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Abstract: The COVID-19 coronavirus is currently spreading around the globe with limited treat-
ment options available. This article presents the rationale for potentially using old drugs (emetine, 
other ipecac alkaloids or analogues) that have been used to treat amoebiasis in the treatment of 
COVID-19. Emetine had amongst the lowest reported half-maximal effective concentration (EC50) 
from over 290 agents screened for the Middle East respiratory syndrome (MERS) and severe acute 
respiratory syndrome (SARS) coronaviruses. While EC50 concentrations of emetine are achievable 
in the blood, studies show that concentrations of emetine can be almost 300 times higher in the 
lungs. Furthermore, based on the relative EC50s of emetine towards the coronaviruses compared 
with Entamoeba histolytica, emetine could be much more effective as an anti-coronavirus agent than 
it is against amoebiasis. This paper also discusses the known side effects of emetine and related 
compounds, how those side effects can be managed, and the optimal method of administration for 
the potential treatment of COVID-19. Given the serious and immediate threat that the COVID-19 
coronavirus poses, our long history with emetine and the likely ability of emetine to reach thera-
peutic concentrations within the lungs, ipecac, emetine, and other analogues should be considered 
as potential treatment options, especially if in vitro studies confirm viral sensitivity. 
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Emetine is one of the main alkaloids found in ipecacuanha (ipecac) root [1]. Ipecac syrup has 
predominantly been used to induce vomiting in the management of poisoning. Emetine, and perhaps 
ipecac, ipecac alkaloids and their analogues, should be considered as potentially potent and effective 
therapeutic agents against the coronavirus family of viruses and, in particular, the COVID-19 coro-
navirus. As an antiviral, emetine has been shown to have amongst the lowest EC50 value (half-maxi-
mal effective concentration) from over 294 agents screened, with an EC50 of 0.054 and 0.014 μM for 
the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) 
coronaviruses, respectively [2,3]. Outlined here is the rationale for the potential use of emetine or 
similar compounds in the treatment of coronavirus infections and, if confirmed from in vitro sensi-
tivity analyses, COVID-19. 

Emetine, as an isolated alkaloid, was used as an anti-infective agent from 1912 when Vedder [4] 
showed that the drug killed amoebae in vitro. It was one of the most widely used agents, orally or 
intramuscularly, in the treatment of both intestinal and extraintestinal amoebiasis [5–8] until metro-
nidazole became available [5]. Emetine is structurally unrelated to metronidazole. 

In a study looking at the amount of emetine absorbed after a 30 mL oral dose of ipecac (contain-
ing 13.9 mg of emetine) in 10 subjects, the mean plasma concentration between 1 and 3 h post-dosing 
was approximately 6.5 ng/mL (0.0135 μM), which equates to only 0.25 to ~1 times the EC50 for SARS 
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and MERS coronaviruses, with all patients vomiting at the 30 mL dose [9]. While the emetic effects 
of ipecac syrup (30 mL) can be completely eliminated and nausea significantly reduced by the use of 
5-HT3 antagonists, such as ondansetron [10], which may enable higher blood levels to be achieved, 
these results might initially appear uninspiring. However, as coronaviruses are predominantly res-
piratory tract infections, the amount of emetine in the lungs is more important than in the plasma. 
Oral bioavailability studies of ipecac alkaloids in rats have shown that the concentration of radio-
labeled emetine is many times higher in the tissues than in plasma. In relation to the lungs, after 8 
and 24 h, the concentration of emetine in the lungs is ~173 and ~294 times higher than in plasma, 
respectively, with the maximum recorded amount present in the lungs at the 24-h time period. High 
concentrations were also found in many other tissues, such as the liver, heart, and small and large 
intestines [11]. Similarly, studies in humans have strongly indicated that emetine quickly undergoes 
extensive distribution to the tissues [9], with slow excretion and detectable concentrations that may 
persist in the urine for 40–60 days after treatment has been ceased [12]. 

It may therefore be possible that the lung concentrations of emetine after the oral administration 
of ipecac syrup are sufficient for anti-coronavirus activity, especially if other ipecac alkaloids in the 
syrup also have antiviral properties and it is taken with a 5-HT3 antagonist to avoid vomiting. As an 
example, cephaeline (another principal alkaloid of ipecac) has been shown to have low nanomolar 
IC50 (half-maximal inhibitory concentration) values of less than 0.042 μM against the Zika virus [13].  

