
On the decision support model for the patient admission
scheduling problem with random arrivals and departures:

A solution approach.

Aregawi K. Abera ∗ † Ma lgorzata M. O’Reilly ‡ † Mark Fackrell § †

Barbara R. Holland ¶ Mojtaba Heydar ‖ †

May 31, 2019

Abstract

The focus of this work is the numerical application of a stochastic decision support model for
the patient admission scheduling problem with random arrivals and departures. Here, we discuss
the methodology for applying our model to real-world problems. We outline a solution approach
for efficient computation, provide a numerical analysis of the model, and illustrate the methodology
with examples.

A key component of the model is an integer linear program which formulates the patient ad-
mission scheduling problem as an optimisation of the total expected cost accumulated over a finite
planning horizon. We rewrite some of the components of this integer linear program in order to
improve numerical efficiency. We use discrete phase-type distributions to model the random arrivals
and departures. We argue that this stochastic component is essential for an accurate treatment of
real-world problems which are stochastic in nature. We support our claim with simple numerical
examples, show that the optimal solutions obtained from deterministic models are inadequate when
compared with the solutions of our stochastic model. We also construct more complex numerical
examples for large-scale problems using heuristics that approximate the objective function, in order
to demonstrate that our model can be efficiently applied in real-world problems, which typically
involve large sets of data.

Keywords: patient admission scheduling, stochastic programming, integer programming, phase-
type distribution.

1 Introduction

In the patient admission scheduling (PAS) problem, patients arriving to the hospital system need to be
allocated to rooms in relevant wards in an optimal manner, so as to minimise the total cost accumulated
over some planning horizon, subject to the availability of resources as well as the needs of the patients.
Since the arrivals of the patients to the system, their departures, their needs and preferences, as well as
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the availability of resources are all random, suitable stochastic decision support tools are required that
could be used by the managers in their decision making and planning. The key goal is to improve the
outcomes for the patients, as well as to reduce the costs, and improve the overall efficiency of the system,
which consists of a number of interconnected smaller parts which can affect the flow of one another.

Bilgin et al. [2] solved the PAS problem in a static context by assigning a fixed number of patients
with a fixed length of stay as well to a given set of beds. To solve the problem they used a hyper-heuristic
approach, and concluded that it is not possible to see an improvement in the patient to bed allocation
by considering the PAS problem in a static context. Vancroonenburg et al. [8] developed a model using
ILP to solve the PAS problem. The delay and overcrowding costs were not considered in the objective
function. They used a sensitivity analysis based on the bed occupancy and length of stay to evaluate the
performance of the model. They concluded that the model which considered more information of the
real-world scenario gives a better solution. Ceschia and Schaerf [3] used a meta-heuristic approach with
a local search method, whereas Lusby et al. [6] used a simulated annealing technique with an adoptive
large neighbourhood search to solve the PAS problem. Ceschia and Schaerf [3] developed a model which
included patient to room assignment cost, gender violation cost, overcrowding cost, and delay cost, but
excluding a transfer cost. Following to Ceschia and Schaerf [3], Lusby et al. [6] developed a model with
five cost components including transfer. Both Ceschia and Schaerf [3] and Lusby et al. [6] were able to
obtain solutions for large sized data instances. The Lusby et al. [6] model contained more information
with regard to the full mathematical formulation of the PAS problem. Considering the dynamic nature
of the problem, their model still did not capture the possibility of early departures due to death or
getting better treatment before the departure date since they used a fixed value for the length of stay.

Abera et al. [1] proposed a stochastic model for the PAS problem, where they assumed that arrivals
and departures are random, and suggested an integer linear program (ILP) formulation with stochastic
parameters and a stochastic cost function. The model built upon earlier work by Lusby et al. [6],
in which the objective function is a deterministic total cost and the length of stay of each patient is
constant. In order to handle the random nature of the process, they considered the PAS problem in
a dynamic context, in which the current information about the patients and the system is updated
regularly, and then the problem was solved using a deterministic model. Abera et al. [1] also assumed
a dynamic context, but with the addition of stochastic parameters to capture the random behaviour of
system more closely.

In this paper, we explore the numerical application of the proposed model by Abera et al. [1]. The
rest of the paper is structured as follows. In Section 2, we describe the model proposed in Abera
et al. [1]. In Section 3 we discuss techniques for an efficient application of the model for large-scale
problems, which need to be handled in real-world hospital systems. In Section 4 we construct numerical
examples to demonstrate that our stochastic model performs better than Lusby et al. [6] deterministic
model. We also show that our model can be applied efficiently for large-scale problems. We conclude
with section 5 where we also provide some directions for future research.

2 The Model

We now describe the model in Abera et al. [1].

