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Abstract

There has been strong interest in the role of metals in neurodegeneration, and how ageing

may predispose the brain to related diseases such as Alzheimer’s disease. Recent work

has also highlighted a potential interaction between different metal species and various

components of the cytoskeletal network in the brain, which themselves have a reported role

in age-related degenerative disease and other neurological disorders. Neurofilaments are

one such class of intermediate filament protein that have a demonstrated capacity to bind

and utilise cation species. In this study, we investigated the consequences of altering the

neurofilamentous network on metal ion homeostasis by examining neurofilament light (NFL)

gene knockout mice, relative to wildtype control animals, at adulthood (5 months of age) and

advanced age (22 months). Inductively coupled plasma mass spectroscopy demonstrated

that the concentrations of iron (Fe), copper (Cu) and zinc (Zn) varied across brain regions

and peripheral nerve samples. Zn and Fe showed statistically significant interactions

between genotype and age, as well as between genotype and region, and Cu demonstrated

a genotype and region interaction. The most substantial difference between genotypes was

found in Fe in the older animals, where, across many regions examined, there was elevated

Fe in the NFL knockout mice. This data indicates a potential relationship between the neuro-

filamentous cytoskeleton and the processing and/or storage of Fe through ageing.

Introduction

Divalent cation metal species such as zinc, iron and copper have important normal cellular

functions in the nervous system, but may also be involved in pathological processes underlying

neurodegenerative diseases such as Parkinson’s disease (PD), amyotrophic lateral sclerosis

(ALS) and Alzheimer’s disease (AD) [1–3]. Indeed, metal ions have been implicated in many

aspects of the AD cascade [4], including a potentially central role in the aggregation of the two

primary pathological hallmarks of AD, the beta amyloid plaques and neurofibrillary tangles

[5]. In this regard, major proteins implicated in neurodegenerative diseases such as the amy-

loid precursor protein (APP), tau and alpha-synuclein and tau have been shown to be involved
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in metal ion processing and transport [6–8]. Furthermore, metal ions may promote aggrega-

tion of these proteins, contributing to hallmark pathological features [9].

A range of brain proteins have the capacity to bind metal species, with major cell groups,

such as neurons, microglia and astrocytes likely having a spectrum of roles in terms of the stor-

age, metabolism and use of metals. Neurofilaments (NF) are major neuronal proteins and have

putative roles in stabilising axons and regulating axonal diameter [10]. Particular subsets of

neurons demonstrate high levels of the NF ‘triplet’ proteins (NF light (NFL), medium (NFM)

and heavy (NFH) see [10] for review on subunit structure and function), and these correspond

to subpopulations of neurons that are vulnerable to degeneration in AD (cortical pyramidal

neurons), PD (substantia nigra compacta) and ALS (cortical, brainstem and spinal motor neu-

rons) [11–13]. The NFM and NFH subunits have long tail domains that project from the inter-

mediate filament backbone, and which contain glutamate-rich, negatively charged subregions.

In this regard, these protein regions may bind to cations, with accessibility regulated by phos-

phorylation of the tail domains [14].

Neurofilament accumulation in abnormal (dystrophic) neurites associated with beta amy-

loid plaques in the cortex is one of the earliest neuronal changes in the sequence of pathologi-

cal changes leading to AD [13]. The NFL protein is a requisite component for the NF triplet to

form intermediate filaments in neurons. We have also recently demonstrated that the ablation

of NFL in a transgenic mouse model of AD (APPswe/PS1dE9) results in increased beta amy-

loid plaque deposition [15]. These data suggest that the absence of NFs may have an early role

in amyloid misprocessing. Furthermore, substantia nigra neurons in PD also lose NF content

[11], which is associated with the accumulation of iron in these nerve cells [1]. Collectively,

these data suggest that NF triplet-abundant neurons may show changes in these cytoskeletal

proteins as part of the disease process of major neurodegenerative changes, and that such

changes contribute to subsequent pathological alterations potentially with respect to a role in

metal biology within neurons. The following study explores the potential consequences of a

major perturbation of NFs with metal ions, on the background of ageing. We have utilised

mass spectrometry techniques to compare the abundance of metal species implicated in major

neurodegenerative diseases, such as iron (Fe), copper (Cu) and zinc (Zn), in the brains and

peripheral nerves of NFL KO mice as compared to C57BL/6 mice at adulthood (5 months of

age) and following ageing (22 months of age).

Materials and methods

Animals and tissue processing

All animal experimentation was approved by the University of Tasmania Animal Ethics Com-

mittee (Approval Nos A12780 and A15120), in accordance with the Australian code of practice

for the care and use of animals for scientific purposes. NFL KO mice were obtained from the

Nathan Kline Institute (Dr. Mala Rao) and were developed in the laboratory of Dr. Jean-Pierre

Julien [16]. NFL KO mice were maintained as a homozygous knockout colony. NFL KO mice

(on a C57BL/6 background strain) were compared with wild-type (WT) (C57BL/6) mice, the

predominant background strain of the mice [16,17]. Animals were housed in standard condi-

tions (20˚C, 12/12 hours light/dark cycle), with at least 2 animals in each cage with access to

food and water ad libitum. Cohort sizes were as follows, 5 months (n = 11 NFL-KO, n = 7 WT)

and 22 months (n = 6 NFL-KO, n = 7 WT).

