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Many models of response time that base choices on the first evidence accumulator to win a
race to threshold rely on statistical independence between accumulators to achieve mathemat-
ical tractability (e.g., Brown & Heathcote, 2008; Logan et al., 2014; Van Zandt et al., 2000).
However, it is psychologically plausible that trial-to-trial fluctuations can cause both positive
correlations (e.g., variability in arousal, attention or response caution that affect accumulators
in the same way) and negative correlations (e.g., when evidence for each accumulator is com-
puted relative to a criterion). We examine the effects of such correlations in a racing accumula-
tor model that remains tractable when they are present, the log-normal race (LNR Heathcote &
Love, 2012). We first show that correlations are hard to estimate in binary choice data, and that
their presence does not noticeably improve model fit to lexical-decision data (Wagenmakers
et al., 2008) that is well fit by an independent LNR model. Poor estimation is attributable
to the fact that estimation of correlation requires information about the relationship between
accumulator states but only the state of the winning accumulator is directly observed in binary
choice. We then show that this problem is remedied when discrete confidence judgments are
modelled by an extension of Vickers’ (1979) “balance-of-evidence” hypothesis proposed by
Reynolds et al. (submitted). In this “multiple-threshold race” model confidence is based on
the state of the losing accumulator judged relative to one or more extra thresholds. We show
that not only is correlation well estimated in a multiple-threshold log-normal race (MTLNR)
model with as few as two confidence levels, but that it also resulted in clearly better fits to
Ratcliff et al.’s (1994) recognition memory data than an independent mode. We conclude
that the MTLNR provides a mathematically tractable tool that is useful both for investigating
correlations between accumulators and for modelling confidence judgments.

Racing evidence accumulator models are widely used to
model dynamic decision processes (Donkin & Brown, 2018).
In these models, a decision process is represented by multi-
ple racing accumulators, one corresponding to each possible
choice. For example, a binary decision has two accumula-
tors, each to their own threshold, with the first finishing accu-
mulator determining both the choice and the corresponding
decision time. Response time (RT) is the sum of decision
time and the time taken to encode the stimulus and produce
a response (ter).

Several such models have been proposed that differ in the
distributional assumptions they make. For example, the Lin-
ear Ballistic accumulator (LBA) assumes two types of trial-
to-trial variability that is independent over accumulators, a
uniform distribution of distances from the start-point of ac-
cumulation to threshold, and normally distributed rates of
evidence accumulation (Brown & Heathcote, 2008). Other
models assume an important role for moment-to-moment
noise during accumulation (e.g., Heathcote, 2004; Logan et
al., 2014; Van Zandt et al., 2000), but the LBA assumes ac-
cumulation to be well-approximated by a constant rate for

the duration of each race, hence the term ’ballistic’ (although
‘deterministic’ is probably more appropriate, as a change in
input can change the trajectory of accumulation, see Brown
& Heathcote 2005). The log-normal race (LNR) is another
deterministic accumulation model that makes an even sim-
pler distribution assumption; that the finishing times of each
accumulator have a log-normal distribution, corresponding
to rates and/or the start-point to threshold distance having a
log-normal distribution (Heathcote & Love, 2012).

Both the LBA and LNR assume independence between
trials (the outcome of one trial does not affect the outcome
of following trials) and independence between accumulators
within each trial (e.g., the rate of the left accumulator is inde-
pendent of the rate of the right accumulator). In this paper we
will focus on the second, within-trial independence, assump-
tion. Heathcote & Love (2012) showed that the likelihood for
a correlated LNR model has a simple analytic form, but did
not attempt to fit such a model to data. Given that only the
finishing time of the winning accumulator is ever observed,
it may seem questionable whether correlation is identifiable
given that the only thing known about the the losing accumu-
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lator is that its evidence total is less than that of the winner
when it reached threshold.

In first section of this paper we define and apply the corre-
lated LNR model to the same binary lexical-decision (word
vs. nonword) data that was fit by Heathcote & Love (2012)
with an independent LNR. We demonstrate that the correla-
tion parameter is indeed difficult to identify in such binary
choice data. Heathcote & Love demonstrated that in order to
model errors that are as fast or faster than correct responses,
variability in the finishing time of the the accumulator that
matches the stimulus (i.e., the accumulator that correspond-
ing to the correct choice for a given stimulus) must be smaller
than for the mismatching accumulator (i.e., the accumulator
corresponding to the wrong choice). We show that estimat-
ing a correlation is particularly difficult in this case, because
its effects can be closely mimicked by unequal variance in an
independent model.

In the second section of this paper we show the parame-
ters of the correlated LNR are identifiable when participants
give confidence ratings that are modeled using an extension
of Reynolds et al.’s (submitted) multiple-threshold instanti-
ation of “Balance of Evidence” theory (Vickers, 1979). In
this extension, the choice is determined, as in a standard
choice race model, by the first accumulator to cross its choice
threshold. Confidence is determined by the evidence total of
the losing accumulator relative to thresholds placed below its
choice threshold. We show that a correlated LNR model of
this type provides a good fit to recognition-memory data with
confidence ratings (Ratcliff et al., 1994). We also show that
in this setup correlations are identifiable even in the difficult
unequal-variance case.

First, however, we motivate our analysis by discussing
how different evidence-accumulation models are affected by
within-trial correlations and what psychological mechanisms
might cause either positive or negative correlations.

Psychological Mechanisms Causing Correlation

The issue of correlation has perhaps not been of much
concern to evidence-accumulation modellers because it is not
relevant for the most popular account, the diffusion (DDM,
Ratcliff, 1978). The diffusion has only a single accumulation
process and the input to that process can be conceptualized
as the difference in evidence for the two alternatives. This
means that the effect of differences in evidence correlations
can be fully accommodated by differences in the diffusion
model’s trial-to-trial rate variability parameter. Indeed, there
is a large class of models with correlated parameters that are
equivalent to the diffusion model (Bogacz et al., 2006). In
contrast, racing accumulator model like the LBA and LNR,
and non-deterministic versions such as racing single-barrier
diffusion models that assume trial-to-trial variations in pa-
rameters (Leite & Ratcliff, 2010; Logan et al., 2014; A. Osth
& Farrell, in press), are sensitive to the effects of such corre-

lations, and hence to the effects of the psychological mecha-
nisms causing correlations that we now discuss.

In racing evidence accumulation models one of the chief
motivation for independence in accumulation rates, start
points, or thresholds across accumulators is mathematical
simplicity. Assuming independence results in likelihood
functions that are easy to derive and that can be quickly com-
puted analytically. Additionally, even in the simple case of
binary choice, which will focus on in this paper, being able to
separately consider the matching and mismatching accumu-
lator makes interpreting parameter estimates much simpler.
The matching accumulator is only affected by evidence for
a correct response and its starting point and threshold, and
the mismatching accumulator only by evidence for the incor-
rect response and own starting point and threshold. Further,
even if an independence assumption does not represent the
data generating process it can be the case that parameter es-
timates for the independent model remain useful, and they
may even be preferable if there is a sufficient payoff in terms
of estimation properties (see van Ravenzwaaij et al. 2017 for
a similar argument with respect to trial-to-trial variability in
the diffusion model).

However, there are a range of mechanisms that could po-
tentially cause the rates of both accumulators to rise and
fall together (i.e., a positive correlation), or for one to rise
when the other falls, or vice versa (i.e., a negative correla-
tion). Negatively correlated rates can arise when judging a
uni-dimensional stimulus (x) against a stimulus criterion (c),
such as classifying all perceptual stimuli above the criterion
as “big” and all those below as “small” (Leite & Ratcliff,
2011; White & Poldrack, 2014). If the input to the “big” ac-
cumulator is x − c, and to the “small” accumulator c − x, the
two inputs will be perfect negatively correlated. A less than
perfect, but still negative, correlation would ensure if there
were also an independent addition of noise to each accumu-
lator (see Brown et al., 2008, for a related example).