Unfortunately, emetine absorption from oral ipecac displays considerable inter-patient variation 
[14]. Some patients may not absorb sufficient emetine or alkaloids to be therapeutically effective. In-
tramuscular administration of emetine has a number of advantages over oral dosing. Emetine under-
goes metabolism by the liver [15]. Intramuscular administration would prevent any liver metabolism 
during oral absorption (the “first-pass effect”). Radiolabeled emetine given parenterally, as with oral 
administration, accumulates in the lung [16]. In fact, another advantage of intramuscular over oral 
administration could be its greater uptake by the lungs. With radiolabeled emetine given by the oral 
route in rats, there was, at most time points, significantly (0.8–5.8 times) more emetine found in the 
liver than there was in the lungs [11]. Conversely, with radiolabeled emetine given by the intraperi-
toneal route in guinea pigs, the situation was reversed; at each time point, there was over twice as 
much emetine in the lungs than the liver [16]. It could initially be argued that this reflects interspecies 
variation. The more likely explanation is that with drugs absorbed into the intestinal circulation fol-
lowing oral administration, the first organ the circulation goes to is the liver, in order that foreign 
compounds can be detoxified. This results in a higher initial deposition in the liver, with the propor-
tion in the liver decreasing throughout the day as it redistributes into the systemic circulation. With 
parenteral administration, once a drug enters the circulatory system, the first organ after leaving the 
heart is the lungs, resulting in higher concentrations to potentially counteract the COVID-19 virus. 

Intramuscular administration of emetine can also result in nausea and vomiting [12] which, 
based on studies with ipecac syrup [10], are likely to be negated with the concomitant use of a 5-HT3 
antagonist. It is unlikely that the two agents would be antagonistic to each other with regard to anti-
viral activity, especially as emetine has a high affinity for the 5-HT4 receptor with little activity on 
5-HT3 [17]. However, it should at least be considered that they could interact until in vitro studies 
can confirm otherwise. 

But how can we be sure that effective concentrations are achieved by the intramuscular route? 
Emetine, given intramuscularly, has been established over a long period as the most specific and 
highly potent agent against intestinal and extra-intestinal amoebiasis [18]. The IC50 of emetine against 
Entamoeba histolytica is 26.8 μM [19]; this is approximately 500–1900 times higher than the EC50 for the 
SARS and MERS coronaviruses, implying that emetine is potentially far more potent as an anti-coro-
navirus agent than it is against amoebiasis. These results may cast doubt on the very low EC50 ob-
tained with the SARS and MERS coronaviruses; however, studies by different authors have shown 
that emetine also has potent antiviral activity against the Zika virus (IC50 = 0.00874 μM) [13] and the 
human cytomegalovirus (EC50 = 0.04 μM) [20]. Interestingly, emetine also demonstrated a dose-de-
pendent inhibition of Ebola virus viral-like particle entry into HeLa cells (IC50 = 10.2 μM) [13]. At 0.03 
μM, emetine was able to reduce HIV (wild type and multi-drug resistant M184V) infection by up to 
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80% in peripheral blood mononuclear cells (PBMC) [21]. HIV reverse transcriptase was also reduced 
by approximately 50% at an emetine concentration of 10 μM [21]. In relation to the coronaviruses, 
emetine activity against four strains of coronavirus had EC50 values ranging from 0.12 to 1.43 μM, 
with the MERS coronavirus EC50 being 0.34 μM [22]. While this EC50 for the MERS virus is higher 
than in previous studies [3], it does indicate that emetine is highly active against multiple corona-
viruses. It has also been demonstrated that emetine can reduce viral entry into DPP4-expressing Huh-
7.5 cells by a factor of 50-fold compared with that of the control, with an EC50 value of 0.16 μM [22]. 