Tissue collection and processing

Animals were anaesthetised with 140mg/Kg sodium pentobarbitone (intraperitoneal) and

perfused transcardially with phosphate buffered saline for 3 mins to clear blood from the
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vasculature. Tissue was dissected under microscopic guidance. Briefly, cortical tissue, hippo-

campus, olfactory bulb and cerebellum were collected from each hemisphere and the right

hemisphere used in analysis; brain stem tissue was collected and left and right sciatic nerves

were pooled for analysis. Upon collection, tissue was rapidly snap frozen in liquid nitrogen

and stored at -80˚C until used. Tissue was freeze dried in 96 well plates for 48hrs at -80˚C.

Dried tissue was kept at room temperature until used.

Inductively coupled plasma mass spectroscopy (ICPMS) analysis

Tissue samples were coded and processed for inductively coupled mass spectroscopy analysis

at the Florey Institute of Neuroscience and Mental Health. Tissue samples were lyophilised

and then digested with nitric acid (65% Suprapur, Merck) overnight, followed by heating at

90˚C for 20 min using a heat block. Samples were then removed from the heat block and an

equivalent volume of hydrogen peroxide (30% Aristar, BDH) added to each sample. Once

samples had finished digesting, they were heated for a further 15 mins at 70˚C. Samples were

then diluted with 1% nitric acid diluent. Measurements were made using an Agilent 7700

series ICPMS instrument under routine multi-element operating conditions using a Helium

Reaction Gas Cell. The instrument was calibrated using 0, 5, 10, 50, 100 and 500 ppb of certi-

fied multi-element ICPMS standard calibration solutions (ICP-MS-CAL2-1, ICP-MS-CAL-3

and ICP-MS-CAL-4, Accustandard) for a range of elements, and we also utilised a certified

internal standard solution containing 200 ppb of Yttrium (Y89) as a control (ICP-MS-IS-

MIX1-1, Accustandard).

Statistical analysis

Mixed effects models were fitted using the lme4 package in R. Random intercepts for each sub-

ject were specified in order to account for non-independence between brain regions within

animals. Model assumptions were checked using standard graphical techniques, and a loge-
transformation applied to Zn and Fe variables to improve normality of residuals and homoge-

neity of error variance. One substantial outlier was removed from Cu. Type III F statistics

and 95% Confidence Intervals for the estimated marginal means were computed using the

Kenward-Roger approximation for degrees of freedom. A measure of standardized effect

size, Cohen’s f2 was calculated for the effect of genotype for each metal using the formula,

f 2 ¼
R2
AB� R

2
A

1� R2
AB

where R2
AB is the coefficient of determination for the full model, and R2

A is the coeffi-

cient of determination for a reduced model that does not contain the term of interest. The

method of Nakagawa and Schielzeth [18] for computing a marginal pseudo-R2 for mixed mod-

els was used to calculate R2 coefficients.

Results and discussion

Broadly, Fe content was increased in NFL KO and WT mice with ageing across most nervous

system samples, with the exception of the olfactory bulb. In this regard, there was a more sub-

stantial ageing-related increase in Fe content in NFL KO mice relative WT animals, particu-

larly in the cerebellum, cortex, hippocampus and sciatic nerve (Fig 1). For many CNS regions,

there was higher content of Zn in older NFL KO mice relative to WT mice. In addition, the sci-

atic nerve of NFL KO mice showed higher levels of Zn that WT mice at both 5 and 22 months

of age. No consistent pattern of difference between NFL KO and WT mice was observed for

Cu.

Genotype x age (Fig 1) and genotype x region (Fig 2) interactions were investigated for

each metal cation in a model which accounted for region x age interactions and intra-class
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Fig 1. Metal composition at different ages. Fe, Zn, and Cu in sampled brain regions at 5mo and 22mo, for WT and

NFL-KO mice. Error-bars show estimated marginal means (over all regions) and 95% CI, showing the strength and

direction of these patterns of metal accumulation. There were significant genotype x age interactions for Zn and Fe

(Zn: F(1, 27) = 9, p = .005; Fe: F(1, 27) = 11, p = .002).

https://doi.org/10.1371/journal.pone.0224169.g001
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Fig 2. Metal variability in different brain regions. Estimated marginal means (and 95% CI) show patterns of Fe, Zn,

and Cu composition in different brain regions for the two genotypes (WT and NFL-KO; averaged over 5mo and 22mo

animals). There were significant genotype x region interactions for Zn, Fe and Cu (Zn: F(5, 140) = 8, p< .001; Fe:

F(5, 140) = 3, p = .021; F(5, 139) = 4, p = .002).

https://doi.org/10.1371/journal.pone.0224169.g002
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correlation within region for each animal. For Zn and Fe, there were significant genotype x

age interactions (Zn: F(1, 27) = 9, p = .005; Fe: F(1, 27) = 11, p = .002) and genotype x region

interactions (Zn: F(5, 140) = 8, p< .001; Fe: F(5, 140) = 3, p = .021). For Cu, only the genotype x

region interaction was significant (F(5, 139) = 4, p = .002).