Positive correlations can result if trial-to-trial fluctuations
in attention or arousal scale evidence-accumulation rates by
the same amount in all accumulators. In the cognitive lit-
erature the idea that attention has a variable “sensitivity” or
“gain” is part of both older theories, such as the spotlight the-
ory of visual attention (e.g., Posner & Boies, 1971) and more
recent work, such the Prospective Memory Decision Control
theory of dual-task costs in prospective-memory paradigms
(Boag et al., 2019). The normalization framework that is
prominent within the neurosciences (Carandini & Heeger,
2011) also features the idea of a broadly-tuned gain or signal-
boost mechanism. Often, there is also overlapping activation
between neural populations coding evidence for different al-
ternatives in a choice set, such as when the alternatives are
have some similarity because they share some common fea-
tures or fall along an ordinal scale. Such similarity has been
suggested to translate into positive correlations in rate across
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accumulators (see Figure 8 of Kvam, 2019).
Factors inducing positive and negative correlations could

be simultaneously present, so that the resulting overall cor-
relation between rates for each accumulator will represent
their aggregate effect, which could be positive, negative, or
even approximate independence. Some factors that poten-
tially cause positive correlations in rates, such as trial-to-trial
fluctuations in arousal, could also cause positive correlations
in evidence thresholds. For example, a less cautious setting
(i.e., a higher start point and/or lower threshold for both accu-
mulators) when arousal is higher. Positive correlations could
also be associated with post-error slowing, which has been
explained as occurring due to increased response caution in
order to increase accuracy (e.g., Dutilh et al., 2013). In the
LNR separate effects of rates and the distance between ac-
cumulation start-points and thresholds are not identifiable.
Hence, the aggregate effect of all of the various potential fac-
tors causing correlations in variables that affect accumulation
is reflected in the binary choice case in a single correlation.
Our aim in this paper is to explore the properties of this single
correlation in the LNR, leaving the more difficult investiga-
tion of the different underlying causes to later research.

The Log-normal Race

The LNR assumes log-normal distributions for evidence
accumulation rates and for start-point to threshold differ-
ences. The ratio of two log-normal distributions is also log-
normal, so these two components are non-separable and we
are left with a log-normal distribution of threshold-crossing
times for each accumulator. Hence, for simplicity we will
refer to the rates with the understanding that they can also
reflect effects on the distance between start points and thresh-
olds. In particular, we will address the log-rate, as the log-
arithm is normally distributed, and so it is fully character-
ized by its mean and variance (i.e., the log-mean,µ and log-
variance, σ2). Further, when we refer to accumulators as
having equal or unequal variances we mean the log-variance.

The outcome of a log-normal race is the minimum of two
or more log-normal distributions, one driven by each alter-
native. The minimum or maximum of multivariate normal
distributions has been extensively studied and we can use
these results to implement correlated accumulator models.
The minimum of correlated bivariate normals can be de-
scribed analytically as a function of normal CDFs and PDFs.
Nadarajah & Kotz (2008) describes various useful results for
the maxima and minima of bivariate normal distributions.
Since the logarithmic function is monotonic, these results ap-
ply directly to the log of RT − ter, which we will refer to as
decision time.

Consider a bivariate normal distribution: [X1, X2] ∼
MVN(µ,Σ) with vector of µ= [µ1, µ2] and covariance matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. If Z = min(X1, X2) (i.e., the winning time)

then the probability density function of Z is

g(Z) = g1(Z) + g2(Z) (1)

where each function on the right hand side are defective den-
sities for either minimum. For example, the integral of g1(Z)
over the real number line gives the proportion of the time X1
is the minimum.

To use as an LNR model we take the above formula and
make Z the log of decision time. Sometimes the minimum of
the bivariate normal could be non-identified, such as when
know decision time but not which response is the minimum.
When we do know this, we do not need to take the sum of
each equation, but can instead focus on the the equation that
relates to the appropriate response. We can also plot each
equation separately to represent correct and error RT densi-
ties.

g1(Z) =
1
σ1
φ
(Z − µ1

σ1

)
∗ Φ

( ρ(Z − µ1)

σ1
√

1 − ρ2
−

Z − µ2

σ2
√

1 − ρ2

)
(2)

g2(Z) =
1
σ2
φ
(Z − µ2

σ2

)
∗ Φ

( ρ(Z − µ2)

σ2
√

1 − ρ2
−

Z − µ1

σ1
√

1 − ρ2

)
(3)

The functions φ and Φ represent the PDF and the CDF of the
standard normal distribution, respectively.

Basu & Ghosh (1978) showed that the distribution of the
minimum uniquely determines the bivariate distribution, ex-
cept for the trivial case where the first and second elements of
the bivariate distribution switch places. Since our RT data is
identified with a choice, this trivial case can be ignored. This
means that there is no exact mapping from the pair of defec-
tive densities in the independent case to the correlated case,
although as we show very close approximations are possible.

As described in Heathcote & Love (2012), the likelihood
corresponding to each defective density can also be written
as a product of log-normal densities and survival functions.
If f and S are the probability density function and survival
function (1-CDF) of log-normal distributions respectively,
the likelihood of the first accumulator winning with decision
time (dt) is:

L1(dt) = f (dt|µ1, σ
2
1)×S (dt|µ2+ρ

σ2

σ1
(ln(dt)−µ1), (1−ρ2)σ2

2).

(4)
The equation for an independent LNR simplifies to.

L1(dt) = f (dt|µ1, σ
2
1) × S (dt|µ2, σ

2
2). (5)

We fit the LNR model using these likelihoods in a hier-
archical Bayesian framework using Differential Evolution-
MCMC sampling (Ter Braak, 2006; Turner et al., 2013)
as implemented in the R software DMC (Heathcote et al.,
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2019). We used sampled a linear transformation of the lo-
gistic function (λ(x) = 1/(1 + e−x)) of the correlation pa-
rameter so that samples could range over the real line, then
transformed them back to (-1,1). To allow for unequal vari-
ances and enforce diagonal dominance of the covariance ma-
trix (i.e., covariance cannot exceed the variance of either ac-
cumulator), the minimum of the ratio of the two σ values,
c = min(σ1

σ2
, σ2
σ1

), is used as a scale factor, so the linear trans-
formation is 2c(λ(ρ)− c). Other details of the fitting methods
and priors are provided in supplementary materials. The data
sets and code to perform the fits is available at osf.io/4hn7p/

An LNR model with equal match and mismatch accumu-
lator variance can be motivated from the negative correla-
tion mechanism described previously. Suppose that the two
stimulus types to be classified produce subjective values dis-
tributed on a log-scale of S 1 ∼ N(µ1, σ

2
1) and S 2 ∼ N(µ1, σ

2
1)

that are transformed into the evidence values that determine
log-rates by comparison to a criterion on the log scale, c,
where typically µ1 < c < µ2, so that E1 ∼ c − S 1 and
E2 ∼ S 2 − c. Hence, for stimulus 1 the log-rate for the
matching accumulator is rmatch|1 ∼ N(c − mu1, σ

2
1) and for

the mismatching accumulator rmismatch|1 ∼ N(µ1 − c, σ2
1).