The main therapeutic issue with emetine use is perhaps its potential for cardiac toxicity. This 
was especially prevalent in India, where it was estimated that 10%-40% of the population had suf-
fered from amoebiasis, resulting in the use of emetine being “widespread and lavish” [18]. Emetine 
use was associated with changes in the electrocardiogram (ECG) —in particular, prolongation of the 
QT interval, elevation of the ST segment and inversion of the T wave [18]. A review in 1980 of the 
cardiac toxicity found that at therapeutic doses (1 mg/kg intramuscularly, maximum 60 mg, per day 
for 10 days or less [5]) non-permanent cardiovascular side effects occurred. This frequently included 
ECG changes and moderate hypotension [5] and occasionally tachycardia and precordial pain. These 
changes occurred during treatment or after completion of treatment and often lasted for a period of 
time. The patient usually recovered without any sustained change in cardiovascular function [5]. 
Similarly, chronic ingestion of ipecac syrup over many months by sufferers of bulimia nervosa has 
been associated with cardiac fractional shortening due to cardiomyopathy, but this has been known 
to revert to normal after the ipecac was ceased [23]. While rare, deaths from ipecac syrup overuse 
have been reported [24].  

Considering the substantially higher potency that emetine appears to have against the corona-
virus, doses of one fifth to one tenth of the doses used for the treatment of amoebiasis (0.1–0.2 mg/kg, 
intramuscularly; maximum 6-12 mg/day) could potentially be used. These lower doses are likely to 
minimise or eliminate any significant cardiac toxicity and nausea while maintaining antiviral effec-
tiveness. It should also be noted that the intravenous route was considered too toxic and offered no 
therapeutic advantages [6], and appropriate pharmaceutical references such as those listed [6,12] 
should be consulted before clinical use in patients. For the formulation and testing of an emetine 
injection, both the United States Pharmacopoeia and the British Pharmacopoeia (BP) have listed Em-
etine Injections [12], with emetine only being omitted from the BP 2013 edition onwards [25], and still 
available as a reference standard from the US Pharmacopoeia website [26]. 

If it was used in patients, it is beyond the scope of this article to suggest at which stage in the 
disease process an agent such as emetine should be used to treat coronavirus infection. Too early and 
prolific use could promote resistance. If therapy is left too late when acute respiratory distress [27] 
has developed, it may limit the effectiveness of the drug. 

A related compound to emetine that should be tested in vitro for coronavirus sensitivity is de-
hydroemetine, which was developed in response to the cardiovascular toxicity associated with eme-
tine. Dehydroemetine is structurally similar to emetine but is recognised as having a lower cardio-
vascular risk profile then emetine [18] and has been used as a replacement for many years. Dehy-
droemetine is eliminated from tissues more quickly [16], which may explain its lower toxicity. How-
ever, at present, there are little sensitivity data for the use of dehydroemetine as an antiviral agent. 

Under normal situations, it would be unexpected that an antibacterial compound would also be 
an antiviral compound. More unlikely, that the same mode of action would account for both antibac-
terial and antiviral activities. As emetine affects ribosomal protein synthesis in yeast and has been 
shown to inhibit viral-RNA synthesis [28], there may be some overlap between its antibacterial and 
antiviral modes of action. If this is the case, the significant structural activity relationships gained 
from the emetine analogues [28] could be applied to the development of new antiviral agents. 

Emetine was selected from a list of drugs that had been tested in vitro for their antiviral activity 
against coronaviruses [2]; see Table 1. For each drug, a mid-range achievable blood level was obtained 
from the literature. This blood level was, in part, arbitrary as blood levels are mostly determined by 
the dose, which can vary considerably based on the condition being treated; there is also limited 
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availability of studies measuring blood concentrations in patients. The ratio of the blood concentra-
tion/IC50 was used to initially rank a drug’s potential clinical significance as an antiviral agent against 
coronaviruses. Drugs that had higher ratios were deemed to be more clinically important, as it signi-
fied that therapeutic antiviral concentrations were more likely to be achievable at normal dosing. This 
system, by itself, proved inadequate, especially in the case of emetine. First, blood levels varied be-
tween studies. One study reported the range [14] of levels achieved, while another recorded the mean 
[9], with the midpoint of the range and the mean being very different. This initially indicated that 
emetine could be very useful, with a blood concentration/IC50 ratio of approximately 8 (see Table 1). 
When a more realistic blood concentration using the mean was found, the ratio was less than 2. Sec-
ond, the blood levels do not take into consideration the tissue distribution of the drug. Basic pharma-
cokinetic parameters of each drug, such as the volume of distribution as an indicator of tissue uptake, 
should have been used to identify drugs that could potentially exhibit favourable tissue distribution. 
However, the volume of distribution data alone is not sufficient to determine specific tissue accumu-
lation. A high volume of distribution indicates that the drug is removed from the plasma and goes 
into the tissues, but which tissues? Lipophilic drugs, with a high volume of distribution, are of little 
use if the drug partitions solely into adipose tissue. Similarly, a high distribution into the bones, as 
for bisphosphonates [29], would also be of little use in this scenario. Emetine has good radiolabeled 
studies [11,16] that clearly showed that not only was the bulk of the emetine distributed in the tissues, 
but also a significant portion went to the lungs. 