2.1 Parameters and variables

Let P = {1, . . . , P} be the set of patients, R = {1, . . . , R} be the set of rooms, and suppose that each
patient p ∈ P needs to be assigned to some room r ∈ R on some day d ∈ D, over the planning horizon
D = {1, 2, . . . , D}. For each patient, we have information about their age, gender, required treatment,
and room preference. The goal is to find an assignment σ that is optimal.
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The capacity κr of room r is the total number of beds in room r. Let κ̂r be the maximum allowed
total number of patients in room r, after taking into account an overstay risk. We denote by dplanp the
pre-determined admission date of patient p, and by dregp their registration date, which is the date at
which they become known to the system. Patients are classified into three groups, admitted patients,
planned patients, and emergency patients. For emergency patients we have dplanp = dregp . Let dp ∈ Dp
be the admission day of patient p, where Dp = {dplanp , · · · , dmaxp } where dmaxp ≤ D is the maximum
acceptable day for patient p to be admitted to the hospital. The length of stay of patient p is the
random variable Lp, which records the number of days patient p will stay in the hospital until they get
discharged. We assume that Lp takes values `p = 0, 1, . . . , `maxp , for some `maxp > 0. A hospital consists of
different wards Wi, i = 1, . . . ,W . Wards support specialisms Su, u = 1, . . . , S. Specialisms correspond
to treating some kind of pathology such as cardiovascular disease, oncology, or dermatology. Ward Wi

accepts patients between some minimum age a(Wi) and maximum age A(Wi). LetM⊂ P be the set of
all male patients, and F ⊂ P be the set of all female patients. Each room has a specified gender policy,
male only M , female only F , the gender of the first patient SG (same-gender policy), or all genders
are allowed N . We denote by RM ,RF ,RSG,RN ⊂ R the sets of all rooms with policies M,F, SG,N ,
respectively.

An assignment σ of patients to rooms is a collection of decisions xp,r,d(σ) and yp,d(σ),

xp,r,d(σ) = 1{patient p is assigned to room r on day d} (1)

yp,d(σ) = 1{patient p is admitted on day d}, (2)

where 1{·} is an indicator function which takes the value 1 if the statement is true, and 0 otherwise. To
model the violation of a gender policy in room r on day d, we use variables

mr,d(σ) = 1{there is at least one male patient in room r on day d}, (3)

fr,d(σ) = 1{there is at least one female patient in room r on day d}, (4)

br,d(σ) = 1{both genders are present in room r on day d}, (5)

To model the room features needed by a patient p, we define

NRFj(p, r)(σ) = 1{feature j needed by patient p is provided in room r}, (6)

PRFj(p, r)(σ) = 1{feature j prefered by patient p is provided in room r}, (7)

To model the transfer of patient p from room r to another room r∗ on day d, we use the variable

tp,r,r∗,d(σ) = 1{xp,r,d−1(σ) = 1, xp,r∗,d(σ) = 1, r∗ 6= r}. (8)

To model the gender conflict in room r on day d we use the variable

br,d(σ) = 1{Qr,d(σ)}. (9)

where Qr,d(σ) is the event that a gender conflict is observed in room r on day d, given assignment σ.
From Abera et al. [1], we have E(br,d(σ)) = Pr(Qr,d(σ)), and

1− Pr(Qr,d(σ)) =
∏
Mr,d

xp,r,d(σ)Pr(Lp < d− dp(σ)) +
∏
Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ))

−
∏

Mr,d∪Fr,d

xp,r,d(σ)Pr(Lp < d− dp(σ)), (10)

where Mr,d = {p ∈M : xp,r,d(σ) = 1} and Fr,d = {p ∈ F : xp,r,d(σ) = 1} is the set of males and the set
of females assigned to room r on day d, respectively.
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Let Yr,d(σ) be a random variable recording the number of patients in room r on day d, given as-
signment σ. Then (E(Yr,d(σ)) − κr) is the expected excess in room r on day d. Then from Abera et
al. [1],

E(Yr,d(σ)) =
∑
p∈P

xp,r,d(σ)Pr(Lp ≥ d− dp(σ)). (11)

To model the cost of assignment σ, we use the following parameters: the cost cp,r,d of assigning

patient p to room r on day d, the cost c
(T )
p,r,r∗,d of transferring patient p from room r to room r∗ on day

d, the penalty c
(G)
r,d incurred for violating the gender policy in room r on day d, the penalty c

(O)
r,d incurred

when the capacity κr of room r is exceeded on day d, and the penalty c
(De)
p,d incurred for delaying the

admission of patient p on day d.

2.2 Stochastic ILP

In order to solve the PAS problem, Abera et al [1] formulated the following stochastic ILP

min
σ

{ ∑
p∈P

∑
d∈D

∑
r∈R

cp,r × xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑
p∈P

∑
d∈D

∑
r∈R

∑
r∗∈R

c
(T )
p,r,r∗ × tp,r,r∗,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑
d∈D

∑
r∈R

c
(G)
r,d × Pr(Qr,d(σ)) +

∑
d∈D

∑
r∈R

c
(O)
r,d ×

(
max{0, E(Yr,d(σ))− κr}

κ̂r − κr

)

+
∑
p∈P

c
(De)
p,d ×

∑
d∈D

(
d− dplanp

dmaxp − dplanp

)
× yp,d(σ)