Similarly for stimulus 2, rmatch|2 ∼ N(µ2 − c, σ2
2) and for

the mismatching accumulator rmismatch|2 ∼ N(c − µ2, σ
2
2). In

both cases the matching and mismatching accumulators have
equal variance and a perfect negative correlation. This will
also be the case if the criterion has a normal distribution, but
the magnitude of the negative correlation will approach zero
if independent criterion samples apply to each accumulator.
If the same criterion sample applies then it will also reduce,
and can even become positive if the criterion variance is large
enough.

Unequal variance between matching and mismatching ac-
cumulators can occur if variability in log-rates differs as a
function of the average degree of match. For example, Rat-
cliff et al. (2018) suggested trial-to-trial rate variability in-
creases with the mean, which would result in greater variance
for the matching than mismatching accumulator (assuming
above chance accuracy). Heathcote & Love (2012) sug-
gested that the mismatching accumulator might have more
variance—the pattern they found in their fit of the indepen-
dent LNR to the data from Experiment 1 of Wagenmakers et
al. 2008)—if a template-matching process produces evidence
(and hence the log-rate) for each response, such that a poorer
match producing outputs that are not only weaker but also
more variable.

Using the equation for the minimum of a bi-variate nor-
mal, we can predict the accuracy of a response given the de-
cision time and how this varies with the relative variances of
matching and mismatching accumulators. If we make g1(Z)
the correct response and g2(Z) the error, the estimated accu-
racy at time t is g1(t)

g1(t)+g2(t) . An equal variance model predicts
that accuracy is highest for short decision time and decreases

with increasing decision time, and so that error tend to be
slower than correct responses, as is usually observed when
accuracy is emphasized over speed. If the matching accu-
mulator is more variable, initially same decrease in accuracy
occur, but this can then reverse at longer decision times. Fi-
nally, if the mismatching accumulator has a higher variance,
then it is possible to have accuracy increase with decision
time and hence to predict that errors are faster than correct
response, as can occur when speed is emphasized over accu-
racy.

We note one final point about the correlated LNR germane
to modeling response confidence. The balance-of-evidence
hypothesis states that confidence is proportional to the dif-
ference in the evidence totals (and hence the log-rates) of
the two accumulators. If the log-rates are perfectly nega-
tively correlated then there is a perfect negative relationship
between decision time and the evidence-total difference (and
hence confidence). That is, there is no overlap in decision
time for different levels of confidence. However, as the mag-
nitude of the correlation decreases so does the the link be-
tween confidence and decision time, so when there is a per-
fect positive correlation there is no relationship. Before ad-
dressing confidence data, we first compare the fit of the inde-
pendent and correlated LNR models to Wagenmakers et al.’s
(2008) binary-choice lexical-decision data (. For brevity, we
call the independent LNR the ILNR and the correlated LNR
the CLNR.

Fitting Binary Choice Data

Wagenmakers et al.’s (2008) lexical-decision task re-
quired participants to classify high, low and very-low fre-
quency words and non-words. As shown in Figure 1, instruc-
tions emphasizing the speed of responding produced faster
errors than instructions that emphasized the accuracy of re-
sponding, particularly for the easier conditions (i.e., high-
frequency words and non-words) and for faster responses
(i.e., the 10th percentile of the RT distribution).

We first compared the best unequal-variance ILNR model
from (Heathcote & Love, 2012) with an equal-variance
CLNR model with the same number (34) of parameters.The
latter model had half of its σ parameters replaced by corre-
lation parameters. Additionally a simpler CLNR model with
only one correlation parameter was fit. According to the DIC
(Deviance Information Criterion) model-selection criterion
Spiegelhalter et al. (2002) the ILNR model provided the best
fit (DIC = -20535), the most complex CLNR model fared
worst (DIC = -19378), and its less complex version was inter-
mediate but still much worse (DIC = -19764). Figures 1 and
2 graphically illustrate the fits; the correlated model is clearly
unable to fit the fast errors that occur in speed-emphasis con-
ditions.

We performed a cross-fit simulation study (i.e., fitting
one model to data simulated from another como to exam-
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Figure 1. Binary choice fits with 95% credible intervals for the ILNR model. hf = high-frequency word, lf = low-frequency
word, vlf = very-low frequency word, nw = non-word.

ine del)mparinckryg model mimithe ILNR model with the
CLNR model with the same number of parameters. Based on
the posterior means from the fits of each model to the origi-
nal data for each of the 17 participant, we simulated a large
number of trials (19200, 10 times as many as in the orig-
inal data) in order to investigate approximately asymptotic
estimation performance. We then fit both models to these
simulations to compare the ability of one model to mimic the
other’s data. Results are presented in supplementary materi-
als in the form of post-predictive plots comparing defective
RT CDFs of the simulated data to fits. The ILNR model was
able to match the simulated CLNR model almost exactly, but
the CLNR model could not so closely match the simulated

ILNR data. This suggests that with the same number of pa-
rameters, an unequal-variance ILNR is more flexible than an
equal-variance CLNR model, at least when it must account
for faster errors.

Finally, we fit a model with both unequal variance and a
single correlation parameter. This model had a better DIC
than any previous model, although the improvement was not
large (DIC = -20553) and visual inspection of the fit (see
supplementary materials) revealed no noticeable improve-
ment. Estimates of the difference between match and mis-
match accumulator variance were greatly reduced relative to
the ILNR model. However, there was very little updating
between the prior and posterior density for the correlation



6 ANGUS REYNOLDS

●

●

0.
0

0.
4

0.
8

 hf accuracy emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

●

●

0.
0

0.
4

0.
8

 lof accuracy emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

●

●

0.
0

0.
4

0.
8

 vlf accuracy emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●
●

●

0.
0

0.
4

0.
8

 nw accuracy emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

● ●

0.
2

0.
6

1.
0

1.
4

 hf accuracy emphasis

Response

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

●
●

●
●

●
●

●

●
●

●

● ●

0.
2

0.
6

1.
0

1.
4

 lof accuracy emphasis

Response

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

●
●

●
●● ●

●

●

●

●

● ●

0.
2

0.
6

1.
0

1.
4

 vlf accuracy emphasis

Response

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

● ●

●
●

●
●

●

●

●

●

● ●

0.
2

0.
6

1.
0

1.
4

 nw accuracy emphasis

Response

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

● ●

●
●

● ●

●

●

●

●

●

●

0.
0

0.
4

0.
8

 hf speed emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

●

●

0.
0

0.
4

0.
8

 lof speed emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

●

●

0.
0

0.
4

0.
8

 vlf speed emphasis

Response

P
ro

po
rt

io
n

nonword word

●

●

●

●

●

●

0.
0

0.
4

0.
8

 nw speed emphasis

Response
P

ro
po

rt
io

n

nonword word

●

●

●

●

● ●

0.
2

0.
6

1.
0

1.
4

 hf speed emphasis

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

●
●

● ●● ●

●
●● ●

● ●

0.
2

0.
6

1.
0

1.
4

 lof speed emphasis

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

● ●

● ●● ●

●
●● ●

● ●

0.
2

0.
6

1.
0

1.
4

 vlf speed emphasis

R
T

 1
0/

50
/9

0t
h 

P
er

ce
nt

ile
s

nonword word

● ●

● ●● ●

● ●● ●

● ●

0.
2

0.
6

1.
0

1.
4

 nw speed emphasis
R

T
 1

0/
50

/9
0t

h 
P

er
ce

nt
ile

s

nonword word

● ●

● ●● ●

●
●

● ●

Figure 2. Binary choice data and fits with 95% credible intervals for the CLNR model with the same number of parameters as
the ILNR model.hf = high-frequency word, lf = low-frequency word, vlf = very-low frequency word, nw = non-word.

parameter. There was also a large increase in the correla-
tions among posterior parameter estimates, suggesting this
model is subject to parameter identification difficulties. In-
deed, even the fits of the equal-variance CLNR model to the
large simulated data sets displayed similar difficulties. This
suggests that, although the unequal-variance CLNR appears
to provide a good description, it is unlikely to produce use-
ful parameter estimates based on realistic choice RT data.
In the next section we show that not only are these estima-
tion difficulties ameliorated when fitting correlated models to
confidence data, but that there can then also be a qualitative
increase in goodness-of-fit over independent models.