The standardized effect of genotype on Cu accumulation in tissues was small (f 2
Cu ¼ 0:09),

however the standardized effect of genotype on Zn and Fe accumulation in tissues was moder-

ate (f 2
logðZnÞ ¼ 0:27; f 2

logðFeÞ ¼ 0:25).

The current study shows that there were differences in Cu, Zn and Fe concentrations across

regions of the nervous system. For example, Fe was relatively abundant in the brain stem, with

lower levels in the olfactory bulb. The olfactory bulb also showed relatively lower levels of both

Zn and Cu. The sciatic nerve demonstrated very low levels of Cu, relative to Fe and Zn.

One of the most prominent differences between NFL KO and WT mice was found for Fe,

especially for older animals. Moderate genotype differences were also detected for Zn, with the

most pronounced difference was present for sciatic nerve. In many regions, Zn abundance did

not decrease in the NFL KO mice over ageing relative to the WT mice. Consistent patterns of

genotype difference for Cu were not observed.

These studies were motivated by our previous observations that APPswe/PS1dE9 mice on a

NFL KO background demonstrated higher amyloid plaque deposition [15]. In this regard, we

were interested in potential differences in brain content of Fe, Zn and Cu, metals implicated in

beta amyloid processing and aggregation into plaques, that may be related to the absence of

NFL and a complete neurofilamentous network [16,17]. The relatively increased levels of Fe

across most brain regions of aged NFL KO mice, as well as relatively maintained levels of Zn,

may be particularly significant in the context of contributing to an environment that drives

Alzheimer’s disease pathology. We have previously shown that there are substantial changes in

NF localisation in the hippocampus during ageing, that abnormal accumulation of NFs in dys-

trophic neurites surrounding plaques is the earliest neuronal pathology of AD and that tau

pathology replaces the normal NF network in neurofibrillary tangles and dystrophic neurites

[13]. Changes to the integrity of neurofilamentous networks during ageing could possibly also

follow decades of wear and tear on axons, and may possibly result in increased levels of Fe in

the extracellular environment, which then impact on multiple aspects of AD pathogenesis. The

translation of APP, which is the parent protein to the Abeta of extracellular plaques in the AD

brain, is regulated by an iron response element in the APP mRNA [19,20] and the secretase

cleavage of APP to form Abeta is also regulated by iron. Furthermore, the aggregation and

oligomerization of Abeta is potentiated by iron, which is also likely to contribute to Abeta-

mediated oxidative damage [21–26]. Similarly, iron can induce the aggregation of tau [27] and

the association of redox active iron with tau and neurofibrillary tangles may contribute to oxi-

dative stress [28]. In addition, a loss of NFs in substantia nigra neurons in the early stages of

PD [11] may also be linked to the accumulation of Fe in these cells [1].

The current data supports the existence of a relationship between NF protein levels and

metal ions in the brain, potentially relating to the regulation and/or storage of metals. Cations

may also have direct roles in the organisation of neurofilamentous networks. Iron deficiency,

for example, can impact neurofilament phosphorylation during development [29]. Copper and

iron may also have a role in catechol-mediated cross-linking of neurofilament proteins [30],

and copper and zinc have the capacity to directly bind to the NFH subunit [31]. Divalent ions

such as Ca, Mg and Zn have been shown to act as cross-linkers between NFs, influencing the

gelation and viscoelastic properties of neurofilamentous networks [32,33]. Finally, atomic force

microscopy experiments support the cross-linking role of divalent cations, particularly in mod-

erating the spacing and mechanical properties of phosphorylated NF side-arm structures [34].

Metals and neurofilaments
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Conclusions

Cumulatively, these data show that the absence of NF-L, and a neurofilamentous network per-

turbs the processing and/or storage of Fe through ageing, leading to higher levels of this metal

in the brain and sciatic nerve. Biomarker studies indicate a progressive perturbation of NFs

with ageing and neuroaxonal degeneration involving these proteins across a wide range of

neurodegenerative conditions [35]. Hence, alterations in neurofilaments during brain ageing

may, thus, create an intracellular or extracellular environment of excess Fe, which could con-

tribute to risk of either neuronal degeneration or protein accumulation in neurodegenerative

conditions such as Alzheimer’s and/or Parkinson’s disease.
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