}
(12)

subject to ∑
p∈P

xp,r,d(σ) ≤ κ̂r, ∀r ∈ R, ∀d ∈ D (13)∑
d∈Dp

yp,d(σ) = 1, ∀p ∈ P (14)

∑
r∈R

xp,r,d(σ) ≥ yp,d̄(σ), ∀p ∈ P, d̄ ∈ Dp, d = d̄, . . . , d̄+ lp − 1 (15)

fr,d(σ) ≥ xp,r,d(σ), ∀p ∈ F ,∀r ∈ R ∩RSG, ∀d ∈ D (16)

mr,d(σ) ≥ xp,r,d(σ), ∀r ∈ R ∩RSG,∀d ∈ D (17)

br,d(σ) ≥ fr,d(σ) +mr,d(σ)− 1, ∀r ∈ RSG,∀d ∈ D (18)

tp,r,r∗,d(σ) ≥ xp,r,d(σ)− xp,r,d−1(σ), ∀p ∈ P ,∀r ∈ R, d = 2, . . . ,D. (19)

xp,r,d,∈ {0, 1}, ∀p ∈ P ,∀r ∈ R, ∀d ∈ D (20)

yp,d ∈ {0, 1}, ∀p ∈ P ,∀d ∈ D (21)

fr,d,mr,d, br,d ∈ {0, 1}, ∀r ∈ R,∀d ∈ D. (22)

Here, (6) and (13)-(15) correspond to hard constraints which must be met, the remaining constraints (16)-
(22) correspond to soft constraints which may be violated but are subject to penalties. The hard con-
straint in (6) is used in our code to identify the feasible rooms for each patient as well as in constructing
the cost matrix cp,r of the objective function.
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2.3 Modelling random arrivals and departures

To model the random departures we assume that the random variable Lp follows a discrete phase-type
distribution (see Latouche and Ramaswami [5] or Neuts [7]) with parameters τ and P, we write

Lp ∼ PH(τ ,P), (23)

so that, for `p = 1, 2, . . ., we have,

Pr(Lp ≤ `p) = 1− τP`p1, (24)

Pr(Lp ≥ `p) = τP`p−11, (25)

where 1 is a (column) vector of ones of appropriate size. That is, we model Lp using an absorbing
discrete-time Markov chain with state space V = {1, . . . , v, 0}, where 0 is the absorbing state, with the
initial distribution vector τ = [τi]i=1,...,v, and one-step transition probability matrix

P∗ =

[
P p
0 1

]
. (26)

Here, states 1, . . . , v may be interpreted as different stages of the medical treatment of a patient, and 0
as the departure of the patient from the system.

For a truncated distribution with `p = 1, . . . , `maxp , we have

Pr(Lp ≤ `p) = 1− τP`p1 (27)

for `p = 1, 2, . . . , `maxp − 1, and

Pr(Lp = `maxp ) = τP`maxp −11, (28)

so that Pr(Lp ≤ `maxp ) = 1.
To incorporate the random arrivals that may occur during the planning horizon, we adopt an ap-

proach similar to Kumar et al. [4] using the following steps.

1. Generate the random arrivals of emergency patients in the time horizon [0, D] using standard
simulation methods for the required distribution (obtained from statistical analysis of the data).

2. Add the set of such generated patients to the problem, and solve it using the model in Section 2.2,
treating these patients as registered patients, that is, patients that are known to the system.

3. Repeat Steps 1–2 multiple times then compare the different solutions by running simulations over
some long time period, and choose the solution that gives the minimum of all the optimal objective
function values.

3 Solution Approach

3.1 Modified stochastic ILP

In order to solve our stochastic model described in Section 2, we modify some of the cost components of
the objective function of the stochastic ILP (equation (12)), to improve the efficiency of the calculations.

We note that the components ∑
d∈D

∑
r∈R

c
(G)
r,d × Pr(Qr,d(σ)) (29)
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and ∑
d∈D

∑
r∈R

c
(O)
r,d ×

(
max{0, E(Yr,d(σ))− κr}

κ̂r − κr

)
(30)

are non-linear, and so we make the following changes in order to express the objective function as a
linear function.

We introduce a new variable γr,d(σ) to replace the max term in (30) and use it as a decision variable
with constraints

γr,d(σ) ≥ 0 (31)

and
γr,d(σ) ≥ E(Yr,d(σ))− κr. (32)

We replace the right-hand sides of constraints (16) and (17) with

xpr,d(σ)Pr(Lp ≥ d− dp)− αf , (33)

xpr,d(σ)Pr(Lp ≥ d− dp)− αm (34)

respectively, where αf is a small probability of having females in room r on day d, and αm is a small
probability of having males in room r on day d. Then we replace the Pr(Qr,d(σ)) term in (29) with br,d,(σ).