The Multiple Threshold Race

It is difficult to identify the correlation parameter be-
cause it depends on the relationship between the state of the
winning accumulator, which is observed at the moment of
choice, and the state of the losing accumulator, which is un-
known except that it is less than the winning accumulator. It
seems likely that if we knew where the losing accumulator
was relative to the winning accumulator when it hits thresh-
old (i.e., the “balance of evidence”) this could help to iden-
tify the correlation parameter. Vickers (1979) suggested that
confidence is proportional to the balance of evidence, but did
not specify a mechanism by which the balance of evidence
could be translated into the discrete confidence judgments
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that are typically collected in experiments. Reynolds et al.
(submitted) proposed a general mechanism that can solve
this problem, and applied it to modeling the addition of an
intermediate “don’t-know” judgment to binary choice.

The extension of Reynolds et al.’s (submitted) approach to
any number of discrete confidence judgments is straightfor-
ward. For a high vs. low confidence judgment, for example,
an extra threshold is added to each accumulator. A decision
is made in the usual way in favor of the accumulator that
first hits its upper threshold. Confidence in that decision is
determined by the state of the losing accumulator. If it is
below its lower threshold confidence is high (as the balance
of evidence is larger); if it is above, confidence is low (as the
balance of evidence is smaller).

Suppose a high confidence response occurs when the
eventual finishing time of the losing accumulator is at least
twice that of the decision time (dt). As the LNR is determin-
istic this is equivalent to saying the loser has accumulated
less than half the amount of evidence needed to trigger a re-
sponse on that trial and so the the lower threshold, expressed
as a proportion of the upper threshold, is d = 0.5. The like-
lihood of a high confidence response is the density of the
winning choice at dt multiplied by the survival function of
the losing accumulator finishing after dt

d .

L1(dt) = f (dt|µ1, σ
2
1) ·S (

dt
d
|µ2 +ρ

σ2

σ1
(ln(dt)−µ1), (1−ρ2)σ2

2).

(6)
The losing accumulator is in the low-confidence state if it

has not finished before dt (so it is the loser) but has finished
after dt

d (so it is above the lower threshold). The correspond-
ing probability is the survivor function of the losing accumu-
lator at dt minus the survivor function at dt/d. When multi-
plied by the density of the winning choice at dt this gives the
likelihood of a low confidence response.

L1(dt) = f (dt|µ1, σ
2
1) ·

(
S (dt

∣∣∣µ2 + ρ
σ2

σ1
(ln(dt) − µ1)

− S (
dt
d

∣∣∣µ2 + ρ
σ2

σ1
(ln(dt) − µ1), (1 − ρ2)σ2

2)), (1 − ρ2)σ2
2)
)
.

(7)

Adding more thresholds to allow a greater number of con-
fidence levels is simply a case of taking differences of sur-
vival functions evaluated to adjacent thresholds. When fitting
such models the additional thresholds must be parameterised
so that their order is preserved. In the next section we fit
model with two lower thresholds to accommodate data with
three (low/medium/high) confidence levels.

Fitting Confidence Data

In this section, we use recognition memory data from Rat-
cliff et al. (1994) to evaluate the performance of the mul-

tiple threshold log-normal race (MTLNR) model. Partici-
pants studied a list of words, and then performed test trials
with words that had either been previously studied (old) or
not (new). They pressed one of 6 buttons to simultaneously
choose if the test word was old or new and to indicate if they
had low, medium or high confidence in their choice. Words
could be either high or low frequency, and some words were
studied more than others, so overall there were 6 conditions
in a 3 (new, weak old, strong old) by 2 (high vs. low word
frequency) design.

In order to compare the correlated and independent
MTLNR models on an equal footing we first tested versions
with equal numbers of parameters (29). We again again fit
hierarchical Bayesian models using the DMC software. De-
tails of the fitting methods and priors are provided in sup-
plementary materials, and the data sets and code to perform
the fits are available at osf.io/4hn7p/. The models have 12
log-mean parameters (i.e., two for each condition, one for
the matching and one for the mismatching accumulator). In
the unequal-variance uncorrelated model there are 12 corre-
sponding log-variance parameters. In the correlated equal-
variance model there are 6 log-variance parameters that are
the same for matching and mismatching accumulators and 6
correlation parameters, one for each condition. Finally there
are 4 confidence thresholds, two for each accumulator (split-
ting them into three regions corresponding the three confi-
dence responses) and a single non-decision time parameter.

In contrast to the choice data, the correlated model pro-
vided a qualitatively better fit than the independent model
(see Figures 3 and 4). Both models capture the bow shape of
the RT distributions over the confidence levels, with slower
RTs for low confidence responses. Neither fit is perfect,
but the correlated model is generally better, particularly for
slower responses (i.e., the 90th percentile). The correlated
model has an even clearer advantage in fitting response
proportions, with independent model particularly struggling
with high-confidence responses. As Table 1 shows, DIC
was better by a very large margin (7811) for the correlated
than the independent model. The advantage was greater in
terms of the best fit (minimum posterior deviance 238449 vs.
246286, a difference of 7837) indicating that the correlated
model is slightly more complex.

We also fit two models with more parameters, both with
unequal variance, one with a separate correlation parame-
ter for each condition, and the other with just one corre-
lation. The former model was better (by 580) and the lat-
ter model worse (by 561) than the equal-variance correlated
model. We also fit a simpler equal-variance correlated model
with just one correlation parameter, but its fit was substan-
tially worse (by 2629) than the equal-variance model with
separate correlations for each condition, although it was still
substantially better than the independent unequal-variance
model (by 5182). Overall, these results suggest that allowing
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Figure 3. Independent MTLNR fits to the confidence data, averaging over all subjects. Responses 1-6 represent a continuum
from high confidence new to high confidence old.
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Figure 4. Correlated MTLNR fits to the confidence memory data, averaging over all subjects. Responses 1-6 represent a
continuum from high confidence new to high confidence old.
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Figure 5. Correlation parameter recovery across decreasing confidence levels. The first row shows, for each participant and
condition, the true vs estimated (posterior) means and the second row shows uncertainty of these estimates in the form of
the standard deviations of the posterior samples. Each model is fit to simulated data from the equal variance correlated LNR
model, with approximately the same number of trials per simulation as there is data per subject (8960 trials and 11 subjects).

Table 1
Numbers of variance and correlation parameters, total num-
ber of parameters and DIC values for five models fit to the
confidence-rating data. All models had 12 log-mean (µ) pa-
rameters, 4 intermediate thresholds (2 per response) and a
single non-decision time parameter. Models are ordered ac-
cording to DIC, from the best at the top to the worst at the
bottom.

no. σ no. ρ no. pars (total) DIC
12 6 35 238381

6 6 29 238961
12 1 30 239522

6 1 24 241590
12 0 29 246772

for correlation is more important than unequal-variance, but
that the two can trade off. Although the model with both
was preferred by DIC, and it was accompanied by little visi-
ble improvement in fit over the simpler 29 parameter equal-
variance model (see supplementary materials).