Regardless, Table 1 is still able to highlight some drugs that may be of use. This would include 
agents such as lopinavir, hydroxychloroquine and mycophenolate with or without interferon beta-
1b. In the case of mycophenolate with interferon beta-1b, it appears to have been therapeutically ef-
fective in treating patients with MERS [30]. Given the blood concentration/IC50 ratio of ~30, calculated 
on trough levels for mycophenolate with interferon beta-1b, sub-therapeutic immunosuppressive 
doses may still have antiviral efficacy, especially if used in combination with other drugs such as 
hydroxychloroquine or lopinavir. From animal studies, interferon beta-1b appears to exhibit antiviral 
activity against the coronavirus on its own [31]. 

From Table 2, adapted from Salata 2017 [32], it can be seen that commercially available cationic 
amphiphilic drugs screened for their antiviral activity often exhibit antiviral activity against different 
types or families of viruses, with similar IC50/EC50. It is possible that a number of agents from this list 
could also be active against the COVID-19 virus.  

At present, emetine has advantages which, when considered together, make it an attractive can-
didate: it significantly inhibits two coronaviruses in the low nano-molar range; it potentially achieves 
satisfactory plasma levels when administered orally; and it produces substantially higher concentra-
tions in affected tissues (the lungs) that are known to effectively treat Entamoeba histolytica infections, 
which have inhibitory concentrations hundreds of times higher than at least two coronaviruses. Em-
etine also has a long and broad history of use, and its side effects are well known and are manageable. 

Given the serious and immediate threat that the COVID-19 virus poses, our long if not partially 
forgotten history with emetine and dehydroemetine, and the likely ability of emetine to reach thera-
peutic concentrations within the lungs, ipecac, emetine, and other analogues should be considered as 
potential treatment options, especially if in vitro studies confirm that the COVID-19 virus is sensitive 
to these agents. 
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Table 1. Inhibitory activities of the reported MERS-CoV replication inhibitors available in the FDA-
approved drug register (adapted from Liu 2015 [2]) with approximate therapeutic blood concentra-
tions and corresponding ratio of blood concentration and IC50. 

 
IC50 µM 

(a) 
MW 

g/mole 

Blood 
[Conc. 

µM] (b) 

Ratio: 
(Blood 
[Conc 

µM])/IC50 

Blood 
[Conc.] 

Ref. 
Additional Notes 

Lopinavir 17 628.81 11.45 0.67 [33] Cmin 7.2 mg/L, 400mg twice 
daily 

Loperamide 5.9 477 0.001 <0.005 [34] ~0.5ng/mL after 4mg dose 
Chloroquine 5.2 319.9 1.56 0.30 [35] ~0.5mg/L dose, 450 mg/day 

Hydroxychloro-
quine 8.28 335.9 3.72 0.45 [36] 

range of 500–2000 ng/mL, dose 
maximum of 200–400mg/day de-

pending on renal function 

Amodiaquine 6.21 355.86 0.76 0.12 [37] 

~270ng/mL, 10 mg/kg single 
dose; Is rapidly metabolised to 
desethylamodiaquine – blood 

level is for metabolite (assumed 
to be as active as parent) 

Chlorpromazine 9.15 318.86 0.52 0.06 [38] 
Reference range: 30–300 ng/mL 
Large volume of distribution 

[38] 

Promethazine 11.8 284.4 0.02 <0.005 [39] 

~5ng/mL peak, 25mg oral single 
dose 

Large volume of distribution 
[39] 

Fluphenazine 5.86 437.52 0.01 <0.005 [38] 
Reference range: 1–10 ng/mL 
Large volume of distribution 

[38] 
Thiothixene 9.3 443.6 0.05 <0.005 [40] 3–45 ng/mL, 20mg dose 

Astemizole 4.88 458.57 0.17 0.04 [41] 

~70 μg/L peak, 300mg single 
oral dose. Blood level was aste-
mizole + hydroxylated (active) 
metabolites. Large volume of 

distribution. 