By including the above changes our stochastic model is now:

min
σ
{ f(σ) } = min

σ

{ ∑
p∈P

∑
d∈D

∑
r∈R

cp,r × xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑
p∈P

∑
d∈D

∑
r∈R

∑
r∗∈R

c
(T )
p,r,r∗ × tp,r,r∗,d(σ)× Pr(Lp ≥ d− dp(σ))

+
∑
d∈D

∑
r∈R

c
(G)
r,d × br,d(σ) +

∑
d∈D

∑
r∈R

c
(O)
r,d × γr,d(σ)

+
∑
p∈P

c
(De)
p,d ×

∑
d∈D

(
d− dplanp

dmaxp − dplanp

)
× yp,d(σ)

}
(35)

subject to ∑
p∈P

xp,r,d(σ) ≤ κ̂r, ∀r ∈ R, ∀d ∈ D (36)∑
d∈Dp

yp,d(σ) = 1, ∀p ∈ P (37)

∑
r∈R

xp,r,d(σ) ≥ yp,d̄(σ), ∀p ∈ P, d̄ ∈ Dp, d = d̄, . . . , d̄+ lp − 1 (38)

fr,d(σ) ≥ xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))− αf , ∀p ∈ F ,∀r ∈ R ∩RSG,∀d ∈ D (39)

mr,d(σ) ≥ xp,r,d(σ)× Pr(Lp ≥ d− dp(σ))− αm, ∀r ∈ R ∩RSG,∀d ∈ D (40)

br,d(σ) ≥ fr,d(σ) +mr,d(σ)− 1, ∀r ∈ RSG,∀d ∈ D (41)

tp,r,r∗,d(σ) ≥ xp,r,d(σ)− xp,r,d−1(σ), ∀p ∈ P ,∀r ∈ R, d = 2, . . . ,D. (42)

γr,d(σ) ≥ E(Yr,d(σ))− κr, ∀p ∈ P ,∀r ∈ R,∀d ∈ D. (43)

xp,r,d,∈ {0, 1}, ∀p ∈ P , ∀r ∈ R,∀d ∈ D (44)

yp,d ∈ {0, 1}, ∀p ∈ P , ∀d ∈ D (45)

fr,d,mr,d, br,d ∈ {0, 1}, ∀r ∈ R,∀d ∈ D. (46)

γr,d(σ) ≥ 0, ∀r ∈ R,∀d ∈ D. (47)
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3.2 Heuristics for large-scale problems

Solving the large instances of the resulting mixed integer linear program is difficult, therefore we use a
simulated annealing approach similar to that proposed by Ceschia and Schaerf [3]. Simulated annealing
(SA) is a stochastic search algorithm which has been successfully applied for solving combinatorial
optimisation problems. This algorithm consists of several components, and in this paper, we use the
same structure and steps proposed by Ceschia and Schaerf [3] as follows:

• Solution space

The solution space consists of solutions defined by two sets of vectors of equal sizes which is equal
to the number of patients. The first vector defines the assignment of room r to patient p. The
second vector represent the admission day of each patient p. In our search space, we exclude the
room capacity constraints.

• Initial solution

SA starts with an initial solution which plays an important role in convergence of the algorithm to
a local optimum. The initial solution can be constructed or generated randomly. In our case, we
solve the simplified deterministic ILP which consists of hard constraints (room capacity, patients
length of stays, and admission day) and associated costs in the objective function. The optimal
solution of this ILP is then improved through the steps of the SA.

• Neighbourhood relations

We use the neighbourhood of the current solution to search the solution space. To obtain a
neighbourhood we define three moves similar to that of Ceschia and Schaerf [3]. The first two moves
(Move1 and Move2) are related to the room assignment, and the third move (Move3) is related
to a possible admission day. For Move1 we first select a patient at random, and then we change
the room number to another randomly selected room. For Move2 we swap the assignment of two
randomly selected patients. For Move3 which is related to a patient’s admission day, we increase
(move forward) the admission day of a randomly selected patient. The complete neighbourhood is
the union of the three moves. It should be noted that we exclude shifting the patient’s admission
day over the maximum admission date, as these moves create infeasible solutions.

• Simulated annealing

Ceschia and Schaerf [3] and Lusby et al. [6] used SA to solve the PAS problem. We use the
following variant of SA in our solver. As mentioned earlier, an initial solution is created using the
simplified deterministic MILP model. We construct a loop which randomly generates a neighbour
of the current solution at each iteration. Considering the move φ cost difference ∆θ between
the current solution and the new solution is evaluated. If ∆θ ≥ 0, we take the new output as
our current solution for the next move. Conversely, if ∆θ<0 the current solution is accepted as
the new solution with probability e−∆θ/T , where T is the parameter denoting temperature. The
initial temperature is denoted by Tmax, which is also the maximum possible temperature. The
temperature starts to fall with some cooling rate α. After a given number of iterations N , it
leads to the minimum stopping temperature Tmin. In each cooling step we have a temperature of
Tn = α × Tn−1. The cooling rate α, the number of solutions sampled at each temperature T and
the initial and stopping temperatures Tmax and Tmin are the controlling parameters. Regarding
the neighbourhood used, we first select the neighbourhood followed by specifying the moves within
the neighbourhood. In contrast to Ceschia and Schaerf [3], the neighbourhood is selected with
some randomly generated probability for each of the three moves.
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• Parameter tuning for simulated annealing

We use similar configurable parameters to that of Ceschia and Schaerf [3]. The performance of
the simulated annealing algorithm depends on the settings of these parameters. The simulated
annealing solver is tuned using an automatic tool called iterated racing procedure, which allows
exploration of large spaces on a large size instances effectively.