In order to focus on the correlations that are the most novel
aspect of our investigation, from here we address the equal-
variance model with separate correlations for each condi-
tion. However, we acknowledge that further investigation
with a wider array of data sets will be required to better
asses the case for also including unequal variance. Given
the results from the fits of the correlated MTLNR to the bi-
nary data in the speed-emphasis condition it seems likely that
greater variance for the mismatching than matching accumu-
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Table 2
Correlation (ρ), standard-deviation (σ) and threshold (d) parameter posterior means for each participant, and group level
means, for the 29 parameter correlated MTLNR model. “Low“ and “High“ refer to word frequency.

Participant 1 2 3 4 5 6 7 8 9 10 11 Group
ρNewLow 0.32 0.63 0.97 0.24 0.63 0.99 -0.01 0.43 0.52 0.72 -0.32 0.47
ρWeakLow -0.17 0.21 0.90 -0.24 0.28 0.98 -0.58 -0.23 0.28 0.55 -0.57 0.13
ρS trongLow -0.06 0.31 0.87 -0.03 0.18 0.98 -0.43 -0.40 0.25 0.62 -0.32 0.18
ρNewHigh 0.49 0.77 0.99 0.21 0.77 1.00 -0.19 0.54 0.61 0.71 -0.30 0.51
ρWeakHigh 0.16 0.52 0.97 -0.10 0.67 0.99 -0.29 -0.11 0.43 0.53 -0.40 0.31
ρS trongHigh 0.23 0.64 0.97 0.05 0.58 0.99 -0.28 -0.13 0.32 0.64 -0.43 0.32
σNewLow 0.75 0.65 0.57 0.85 0.55 0.53 0.81 0.80 0.61 0.75 0.89 0.71
σWeakLow 0.93 0.71 0.58 1.02 0.58 0.49 0.95 0.93 0.65 0.71 1.14 0.79
σS trongLow 0.86 0.70 0.56 0.95 0.62 0.52 0.84 0.91 0.60 0.67 0.93 0.74
σNewHigh 0.75 0.75 0.70 0.92 0.56 0.57 0.84 0.85 0.64 0.78 0.92 0.75
σWeakHigh 0.84 0.79 0.66 0.99 0.58 0.56 0.83 0.94 0.70 0.79 1.02 0.79
σS trongHigh 0.83 0.75 0.67 0.99 0.59 0.56 0.81 1.05 0.64 0.74 1.01 0.79
d2New 0.82 0.95 0.92 0.85 0.74 0.93 0.81 0.72 0.78 0.76 0.86 0.83
d1New 0.57 0.76 0.83 0.61 0.51 0.91 0.46 0.44 0.59 0.42 0.45 0.60
d2Old 0.91 0.96 0.94 0.83 0.74 0.92 0.88 0.73 0.72 0.77 0.91 0.85
d1Old 0.47 0.69 0.87 0.53 0.50 0.89 0.43 0.39 0.46 0.38 0.43 0.55

lator will be particularly required to fit data with fast errors.
In the present data errors were generally slower than correct
responses and so the equal-variance model performed quite
well.

Parameter Estimation

We performed a simulation study to investigate the esti-
mation properties of the MTLNR models. We used the same
number of trials as in Ratcliff et al.’s (1994) design, as it
was quite large, 8960 trials per participant (2240 each for
high and low frequency new condition, and 1120 for each of
the four old conditions). Otherwise we followed the same
procedure as in the previous cross-fit study, simulating new
data from the mean posterior parameter estimates of the fits
to the confidence data. The pattern of results was the oppo-
site to the lexical experiment; the equal-variance correlated
model was able to match independent unequal-variance sim-
ulations, but the independent model was not able to match
the correlated simulations. These results are shown in sup-
plementary materials and reflect the results in Figure 3 in
terms of the causes of the misfit.

We also used the simulated data from the correlated model
fit to investigate how the number of confidence ratings influ-
enced the quality of estimation. As shown in Figure 5, we
compared the fits with 3 levels (as in the data) to fits with
2 levels (by collapsing the less numerous low and medium
confidence responses) and 1 level (i.e., binary choice). The
figure shows excellent recovery of the correlation parame-
ter with all three confidence levels and little if any degrada-
tion when collapsing to two levels. In contrast, recovery is

poor for binary choice. Figure 5 also shows similar pattern
in terms of the standard deviation of the posterior estimates
of the correlation parameters. Hence, not only do the cor-
relation parameters improve the model fit to the confidence
data, but the fitting confidence ratings helps to identify the
correlation parameters.

Given that these findings indicates parameters are well re-
covered in this design, we now discuss the values estimated
from the data, focusing on the correlation, variability and
threshold estimates shown in Table 2 (see supplementary ma-
terials for the remaining parameters).

Correlations in every condition were on average positive,
with an overall mean of 0.48 and a range of 0.29 - 0.73.
Individual-participant values were quite variable, with par-
ticipants 3 and 6 having estimates mostly close to 1, whereas
participant 7 and 11 had all negative estimates and partici-
pants 1, 4 and 8 had two to four negative estimates. The het-
erogeneous nature of these vales suggests that mechanisms
causing both negative and positive correlations are present,
and that the balance of the effects of these mechanisms can
differ markedly across, and even within, participants. How-
ever, there are also patterns that are quite consistent within
participants, with larger correlations for for new than old
items and for high than low frequency items. In particular,
for the average over participants, the 95% credible interval
for new items (.475 - .499) was much greater than for either
weak (.199 - .237) or strong (.233 - .271) old items, it was
for high frequency (.398 - .426) compared to low frequency
(.296 - .324).

In contrast to the ρ estimates, the σ estimates varied much
less over individuals, with σ estimates being greater for old



CORRELATED RACE MODELS 11

(weak: 0.783-0.801, strong: 0.775 - 0.772) than new (0.724
- 0.735) items. The greater old than new σ estimates are also
consistent with findings from receiver-operating characteris-
tic (ROC) (Heathcote, 2003; Wixted, 2007; A. F. Osth et al.,
2017) and diffusion model analyses of recognition-memory
data Starns et al. (2012). It is possible that this difference
is related to the correlation difference between new and old,
in that that greater old variability would produce a greater
influence of the stimulus-criterion mechanism that reduces
correlations.

Threshold estimates were fairly high, mostly being in the
upper half of the range, so relatively small differences in
the balance-of-evidence differentiate low and medium con-
fidence responses. This reflects the generally positive cor-
relations, which mandate that both the winning and losing
accumulators will tend to have large evidence totals when a
decision is made. Reflecting this fact, thresholds were par-
ticularly high for the participants with large positive corre-
lations and generally were placed lower as correlations de-
creased. Threshold placement was fairly consistent across
accumulators. For most participants the distance between
the lower (d1) and upper (d2) thresholds, which delineates
medium-confidence responses, was smaller for the new than
old accumulator.

Correlation, RT and the Balance of Evidence.

Given the prominent role played by correlations in ex-
plaining in Ratcliff et al.’s (1994) data, in this section we fur-
ther explore the effects of correlation on the predictions of the
MTLNR model. We first show that the balance of evidence
in the MTLNR model produces a representation of response
probabilities that is directly analogous to that of Gaussian
signal-detection theory. This type of signal-detection model
has been used extensively to model response probabilities in
recognition memory research using confidence-based ROCs
(e.g., Heathcote, 2003; Wixted, 2007). We then explore the
relationship between the balance of evidence and RT.

