully reliant on spontaneous retrieval), and that PM importance emphasis causes 

more capacity to be allocated to the PM task, resulting in increased cost and increased PM 

accuracy (Einstein et al., 2005; Smith & Bayen, 2004). Whether one adopts our theoretical 

position that costs reflect ongoing-task thresholds, or other theoretical positions that costs reflect 

monitoring, our modeling results indicate neither cognitive process is the primary determinant of 

PM performance. We acknowledge that these conclusions have far reaching implications for the 

way PM research is done, and further research is required to verify them. It will be important for 

future research to test whether our findings hold for a broader range of bias manipulations and 

task implementations. For example, in the current study, our instructions’ emphasis on the 

ongoing task, and associated delays punishing ongoing task errors, may have led to the 
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perception that the PM task is of secondary importance. This could have reduced the attention or 

effort that some participants paid to the PM task. However, as both our experimental conditions 

include a bias instruction, any effects of bias on PM importance would be expected to be equal 

across our conditions and thus there is no reason to expect this would confound any of our 

comparisons. Still, it would be interesting to examine how the findings apply at different levels 

of PM importance.  

It is worth noting that although we analyze the results of only one experiment here, the 

quality of measurement was high, with over 2000 trials modelled for each participant. Hence, our 

single experiment with 32 participants yields more data than 160 participants would in a typical 

PM experiment (assuming 400 trials per participant), and substantially more data than previous 

large-scale studies on PM cost (e.g., Anderson et al., 2018). Although PM trials comprise only a 

fraction of this data, PM trials were a larger proportion of total trials in this study than in most 

previous studies, and so the number of PM trials we observed is also substantially larger than is 

typical. This focus on trial numbers is necessary for process modelling, where reliable inference 

depends on the number of trials per participant, rather than the number of participants (Kolossa 

& Kopp, 2018), and has been argued to underpin the most reproducible findings in psychology 

(Smith & Little, 2018). Given this, we believe it worth considering that rather than relying on 

PM cost for inferences about PM processes, it is much more effective to use a cognitive model 

like PMDC that directly measures the psychological processes underlying PM performance 

(Strickland et al. 2018). In this vein, we have recently used the PMDC framework to develop and 

test a detailed theory of how PM and ongoing processes can share capacity in cognitively 

demanding, complex tasks such as air traffic control (Boag et al., 2019) and maritime 

surveillance (Strickland et al., 2019). One again, these experiments have an order of magnitude 
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more data per participant than typical PM experiments, and in the case of Boag et al.’s (2019) 

experiment, 246 participants.  

Although increases in ongoing-task thresholds do not effectively support PM in the 

standard laboratory paradigm we used here, they may do so in different paradigms. For example, 

we have found that proactive control over ongoing-task thresholds more substantially supports 

PM accuracy in simulated air traffic control (e.g., Boag et al., 2019), perhaps owing to the longer 

time scales of the simulated air traffic control decisions. In addition, even in standard laboratory 

paradigms, some methods of delaying the ongoing-task can improve PM performance. For 

example, Loft and Remington (2013) found that preventing participants from submitting 

responses for around 1 second could bring PM accuracy to almost ceiling. However, this 

manipulation was much stronger than any delay likely to be imposed by threshold control - in the 

current paradigm, a 1 second delay would more than double RTs. It is also possible that the delay 

theory mechanism could potentially play a secondary, minor role in supporting PM accuracy 

when complemented by decreased PM thresholds and increases in reactive control, as was shown 

in Strickland et al. (2018). With PM importance emphasis, increases in ongoing-task thresholds, 

decreases in PM thresholds and increases in PM-induced reactive inhibitory control acted 

together to enhance PM performance. The major difference between Strickland et al. and the 

current study is that the former manipulated participants’ motivation towards PM and the 

ongoing-task directly, allowing them to adjust their cognitive control processes as they saw fit to 

achieve desired outcomes. By contrast, in the current study we attempted a selective 

manipulation of ongoing-task thresholds. Although our manipulation also affected ongoing-task 

rates it did not affect parameters associated with the PM process, PM thresholds and 

accumulation rates associated with reactive control. Thus, our results combined with those of 
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Strickland et al. suggest that it is the parameters associated with the PM process that should be 

the target of manipulations that attempt to improve PM performance.  

One interesting, but unanticipated, finding was that PM accuracy was substantially higher 

on day two of the study than day one.  This contrasts with Strickland et al. (2018), where PM 

accuracy decreased on later days of the study. A difference between the current study and 

previous studies was that here we re-used the same PM target letter strings (i.e., the letter strings 

‘tor’ and ‘ver’) on days one and day two. Over time, practice at the PM task may have led 

participants to develop familiarity with the PM letter strings, improving the PM-related evidence 

extracted from the stimulus. Consistent with this explanation, our model indicated PM 

accumulation rates were higher on day two than day one. The role of stimulus familiarity in PM 

was also highlighted by a recent study that found differences between focal and non-focal PM 

accuracy could be eliminated with repeated exposure to non-focal PM targets (Hicks, Franks, & 

Spitler, 2017). The role of learning and familiarity in PM processes awaits further investigation.  

In summary, the current study indicated that manipulating ongoing-task bias has little 

effect on PM accuracy, because bias against one ongoing-task decision allows the other ongoing-

task decision to effectively pre-empt PM. It is theoretically possible that extreme ongoing-task 

bias may affect PM accuracy, but the deleterious effect of such bias on ongoing-task 

performance makes it impractical to implement. Further, the current results suggest that because 

it is based on a comprehensive characterization, the PMDC model (Strickland et al. 2018), rather 

than Delay Theory (Heathcote et al. 2015), should be used as a basis for understanding, and 

making predictions about event-based PM. Similarly, but in terms of empirical measures, our 

results indicate that ongoing-task RTs provide an incomplete and potentially misleading guide to 

PM-related processing in general, and PM accuracy in particular. 
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