3.3 Deterministic ILP model

In order to test the appropriateness of our model for random environments, we compared its performance
with the model of Lusby et al. [6] in the numerical examples which we will give in Section 4. Therefore,
for completeness, in this section we describe the deterministic ILP in Lusby et al. [6], using the notation
introduced earlier in Section 2.

Here, we assume that the length of stay of patient type p is a constant `p, and that patient p has
an overstay risk Op ∈ {0, 1}, where Op = 1 means that the patient will stay `p + 1 days in the system,
and Op = 0 means they do not. We use the following deterministic ILP, which is based on the model in
Lusby et al. [6], with some slight modifications of the notation. Note that Yr,d(σ)−κr here is a constant,
equivalent to zr,d in Lusby et al. [6]. Also note that we do not use the parameter κ̂r in the model below.
Similar to Lusby et al. [6], we use the variable x̄p,r,d(σ) ∈ {0, 1} to capture the possibility that patient p
will stay in room r ∈ R for one more night following day d after the discharge due date, due to overstay
risk Op.

The resulting deterministic ILP is,

min
σ
{ g(σ) } = min

σ

{ ∑
p∈P

∑
d∈D

∑
r∈R

cp,r × xp,r,d(σ)

+
∑
p∈P

∑
d∈D

∑
r∈R

∑
r∗∈R

c
(T )
p,r,r∗ × tp,r,r∗,d(σ)

+
∑
d∈D

∑
r∈R

c
(G)
r,d × br,d(σ) +

∑
d∈D

∑
r∈R

c
(O)
r,d ×max{0, Yr,d(σ)− κr}

+
∑
p∈P

c
(De)
p,d ×

∑
d∈D

(
d− dplanp

)
× yp,d(σ)

}
(48)
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subject to ∑
p∈P

xp,r,d(σ) ≤ κr, ∀r ∈ R, ∀d ∈ D (49)∑
d∈Dp

yp,d(σ) = 1, ∀p ∈ P (50)

∑
r∈R

xp,r,d(σ) ≥ yp,d̄(σ), ∀p ∈ P, d̄ ∈ Dp, d = d̄, . . . , d̄+ lp − 1 (51)

fr,d(σ) ≥ xp,r,d(σ), ∀p ∈ F ,∀r ∈ R ∩RSG,∀d ∈ D (52)

mr,d(σ) ≥ xp,r,d(σ), ∀r ∈ R ∩RSG,∀d ∈ D (53)

br,d(σ) ≥ fr,d(σ) +mr,d(σ)− 1, ∀r ∈ RSG,∀d ∈ D (54)

tp,r,r∗,d(σ) ≥ xp,r,d(σ)− xp,r,d−1(σ)− yp,d(σ), ∀p ∈ P , ∀r ∈ R, d = 2, . . . ,D. (55)

yp,d(σ) +Op × xp,r,d+lp−1(σ) ≤ 1 + x̄p,r,d+lp(σ), ∀p ∈ P ,∀r ∈ R,∀d ∈ D. (56)∑
p∈P

(xp,r,d(σ) + x̄p,r,d(σ)) ≤ κr + zr,d(σ), ∀r ∈ R,∀d ∈ D. (57)

xp,r,d(σ), x̄p,r,d(σ) ∈ {0, 1}, ∀p ∈ P ,∀r ∈ R,∀d ∈ D (58)

yp,d(σ), tp,d(σ) ∈ {0, 1}, ∀p ∈ P ,∀d ∈ D (59)

fr,d(σ),mr,d(σ), br,d(σ) ∈ {0, 1}, ∀r ∈ R,∀d ∈ D (60)

zr,d(σ) ≥ 0, ∀r ∈ R,∀d ∈ D. (61)

3.4 Data structure

In our comparisons, similar to Lusby et al. [6], we use the data instances provided by Ceschia and
Schaerf [3] see Table 1. The data set has nine families of instances which is labelled as small, medium,
or large depending the number of departments, rooms, features, patients, and specialisms. These families
were subdivide into short, medium, and long according to the length of planning horizon, which is 14,
28, and 56 days, respectively. For instance, the families with small family size turn into small-short,
small-medium, and small-long. The nine families with 50 cases each are aimed at representing real world
scenario.

Family Instances Departments Rooms Features Patients Specialisms Days
Small-Short 50 4 8 4 50 3 14
Small-Med 50 4 8 4 100 3 28
Small-Long 50 4 8 4 200 3 56

Med-Short 50 6 40 5 250 10 14
Med-Med 50 6 40 5 500 10 28
Med-Long 50 6 40 5 1000 10 56

Large-Short 50 8 160 6 1000 15 14
Large-Med 50 8 160 6 2000 15 28
Large-Long 50 8 160 6 4000 15 56

Table 1: Instance overview, source: Ceschia and Schaerf [3].