Because of the presence of the logarithmic transforma-
tion, in the MTLNR confidence is related to the ratio of
decision times (DT ). Since DT for both accumulators is
log-normal, their ratio, and hence the distribution of the bal-
ance of evidence (BoE), is log-normal, and so log(BoE) has
a normal distribution. As the logarithmic transformation is
monotonic, the values of integrals of BoE distributions be-
tween boundaries (which correspond to response probabili-
ties) are preserved on the log(BoE) scale. Hence, log(BoE)
= log(NewDT)-log(OldDT) ∼ N(µNew−µOld, σ2

New +σ2
Old−

2ρσNewσOld), is analogous to the normal distributions of
memory strength assumed by signal-detection theory, with
the criterion dividing new and old responses placed at zero.
In the MTRLNR version, criteria demarcating different con-
fidence responses are arrayed around zero (see Pratte et al.,
2010, for an analogous representation), with values equal to
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Figure 6. Signal-detection theory plot and zROC curves de-
rived from group parameters of fits of the correlated MTLNR
model for low-frequency (top panel) and high-frequency
(middle panel) items in the confidence data. The lower panel
shows zROCs averaged over participants (lines and open
points) with model fits based on 500 samples from the poste-
rior per participant shown as clouds of small grey points.
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Figure 7. Top, middle and bottom rows show representa-
tion of MTLNR models with negative (-0.9), zero and pos-
itive (0.9) correlations respectively with and old stimulus
(µold = −0.95, µnew = −0.63, σ = .55, d1=.3 and d2=.6 (both
old and new response)). Left Column: bi-variate densities
of decision time (DT) for the new vs. old accumulators as
contour plots (density values are marked on the curved con-
tours), with sloping lines from the origin denoting decision
criteria (solid lines dividing new and old, dashed lines divid-
ing high and medium confidence, and dotted lines medium
and low confidence). Right Column: Samples of the mini-
mum of the new and old accumulator DT (i.e., the winning
DT, corresponding to RT − t0) vs. BoE values with decision
criteria (vertical lines).

the logarithm of the relative thresholds (d) for the old accu-
mulator and the negative logarithm of the relative thresholds
for the new accumulator.

Figure 6 shows zROC plots (i.e., plots of the z-
transformed of hits against the z-transformed of false
alarms). Lines joining open circle represent the data av-
eraged over participants, with similarly averaged MTLNR
model predictions for 500 randomly drawn posterior samples
drawn as clouds of grey points. Mean and standard deviation
parameters for the normal distributions averaged over par-
ticipants are given in Table 3. In agreement with patterns
typically found in ROC analysis (Glanzer et al., 2009), stan-
dard deviations for low-frequency items were greater than
high-frequency items both when new and old, and the means
displayed a word-frequency mirror effect, with the smallest
values for low-frequency new items and the largest values
for low-frequency old items, with high frequency means in-
termediate. High vs. medium confidence criteria were more
extreme for new (median -0.647; 95% credible interval -0.66
- -0.633) than old (0.55; 0.538 - 0.562) but the opposite pat-
tern led for the medium vs. low confidence criteria for new (-
0.172; -0.178 - -0.167) compared to old (0.55; 0.538 - 0.562).

Models based on Gaussian distributions produce perfectly
linear zROC plots for fits to a single participant. The slight
deviations from linearity in fits in Figure 6, particularly for
the low-frequency condition, occur because of the averaging
over participants. The fit is good for high-frequency but there
are slight misses for high confidence error conditions for the
low-frequency condition. Plots of individual-participant fits
in supplementary materials show this is mainly due to one
individual (Participant 10) who has a much stronger version
of the concavity evident in Figure 6, and which the MTLNR
model (which produces strictly linear zROCs at the individ-
ual level) is unable to capture. It has been proposed that this
pattern requires requires either an additional mechanism or a
more complex model. Ratcliff et al. (1994) attributed it to a
guessing process whose effects are most evident for rare re-
sponses like high-confidence errors. Ratcliff & Starns (2013)
ascribed it to unusual settings of the threshold parameters in
the RTCON2 model. In the next section we explore whether
variability in MTLNR thresholds can also address this pat-
tern. However, we first explore the effect of correlation on
the signal-detection representation that provides a good ac-
count for the majority of participants.

Figure 7 represents the bivariate decision-time distribu-
tions underlying the MTLNR signal detection representation.
It shows the case of an old stimulus that differs across the
three rows of the figure only in the correlation parameter. In
all cases the bi-variate distributions in the left-hand column
are shifted above the main diagonal (solid line) so the old ac-
cumulator is most often faster and so wins most often. Rela-
tive to the middle row, where the correlation is zero, in the top
row, where there is a strong negative correlation, the old ac-
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Table 3
Signal Detection means, SDs and criteria pertaining to Figure 6, generated by the equal variance, correlated MTLNR fit to
the confidence data. Criterion 3 is fixed to 0

.

Low Frequency High Frequency
2.5% 50% 97.5% 2.5% 50% 97.5%

New mean -0.817 -0.799 -0.781 -0.476 -0.460 -0.447
sd 0.693 0.707 0.721 0.685 0.700 0.716

Strong mean 0.805 0.839 00.869 0.684 0.716 0.747
sd 0.919 0.942 0.968 0.866 0.890 0.915

Weak mean 0.778 0.808 0.838 0.753 0.784 0.813
sd 1.028 1.055 1.084 0.883 0.908 0.933

cumulator wins less often, and higher-confidence responses
are more frequent. In the bottom row, where there is a strong
positive correlation, the old accumulator wins less often and
higher-confidence responses are less frequent. These effects
occur because the increase from negative to positive corre-
lation reduces the difference in decision time between accu-
mulators, and hence the spread of the BoE, as illustrated on
the x-axis of the right hand column of Figure 7.

The right hand column of Figure 7 illustrates that an in-
crease in correlation also reduces the overlap of the RT dis-
tributions for adjacent confidence responses. High negative
correlations are implausible because there is typically sub-
stantial overlap in the RT distributions of different confidence
categories (e.g., the spread of the percentiles in Figure 4 is
much larger than the differences between response). At the
other extreme, high positive correlations mean that RT car-
ries little information about the strength of the evidence fa-
voring one or other choice (i.e., there is little difference be-
tween the distributions of the minimum decision time in the
lower right hand panel of Figure 7).

Threshold Variability

It has been suggested that signal detection theory decision
criteria are subject to trial-to-trial variability (Benjamin et al.,
2009; Mueller & Weidemann, 2008). However, the magni-
tude of this variability can be difficult to estimate, and more
recent work has suggested it has only a small effect (Kellen
et al., 2012). In this section, we investigate the estimation of
variability in MTLNR thresholds, and whether allowing for
such variability enables the model to address Participant 10’s
non-linear zROCs.

There are at least two ways this type of variability can be
introduced in the MTLR: letting let each threshold vary in-
dependently, or varying all thresholds together in a lockstep.
The second method requires fewer parameters and allows for
a wider range of variation in the regions that each threshold
can vary over while maintaining the appropriate order. Order
changes greatly complicate the derivation of likelihood func-
tions, as well as raising interpretation problems, and so we
only consider models here in which the order is preserved.

We also assume that the choice threshold does not vary, only
the confidence threshold(s).

On the assumption that confidence-threshold variability is
uniformly distributed, results reported in Terry et al. (2015)
enable the derivation of analytic likelihoods. The RT density
part of the likelihood (corresponding to the choice) remains
a simple log-normal as in the constant-threshold model, but
the survival function (corresponding to the state of the losing
accumulator) is now composed of CDFs for a shifted uni-
form random variable divided by a log-normal random vari-
able. The CDF of the latter ratio provided by Terry et al. is
FUonL(dt, A, b, v, sv), where A is the range of uniform start-
point noise, b is a threshold, v is the mean rate of accumu-
lation and sv its standard deviation. A equates to MTLNR
threshold noise, and so we will use the same notation here;
b equates to our confidence threshold (d) and sv to our σ
parameter. The accumulation rate parameter v corresponds
to −µ (as µ is negative of accumulation rate).