Triflupromazine 5.76 352.418    Insufficient data to make assess-
ment 

Clomipramine 9.33 314.9 1.05 0.11 [38] 
Reference range: 230–450 ng/mL 

Large volume of distribution 
[38] 

Emetine 0.01 480.64 0.08 8.32 [14] 

5 to 73 ng/mL, 11.4 mg oral dose. 
The blood concentration used 
was the midpoint in subjects 

with detectable levels of emetine 
Tamoxifen 10.12 371.5 0.32 0.03 [42] 120 ng/mL, 20 mg daily 

Cycloheximide 0.19     Too toxic [43] 
Dasatinib 5.47 488.01 0.003 <0.005 [44] Cmin to <3 nmol/l 

Ribavirin (c) 40.9 244.2 8.19 0.20 [45] 
<30% of patients obtained this 
concentration 2 mg/l after 24 

weeks [45] 
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Mycophenolic acid 
(c) (d) 0.53 320.34 6.24 11.78 [46] 

The blood concentrations are the 
troughs; the peaks are substan-
tially higher. Calculated on a 

trough of 2 μg/mL 
Mycophenolic acid 
+ 12.5 IU/mL inter-
feron beta-1b (d) 

(e) 

0.187 320.34 6.24 33.39 [46,47] 

The blood concentrations are the 
troughs; the peaks are substan-
tially higher. Calculated on a 

trough of 2 μg/mL 
Notes: Data from Liu 2015 [2] unless otherwise stated. (b) Blood levels cannot be exact and will vary 
depending on dose, condition being treated and available studies. (c) Value calculated from Chan 
2013 [48] (d) Mycophenolic acid is the active metabolite of mycophenolate. Mycophenolate with in-
terferon beta-1b appears to have been therapeutically effective in treating patients with MERS [30]. 

Table 2. Antiviral efficacy of selected cationic amphiphilic drugs, adapted from Salata 2017 [32] 

Drug Antiviral efficacy 

Amiodarone 
Filovirus—IC50 0.25–1.38 μg/mL 

Ebola virus—IC50 5.60 μM 
HCV—EC50 2.10 μM 

Bepridil Ebola virus—IC50 3.21–5.08 μM 

Chloroquine  
And  

Hydroxychloroquine 

CCHFV—IC50 28.00–43.00 μM 
Filovirus—EC50 4.70–15.00 μM 
HCoV-OC43—EC50 0.306 μM 

KSHV—IC50 3.30–5.10 μM 
MERS-CoV—EC50 3.00–6.28 μM 
SARS-CoV—EC50 6.54–8.80 μM 

Dengue virus type 2—EC50 9.70–12.90 μM 
KSHV—IC50 1.30 μM 

Quinacrine 
Dengue virus type 2—EC50 7.09 μM 

Zika virus—EC50 2.27 μM 

Mefloquine 
Dengue virus type 2 – EC50 4.36 μM 

Zika virus—EC50 3.95 μM 

Chlorpromazine 
CCHFV—IC50 10.80–15.70 μM 

MERS-CoV—EC50 4.90–9.51 μM 
SARS-CoV—EC50 12.97 μM 

Promethazine Filovirus—IC50 19.10–19.40 μM 

Sertraline Ebola virus—IC50 1.44–3.13 μM 

Trimipramine Filovirus—IC50 10.90–11.10 μM 

Clomiphene 
Filovirus—IC50 0.76–11.10 μM 

HCV—EC50 

Tamoxifen 

HCV—EC50 0.10 μM 
HSV—IC50 4.89 μM 

MERS-CoV—EC50 10.12 μM 
SARS-CoV—EC50 92.89 μM 

Toremifene 
Filovirus—IC50 0.03–6.17 μM 
MERS-CoV—EC50 12.92 μM 
SARS-CoV—EC50 11.97 μM 

Sunitinib HCV—IC50 0.05 μM 

Terconazole Ebola virus—IC50 7.07–8.26 μM 

Triparanol Ebola virus—IC50 1.92 μM 
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