The data sets were created by an instance generator. The generator was designed to produce the
nine families with 50 instances each. As input, the generator took the number of rooms, departments,
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patients, days, and room features to generate the random examples.

4 Numerical examples

In this section, we construct numerical examples to illustrate the application of our model. For each
case, we first solve the deterministic problem as defined in Lusby et al. [6], and then our stochastic
model using the ILP approach. We code the mathematical models presented in this paper in MS Visual
C++ and use Concert Technology to build the model within C++. We then call CPLEX 12.8.0 MILP
solver to solve the MILP parts of our models. We performed the experiments on an Intel(R) Core(TM)
i5-7300U CPU @ 2.70 GHz computer with 16 gigabytes of installed memory running on Windows 10
Enterprise.

During the coding, we defined the set of patients, departments, and rooms. From the available set
of departments, we considered the age policy and the major and minor specialisms to select the feasible
departments for each patient in order to satisfy their requirements with minimum cost violation. Similar
to Lusby et al. [6] and Ceschia and Schaerf [3], we set the cost of assignment to the infeasible room
(r /∈ Rf ) to be a huge number (cp,r = ∞). We created a cost matrix which consists of all the possible
costs of assignment of patient p to each feasible room r, considering all violation costs related to room
gender policy, room preference, and room features.

4.1 Output based on small instances

Here, we evaluate the performance of our stochastic model and compare it to deterministic model in
Lusby et al. [6]. We ran 20 tests each from a small family size with different planning horizons such
as small-short, small-medium, and small-long families. Similar to Ceschia and Schaerf [3], we ran the
code with a time limit of 840, 1, 680, and 3, 360 seconds for short, medium, and long planning horizons,
respectively.

In order to test the performance of our model, and in particular to test the need for the use of
stochastic parameters, we performed the following calculations for each of the instances.

• First, we ran Lusby et al. [6] to find the optimal solution σL.

• Next, we ran our stochastic model to find the optimal solution σ∗. Also, we used the same
distribution for the length of stay Lp that Lusby et al. [6] and Ceschia and Schaerf [3] used.

• Further, using the stochastic objective function f(·) of our model in Section 3.1, we evaluated
f(σL), and f(σ∗). In order to evaluate f(σ∗), we used σL as input to the model. The results are
summarised in Table 2.

Table 2 shows the results for the three families. Each row describes the outputs of one family
using Lusby et al. [6] and our model. Comparing the outputs between f(σL) and f(σ∗), we report for
each family the average solution, and the best value attained. The percentage gap between f(σL) and

f(σ∗) is reported as M (%) =
[

Avgf(σ∗)−Avg
f(σL)

Avg
f(σL)

]
× 100(%), to see the assignment cost improvement. In

the Instances column, we use parenthesis to show the number of feasible solutions obtained from each
family instance. In the small-short family, each instance has 50 patients and a 14 day planning horizon
as shown in Table 1. The average total cost of the assignment f(σL) attained for the small-short family
is 3, 010. The value of f(σL) increases to 5, 517 in the small-medium, and 15, 257 in small-long, as the
family size and planning horizon increases. Similarly, the average total cost f(σ∗) achieved using our
model is 950, 1, 922, and 5, 538 in the small-short, small-medium, and small-long families, respectively.
Therefore, there is a higher assignment cost improvement in f(σ∗) compared to f(σL) in each family,
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which is −68.43%, −65.17%, and −63.70% in the small-short, small-medium, and small-long families,
respectively. These results clearly show that there is a considerable difference between our stochastic
model and the model in Lusby et al. [6]. In particular, this indicates that applying the optimal solution
based on a model with deterministic parameters to a process that has random arrivals and departures,
results in a solution that is inferior, if the goal is to minimise the total expected cost.

Families Instances f(σL) f(σ∗) M (%)

Avg Best Avg Best

Small-short 20 (20) 3, 010 2, 130 950 525 −68.43

Small-Medium 20 (20) 5, 517 4, 295 1, 922 1, 581 −65.17

Small-Long 20 (20) 15, 257 12, 956 5, 538 4, 832 −63.70

Table 2: Comparison between Lusby et al. [6] and our stochastic model when applied to the PAS
problem with random arrivals and departures. Here, f is the stochastic objective function of our model
(see Equation (35)) evaluated for σL, the optimal solution of the model in Lusby et al. [6], and σ∗, the
optimal solution of our stochastic model, respectively.

4.2 Small instances, with phase-type distribution

Here, we consider the small instances shown in Table 1, but this time, instead of using the distribution
of the length of stay Lp as used by Lusby et al. [6] and Ceschia and Schaerf [3], in which Lp for each
patient p is drawn from the same log-normal distribution, we used discrete phase-type distributions
which were defined in Section 2.3. We used a different distribution for each patient type.

Suppose that there are three types of patients arriving to the system at a frequent rate λ1 = 5, a
moderate rate λ2 = 3, and a less frequent rate λ3 = 1 per day, respectively. In order to generate a
random number of arrivals of type-i patients, we generated a random number of arrivals that occurred
during the time interval [0, D] in the Poisson process with rate λi, and then, for each arrival, drew the
random arrival time from a discrete uniform distribution on {1, . . . , D}.