Hence, the likelihood for a high confidence for the first
accumulator (i.e., the second accumulator’s evidence total is
below its lowest threshold, d1) in an MTLNR model with
threshold variability is:

f (dt|µ1, σ1) × (1 − FUonL(dt|A2, d12,−µ2, σ2)) (8)

The likelihood equations for lower confidence responses
are analogous to Equation 7 using the survivor functions for
the uniform on log-normal random variable (i.e., 1 − FUonL).
It is also straightforward to extend the likelihood equations to
allow variability in the lower threshold to extend below zero.
For trials on which this occurs a high confidence response
cannot be produced. The extension simply involves adjust-
ing the likelihoods for each confidence level based on the
probability that the lower threshold falls below zero, and we
employ it in the fits reported below (see supplementary mate-
rials for details). Finally, including correlations is exactly the
same as before, only now rather than passing the conditional
log-mean parameter into a log-normal CDF function, we pass
the negative of the conditional to the uniform-on-log-normal
CDF.

Figure 8 shows zROCs for Participant 10 with fits of the
MTLNR model both without (top panels) and with (bottom
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Figure 8. zROC plots for participant 10. The upper two panels show fits of the MTLNR model without threshold variability
and the lower panels include threshold variability.

panels) threshold variability. Threshold variability enables
the model to better capture the concave pattern, with good fits
to the middle points on the curves, although there is still some
misfit to the probability for high confidence errors, particu-
larly for low frequency items where accuracy is higher and
hence error are rarer. Details of how the variable threshold
MTLNR model was fit, parameter estimates, and zROCs for

the remaining participants, can be found in the supplemen-
tary materials. Separate values of A were estimated for each
accumulator and estimates were generally larger for the accu-
mulator corresponding to old responses, indicating a higher
level of noise in the calibration confidence for new responses.
Six of the eleven participants had negligible levels of thresh-
old variability, but the remaining 5 had substantial threshold
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variability in at least one accumulator and DIC summed over
participants improved substantially, by 1250, when threshold
variability was added. Larger values of threshold variability
were associated with substantial reductions in correlations
estimates for participants 8 and 10. However, for participant
6, who also had substantial threshold variability, the reduc-
tion was much less.

Discussion

There are many plausible reasons to believe that the in-
puts to, and parameters of, racing accumulators might be
correlated with each other. In the introduction to this pa-
per, we described some mechanisms that cause both positive
and negative correlations, but it is likely that there are many
others. For example, all of the models we have addressed
here assume independence during the accumulation process
(i.e., the evidence total in one accumulator does not affect
the evidence total in other accumulators), but other models,
such as the leaky competing accumulator (LCA Usher & Mc-
Clelland, 2001), assume an interaction. If that interaction
is competitive it would appear as a negative correlation to
the models we address here, whereas if it were excitatory
it would appear as a positive correlation (see Teodorescu &
Usher, 2013, or a wide-ranging discussion of different types
of dependence).

However, investigating inter-accumulator correlation is
challenging because the assumption of independence brings
with it benefits in terms of conceptual and mathematical sim-
plicity that are commonly lost when correlation is present.
It also seems likely that correlations, which are fundamen-
tally about the relationship between accumulators, will be
challenging to estimate in binary choice data because for
each choice only the state of one accumulator, the winner,
is observed. In this paper we attempted to address these
challenges using an evidence-accumulation model, the log-
normal race (LNR Heathcote & Love, 2012), that remains
tractable in the face of correlation, and using an equally
tractable extension of that model combined with the multiple
threshold architecture proposed by Reynolds et al. (submit-
ted), the MTLNR, which uses confidence judgments to pro-
vide information about the state of the losing accumulator.

Our initial exploration of the correlated LNR model ap-
plied to binary-choice data (Wagenmakers et al., 2008) con-
firmed it is poorly identified, and so if little practical use for
investigating the characteristics (e.g., sign and magnitude)
of inter-accumulator correlation. We also found that an in-
dependent model where the matching accumulator (which
corresponds to the stimulus) and mismatching accumulator
(which does not) differ in their variance can very closely
mimic a correlated model with equal variance. Indeed, as
is explored in more detail in supplementary material, we
found a consistent pattern whereby positive correlation is
mimicked by greater mismatching than matching variance,

whereas negative correlation is mimicked by greater match-
ing than mismatching variance. The former pattern is almost
always found in fits of the independent LNR model and a re-
lated independent deterministic accumulator model, the LBA
(Brown & Heathcote, 2008), suggesting the possibility that it
might arise because it is mimicking the presence of an under-
lying positive correlation.

However, Heathcote & Love (2012) pointed out that
greater mismatch than match variance is the only mechanism
that can enable the independent LNR to accommodate error
responses that are as fast or faster then correct responses, as is
commonly seen when the speed of responding is emphasized
over accuracy. We fit Wagenmakers et al.’s data because their
design manipulated the speed vs. accuracy of responding and
confirmed that the same mechanism was still required by the
correlated LNR to model fast errors, although the estimated
difference in variance was attenuated. It is an interesting
topic for future research whether a correlated LBA, which
has an additional mechanism for accommodating fast errors
(start-point noise), will be able to accommodate speed vs.
accuracy manipulations without requiring unequal variance.

We then confirmed that the MTLNR not only enables
good estimation of correlation but also that a correlated ver-
sion of this model provided a clearly better fit than an inde-
pendent version to Ratcliff et al.’s (1994) data where three
(high/medium/low) confidence ratings were made simulta-
neously with a binary (new vs. old) recognition memory
choice. A good overall fit was achieved by an equal-variance
correlated MTLNR model, and although model selection
also favored the additional flexibility afforded by unequal
variance, there was little noticeable improvement in fit, likely
because errors were relatively slow in this data. As we show
in supplementary materials, parameter estimation was still
excellent for the unequal variance correlated model, so it can
readily be used in applications where fast errors are present.

Interestingly, a simulation study revealed that the dramatic
reduction in the uncertainty of parameter estimates relative to
the binary-choice case was equally good for two- and three-
level confidence ratings. A two-level (e.g., higher vs. lower)
rating is easier to elicit both in a manual sense, in that it is
easier to equate response production times across ratings and
so avoid the need to estimate extra parameters, and in terms
of compliance with instructions to utilize all rating levels.
Hence, these results support the wider adoption of a simul-
taneous binary choice and two-level confidence rating pro-
cedure, not only in investigations of inter-accumulator cor-
relation but also potentially in investigations that are more
focused on confidence itself.

Good fits to Ratcliff et al.’s (1994) data previously re-
quired a complex and analytically intractable model (RT-
CON2 Ratcliff & Starns, 2013). Although the fits of our
much simpler and analytically tractable correlated MTLNR
were quite good for most participants, they clearly failed for
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Figure 9. zROC plots for data averaged over participants (lines and open circles) with similarly averaged model fits based on
500 samples from the posterior per participant shown as clouds of small grey points. The left panel show fits for the without
threshold variability and the right panel with threshold variability.

one participant. However, this misfit was largely amelio-
rated by allowing confidence thresholds to vary from trial to
trial. Fortunately, this more flexible model remained analyti-
cally tractable. Overall, our results suggest that a correlated
MTLNR model allowing for both unequal variance between
accumulators and threshold variability has the potential to
provide a comprehensive and practical new approach to in-
vestigations of confidence.

Our results supporting the necessity of correlation to
model Ratcliff et al.’s (1994) data are consistent with those
of Ratcliff & Starns (2013). In order to fit this data, they had
to augment their RTCON model (Ratcliff & Starns, 2009),
which had been successful in fitting a range of other confi-
dence data sets, to allow for competitive interactions during
accumulation. However, on average we found evidence for
positive correlations, which are more consistent with an ex-
citatory interaction rather than the competitive mechanism of
RTCON2. That said, there were considerable individual dif-
ferences, with a few participants estimated to have negative
correlations in all conditions, a few to have mix of positive
and negative and the remainder all positive, including a few
with very strongly positive correlations. Such diversity is
consistent with the LCA, which has been found to display

behavior ranging from competitive to mutually excitatory
depending on individual differences in parameter estimates
(Usher & McClelland, 2001). As discussed earlier, these in-
dividual differences are also consistent with differences in
the balance of the effects of mechanisms that produce either
negative or positive correlations when there is no interaction
during accumulation.

In a recent investigation of a different type of corre-
lation in the inputs to an evidence-accumulation model—
correlations between stimulus dimensions as characterized
the multivariate generalization of signal-detection theory
(GRT Ashby & Townsend, 1986)—Smith (2019) noted the
practical advantages of models with analytic equations in
terms of being able to efficiently fit and evaluate sets can-
didate models, as we have done here. He also noted the
theoretical advantages in the insights into the way a model
works that are often afforded by analytic prediction equa-
tions. We found this was the case with the MTLNR model
without threshold variability, as we were able to show that
its response-probability predictions, while also being con-
strained by RT measurements, match those of the simple uni-
dimensional Gaussian signal-detection theory that has been
widely applied to response-probability data.
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This relationship not only provides insights into the way
the model works, but also shows that its predictions are
quite constrained. Such constraint makes the model highly
testable, and provides a reference for understanding the ef-
fects of additional mechanisms. This reference allowed us to
understand how threshold variability is important in model-
ing non-linear zROCs. We note, however, that further mech-
anisms may be required to accommodate unusual zROC pat-
terns displayed by some participants, such as random re-
sponding as originally suggested by Ratcliff et al. (1994).
Further mechanisms may also be required to accommodate
unusual patterns in the relationship between confidence and
RT. For example, RT decreases as confidence increases for
most participants, but a few participants in Ratcliff & Starns
(2009) had fast low confidence responses. Complex and flex-
ible models such as RTCON are able to accommodate such
exceptions, but at the cost of not making any clear predictions
about the pattern displayed by the majority of participants.

Related to the latter point, a further insight that was af-
forded by analysis of the MTLNR model is in regard to the
effect of correlation on the relationship between RT and con-
fidence. A negative correlation is associated with a strong
inverse relationship between RT and confidence (i.e., RT de-
creases as confidence increases). Indeed, when the correla-
tion is near negative one there is little overlap in RT distri-
butions for adjacent confidence ratings. In practice, overlap
is usually quite marked, so this is likely the reason for an
absence of very strong negative correlation estimates in our
fits. When independence holds, there is still a negative re-
lationship, but as the correlation becomes strongly positive
the relationship disappears entirely. Overall, this pattern is
consistent with the variable but mostly inverse relationship
observed between confidence and RT. Correlation cannot,
however, reverse the relationship between confidence and
RT, suggesting that it cannot explain fast low-confidence re-
sponses, and so an extra mechanism will be required for such
cases. However, this also means that the MTLNR model is
constrained to generally predict an inverse relationship be-
tween confidence and RT.

These considerations also shed light on ROC analyses
based on RT rather than confidence, which suggest that RT
carries information about memory strength in recognition
paradigms (Weidemann & Kahana, 2016). Perhaps surpris-
ingly then, two of the 11 participants we fit had very strong
positive correlations, suggesting that their RT carried little
or no information about memory strength. However, for the
remainder this was not the case, although consistent with
Weidemann & Kahana’s results, the average positive corre-
lations indicate that RT usually carries less information than
confidence ratings. In any case, strong individual differences
in correlation suggest that a model-based approach, such as
the one used here, may be necessary if RT information is to
be useful in augmenting confidence ratings when assessing

the quality of memory on an individual basis. Including rel-
ative threshold variability into the model also weakens the
relationship between decision time and confidence, causing
estimates of correlation to decrease for some subjects.

Although the simplicity of the LNR affords advantages,
it comes with some limitations. Foremost is its inability to
differentiate accumulation rate effects from the effects of the
distance between the start and end points of accumulation.
Although present in the model conceptually, the parameters
governing these different processes interact linearly and so
are not separately identified without imposing further con-
straints. Hence, any attempt to investigate differences in cor-
relations between these processes will require another ap-
proach. One possibility is to specify and estimate the pa-
rameters of structural relationships that imply correlations,
such as those corresponding to criterion referenced inputs
that specify rates, or global fluctuations in rates or thresh-
olds. Identification of the parameters of such mechanisms
will depend on appropriate design constraints in terms of
rate mechanisms that will most likely possible in perceptual-
choice paradigms (i.e., where it is possible to specify the
mapping between objective stimulus values and subjective
magnitudes, see van Ravenzwaaij et al., 2019).

A second approach to this issue is to implement a
multiple-threshold balance-of-evidence mechanism within
the a model such as the LBA that intrinsically provides sep-
arate estimates of rates and other parameters. Reynolds
et al. (submitted) took this approach, which could be ex-
tended from independent to dependent racing accumulators
like those used here. Fortunately, the correlated case of the
LBA-MTR requires only one-dimensional numerical integra-
tion.

Although slow, such integration is usually quite stable,
and so that approach may provide a fruitful avenue for future
research. Another issue likely requiring numerical integra-
tion is variability in non-decision time. If such variability af-
fects both accumulators equally, as seems most likely, it will
make correlation estimates more positive if its effects are not
explicitly modeled, but the degree to which this occurs de-
pends on the magnitude of the non-decision variability rel-
ative to variability in the decision process. When Heathcote
& Hayes (2012) estimated the range of uniform non-decision
time variability for the LBA in a lexical-decision data set it
was a relatively modest 0.1s, suggesting that any positive
inflation of correlation would be modest. We report results
in supplementary materials that support only modest infla-
tion of MTLNR correlation estimates for non-decision mag-
nitudes of a similar size. However, inflation can be larger for
more substantial non-decision time variability. Clearly, more
work is required to investigate this, and other potential influ-
ence on correlation estimates. Although the work presented
represents only a first step in this enterprise, we hope that the
tractable models that we have developed will provide both
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benchmarks and useful tools for future investigations.
In closing, we note that, even without augmentations

such as correlations and threshold variability, it seems likely
that the MTLNR model, and indeed the general multiple-
threshold approach to confidence ratings, has more flexibility
than the balance-of-evidence hypothesis on which it is based.
This occurs through the threshold parameters by which it
produces discrete responses. Pleskac & Busemeyer (2010)
argued that a balance-of-evidence model instantiated with a
counter or accumulator model such as the LBA may not be
able to account for the the effects of speed emphasis, because
a reduction in decision thresholds also reduces the maxi-
mum possible difference in evidence, predicting a reduction
in both overall confidence and the variability of confidence
ratings. Multiple threshold models are not so constrained; if
confidence threshold settings can also be modified by speed
emphasis, which seems quite plausible. In future research,
we plan to investigate this issue by applying the model to
data with both a speed vs. accuracy manipulation like the
first data set we examined here, but also with confidence rat-
ings like the second data set so that model parameters are
estimable.
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