Here, in order to create the instances, we used the total number of arrivals N as shown in the Patients
in Table 1, that is N = 50, 100, 200, and then, for patient type i = 1, 2, 3, we used the average number

of arrivals Ni =
[

N×λi
λ1+λ2+λ3

]
, rounded to the nearest integer (see Table 3).

Family N N1 N2 N3

Small-Short 50 28 17 5
Small-Med 100 56 33 11
Small-Long 200 111 67 22

Table 3: Values of Ni, i = 1, 2, 3.

We assumed that patients with a small average length of stay E(Lp) are those that arrive at the
most frequent rate, and the less frequently arriving patients are those with longer average lengths of
stay. The remaining patients with an average length of stay are considered as moderate arrivals. That
is, for patient type i = 1, 2, 3 we assumed that the τ and Pi for the distribution of Lp ∼ PH(τ ,Pi)
were

τ =
[

1 0 0
]
,

11



and

P1 =

 0.2 0.5 0
0 0.1 0.4
0 0 0.5

 , P2 =

 0.3 0.6 0
0 0.2 0.5
0 0 0.4

 , P3 =

 0.4 0.5 0
0 0.4 0.5
0 0 0.7

 .
Then, to evaluate Pr(Lp ≤ `p) for patient type-i we used, for `p = 1, . . . , `maxp − 1,

Pr(Lp ≥ `p) = τP`p−11, (62)

and

Pr(Lp ≥ `maxp ) = Pr(Lp = `maxp ) = τP`maxp −11, (63)

so that the distribution is truncated, with `p = 1, . . . , `maxp . Here, we used `maxp = 9 for each patient
type, similar to the distribution in Lusby et al. [6] and Ceschia and Schaerf [3].

We evaluated probabilities Pr(Lp = `p) for patient type-i for all `p, and recorded as vectors

pi = [Pr(Lp = `p)]`p=1,...,9,

with

p1 =
[

0.3000 0.3100 0.1870 0.0999 0.0512 0.0259 0.0130 0.0065 0.0065
]
,

p2 =
[

0.1000 0.2100 0.2790 0.1989 0.1115 0.0553 0.0256 0.0113 0.0083
]
,

p3 =
[

0.1000 0.0900 0.1310 0.1429 0.1301 0.1069 0.0827 0.0617 0.1546
]
.

The corresponding means for patient type-i are Ei(Lp) , with

E1(Lp) = 2.4935, E2(Lp) = 3.3869, E3(Lp) = 5.0010. (64)

Incorporating the above three distributions and running 20 instances from each family, we evaluated
the average objective function f(σ∗) using our stochastic model (see Equation (35)). Table 4 indicates
that, there is a −65.4%, −49.7%, and −27.2% reduction in the cost of assignment f(σ∗) in small-short,
small-medium, and small-long families, respectively. We used different probability distributions for
different patient types in our stochastic model f(σ∗), and compared to f(σL). Table 4 supports the
results in Table 2 even under the use of different probability distributions.

Families Instances f(σL) f(σ∗) M (%)

Avg Best Avg Best

Small-short 20 (20) 2, 754.8 2, 262 952.71 809.4 −65.4

Small-Medium 20 (20) 6, 282.6 4, 638 3, 161.4 2, 665 −49.7

Small-Long 20 (20) 14, 994 12, 484 10, 921.9 9, 863.7 −27.2

Table 4: Comparison between Lusby et al. [6] and our stochastic model when applied to the PAS problem
with random arrivals and departures, in which the length of stay of patient type-i follows phase type
distribution Lp ∼ PH(τ ,Pi), i = 1, 2, 3. Here, f is the stochastic objective function of our model (see
Equation (35)) evaluated for σL, the optimal solution of the model in Lusby et al. [6] where we used
`p = E(Lp), and σ∗, the optimal solution of our stochastic model, respectively.
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4.3 Large instances, with phase-type distribution

We now apply our model to the large instances. We considered that the length of stay of patient type-i
follows discrete phase type distribution Lp ∼ PH(τ ,Pi), i = 1, 2, 3 which were defined in Section 2.3,
using the same parameter as in Section 4.2.

In this case, due to the large size of the problem, we apply the heuristic method described in
Section 3.2. In order to assess the performance of this approach, we compare the best value of f(σ)
in Equation (35) obtained by using heuristics, denoted f(σSA), with the best feasible value of f(σ) in
Equation (35) obtained by running our code for the ILP described in Section 3.1 in limited running time
of 1680 seconds. The output is summarised in Table 5.

Here, we first apply our model to find the best feasible assignment σF (where we limit the running
time), and then use it as an initial solution for the heuristic method. This example illustrates that we
are able to obtain results for large instances in a reasonable amount of computational time which is also
practical for the purpose of decision making.

Families Instances f(σF ) f(σSA)

Avg Best Avg Best

Large-Medium 20 (20) 53, 971.5 51, 132 35, 755.4 34, 035

Table 5: The best value of f(σ) obtained by applying heuristic, f(σSA), and the best feasible value
of f(σ) obtained by using our model, f(σF ) in limited running time. Here, we used the best feasible
assignment σF as an initial solution for the heuristic method.

5 Conclusion and future-work

In this paper we have addressed the patient admission scheduling problem with a probabilistic approach.
We developed a new stochastic model to capture the dynamic nature of the real world scenario. Our new
stochastic formulation used a probabilistic length of stay instead of a fixed value because on a day-to-day
basis, there is a probability that a patient can depart at any time from the hospital for different reasons.

This model resulted in good quality outputs for problems of different sizes and planning horizons.
We evaluated the performance of our stochastic model and compared it to the deterministic model of
Lusby et al. [6] for a small sized problem. To compare both models, first we found the optimal solutions
σL using the Lusby et al. [6] model and σ∗ using the Abera et al. [1] model, and we used those solutions
to calculate the cost function f(σL) and f(σ∗) using our stochastic model. The solution obtained using
f(σ∗) indicated that there is an improvement by −68.43%, −65.17%, and −63% in the cost of assign-
ment for all the three small-short, small-medium, and small-long families, respectively. Furthermore,
we checked the performance of the Abera et al. [1] model by incorporating three different probability
distributions of length of stay using discrete phase-type distribution as in Section 4.2. Instead of using
one probabilistic distribution for the length of stay, as did Lusby et al. [6] we used these different distri-
butions. We solved the Abera et al. [1] model and used the optimal solution σ∗ to calculate the average
cost function f(σ∗). We compared f(σ∗) with f(σL) and there was an improvement by −65.4%, −49.7%,
and −27.2% in the small-short, small-medium, and small-long families, respectively. Even though the
use of different distributions for length of stay to obtain f(σ∗) in Table 4 seems to worsen the result
compared to the use of one distribution for length of stay f(σ∗) in Table 2, the overall results of f(σ∗)
in both Table 2, and Table 4 compared to f(σL) shows the use of stochastic model for PAS problems
makes it more preferable compare to the deterministic models. Therefore, we conclude that we cannot
use deterministic models to represent adequately a stochastic scenario.
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In addition, we used a simulated annealing algorithm to solve the large size instances of the stochastic
problem. The algorithm used the same configurations (temperatures, cooling scheme, and cost values in
the objective function) of Ceschia and Schaerf [3], except that our new algorithm can handle probabilistic
length of stay.

There are several directions for future research. First, we can design some experiments to tune
the simulated annealing algorithm for stochastic problem. This is crucial as the performance of such
heuristic depends heavily on its parameters. Second, we can design other heuristic methods to obtain
solutions with good quality for the large scale instances of the stochastic problem. Further, we can
explore the effect of phase-type distribution on the performance of our model. Finally, the model can
be generalised. One such generalization is to include other decisions such as nurse rostering.
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7 Notation summary

Parameter Description
p A patient.
P Set of all patients.
M Set of all male patients.
F Set of all female patients.
r A room.
R Set of all rooms.
κp Total number of beds in room r.
d A day.
dp Admission date of patient p ∈ P .
D Planning horizon.
`maxp Maximum length of stay of patient p ∈ P .

Lp Length of stay of patient p ∈ P .
Wi Ward i, for i = 1, 2, . . . ,W .
Su Specialism u, for u = 1, 2, . . . , S.

xp,r,d(σ) xp,r,d(σ) = 1, if patient p is assigned to room r on day d.
xp,r,d(σ) = 0, otherwise.

yp,d(σ) yp,d(σ) = 1, if patient p is admitted on day d.
yp,d(σ) = 0, otherwise.

Yr,d(σ) A random variable recording the number of patients in room r on day d.
tp,r,r∗,d(σ) tp,r,r∗,d(σ) = 1 if patient p is transfered from room r to room r∗ on day d.

tp,r,r∗,d(σ) = 0, otherwise.
Qr,d(σ) An event that a gender conflict is observed in room r on day d.
br,d(σ) br,d(σ) = 1, if both genders are present in room r on day d,

br,d(σ) = 0, otherwise.
fr,d(σ) fr,d(σ) = 1, if there is at least one female patient in room r on day d.

fr,d(σ) = 0, otherwise.
mr,d(σ) mr,d(σ) = 1, if there is at least one male patient in room r on day d.

mr,d(σ) = 0, otherwise.

Table 6: Parameters and variables of the model.

Parameter Description
cp,r,d Cost for assigning patient p to room r on day d.

cp,r,r∗
(T ) Cost of transferring patient p from room r to room r∗ on day d.

cr,d
(G) Penalty incurred for the violation of gender policy in room r on day d.

cr,d
(O) Penalty incurred when the capacity κr of room r is exceeded on day d.

cp,d
(De) Penalty incurred for the admission delay of patient p on day d.

Table 7: Cost components of the objective function.
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Parameter Description
M Male only policy.
F Female only policy.
SG Same-gender policy.
N All genders policy.

Table 8: Gender policies for rooms.
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